Windows 2000 and Linux Memory Management
Windows 2000 OS structure

- Executive is architecture independent part of the OS
- Memory Manager is one part of this executive
Memory Management

- Sophisticated virtual memory (VM) management
 - Assumption is that underlying hardware supports virtual-to-physical address translation, paging, and other VM features
- The VM manager in 2000 uses a page-based management scheme with a page size of 4 KB
- VM manager uses 32 bit addresses, so each process has a 4 GB virtual address space
 - Upper 2 GB are identical for each process and lower 2 GB are distinct for each process
- Two-step memory allocation procedure
 1. Reservation a portion of the process’ address space
 2. Commitment of the allocation by assigning space in the OS paging file
Virtual address space layout for 3 user processes
- White areas are private per process
- Shaded areas are shared among all processes
Virtual-Memory Layout

- Page-directory:
 - Page-directory entry 0
 - Page-directory entry 1023

- Page-tables:
 - Page-table entry 0
 - Page-table entry 1023

- Pages:
 - 4K page
 - 4K page
 - 4K page
 - 4K page
Virtual Memory Manager (Cont.)

- The virtual address translation in 2000 uses several data structures.
 - Each process has a *page directory* that contains 1024 *page directory entries* of size 4 bytes.
 - Each page directory entry points to a *page table* which contains 1024 *page table entries* (PTEs) of size 4 bytes.
 - Each PTE points to a 4 KB *page frame* in physical memory.
- A 10-bit integer can represent all the values form 0 to 1023, therefore, can select any entry in the page directory, or in a page table.
- This property is used when translating a virtual address pointer to a byte address in physical memory.
- A page can be in one of six states: valid, zeroed, free standby, modified and bad.
Virtual-to-Physical Address Translation

- 10 bits for page directory entry, 10 bits for page table entry, and 12 bits for byte offset in page.
Physical Memory Management (1)

The various page lists and the transitions between them
Some of the major fields in the page frame data base for a valid page
Linux Memory Management

- Linux’s physical memory-management system deals with allocating and freeing pages, groups of pages, and small blocks of memory.

- It has additional mechanisms for handling virtual memory, memory mapped into the address space of running processes.
Splitting of Memory in a Buddy Heap
Managing Physical Memory

- The page allocator allocates and frees all physical pages; it can allocate ranges of physically-contiguous pages on request.
- The allocator uses a **buddy-heap** algorithm to keep track of available physical pages.
 - Each allocatable memory region is paired with an adjacent partner.
 - Whenever two allocated partner regions are both freed up they are combined to form a larger region.
 - If a small memory request cannot be satisfied by allocating an existing small free region, then a larger free region will be subdivided into two partners to satisfy the request.
- Memory allocations in the Linux kernel occur either statically (drivers reserve a contiguous area of memory during system boot time) or dynamically (via the page allocator).
Virtual Memory

- The VM system maintains the address space visible to each process: It creates pages of virtual memory on demand, and manages the loading of those pages from disk or their swapping back out to disk as required.

- The VM manager maintains two separate views of a process’s address space:
 - A logical view describing instructions concerning the layout of the address space. The address space consists of a set of non-overlapping regions, each representing a continuous, page-aligned subset of the address space.
 - A physical view of each address space which is stored in the hardware page tables for the process.
Virtual Memory (Cont.)

- Virtual memory regions are characterized by:
 - The backing store, which describes from where the pages for a region come; regions are usually backed by a file or by nothing (*demand-zero* memory)
 - The region’s reaction to writes (page sharing or copy-on-write).

- The kernel creates a new virtual address space
 1. When a process runs a new program with the *exec* system call
 2. Upon creation of a new process by the *fork* system call
Virtual Memory (Cont.)

- On executing a new program, the process is given a new, completely empty virtual-address space; the program-loading routines populate the address space with virtual-memory regions.

- Creating a new process with\texttt{fork} involves creating a complete copy of the existing process’s virtual address space.
 - The kernel copies the parent process’s VMA descriptors, then creates a new set of page tables for the child.
 - The parent’s page tables are copied directly into the child’s, with the reference count of each page covered being incremented.
 - After the fork, the parent and child share the same physical pages of memory in their address spaces.
Virtual Memory (Cont.)

- The VM paging system relocates pages of memory from physical memory out to disk when the memory is needed for something else.

- The VM paging system can be divided into two sections:
 - The pageout-policy algorithm decides which pages to write out to disk, and when.
 - The paging mechanism actually carries out the transfer, and pages data back into physical memory as needed.
Virtual Memory (Cont.)

- The Linux kernel reserves a constant, architecture-dependent region of the virtual address space of every process for its own internal use.

- This kernel virtual-memory area contains two regions:
 - A static area that contains page table references to every available physical page of memory in the system, so that there is a simple translation from physical to virtual addresses when running kernel code.
 - The remainder of the reserved section is not reserved for any specific purpose; its page-table entries can be modified to point to any other areas of memory.
Acknowledgements
