Chapter 1

CS 3204: Introduction

What is an Operating System (OS)?

- **Definition 1:**
 - An OS is the *interface* between the hardware and the software environment, equivalent to an *extended* or *virtual* machine.

- **Definition 2:**
 - An OS is a *resource manager*—provides “resource abstraction”

- In fact, it achieves 1 through 2.
- Therefore, both definitions are applicable at some times.
System Software and the OS interface

Resource Abstraction

- How does the OS “manage resources”?
 - By providing Resource Abstraction to the other system software and applications
- What is Abstraction?
 - Abstraction hides the details

- Resource Abstraction
 - hides the “nitty-gritty” details of the underlying resource
Resource Abstraction ... an example

(Consider the C language statement `fprintf`)

```
fprintf ( fileId , "%d" , var1 )
write ( block , 100 , device , 266 , 9 )
load ( block , 100 , device )
seek ( device , 266 )
out ( device , 9 )
```

Resource Abstraction

- Typical resource abstractions
 - Memory
 - Disk
 - Keyboard
 - Monitor
Resource Sharing

- Managing resources through abstractions implies the ability to 'share resources'.

- Types of Sharing:
 - Space Multiplexed
 - Divided into 2 or more distinct units of resource
 - Example: disk, memory
 - Time multiplexed
 - Exclusive control for a short period of time
 - Example: processor

Resource Sharing

- Multiple processes accessing same resource concurrently

- Isolation: only one processor has access at any given time
Terminology

- Concurrency
 - The simultaneous execution of different programs
 - Types of Concurrency
 - **Physical** – multiple processors
 - Example: CPU, I/O
 - **Logical** – interleaved execution
 - Example: processes

- Multiprogramming
 - The concurrent execution of multiple programs on a single processor
 - Could be space-multiplexed into memory and time-multiplexed in processors

Multiprogramming

Abstract Machine P_i

Abstract Machine P_j

Abstract Machine P_k

OS Resource Sharing

Time-multiplexed Physical Processor

Space-multiplexed Physical Memory
Multiprogramming(2)

- Technique for *sharing* the CPU among *runnable* processes
 - Process may be *blocked* on I/O
 - Process may be *blocked* waiting for other resource, including the CPU
- While one process is blocked, another might be able to run
- Multiprogramming OS accomplishes CPU sharing “automatically” – *scheduling*
- Reduces time to run all processes

How Multiprogramming Works

![Diagram of multiprogramming](image)

- Process 1
- Process 2
- Process 3
- Process 4

Space-multiplexed Memory

Time-multiplexed CPU
OS Strategies for Providing Services

- Batch
- Time share
- PCs and Workstations
- Process Control & Real-time systems
- Networked
- Distributed
- Small computers

Batch processing systems

- Sequentially loaded set of jobs
- Supported multiprogramming
- Jobs compete for Resources
 - 1st: memory
 - 2nd: processor
 - 3rd: ???
- No “real time” interaction between user and computer
- Current examples include .bat files under DOS – Windows, shell files under Unix/Linux
Batch Processing

Time share (1970s)

- Multiprogramming environment
- Multiple interactive users

- Why time-share (TS)?
 - To spread the cost of large machine
 - To fully utilize computing power

- TS provides each user with his/her own Virtual Machine
Time share system...

- Abstract Machines
 - Result
 - Command
 - Physical Machine

Time share... ctd.

- TS eventually supported multitasking
 - Multitasking:
 - A time share system that support **multiple processes** per user, where.
 - A process is a "program in execution"

- TS elevated the importance of
 - Need for barriers and safeguards among users and there processes - User/User & Process/Process
 - Memory protection
 - File Protection
Personal Computers (PCs) & Workstations

- Originally
 - Single User
 - Single Processor

- Now
 - Single or Multiple Users
 - Multiprogrammed

PCs Workstations... Evolution

- Earlier machines
 - Too large, too expensive, and too fast for one person

- Mini-computers
 - Smaller versions (like DEC PDP), yet they too grew in size

- Micro-computer
 - Single chip processor

- Workstation
 - Multiple user
 - Multiprogrammed
 - Multitasking
PCs & Workstations... Contribution

- Contributed to the growth of
 - Networking
 - Email
 - File server
 - Point and click interface
 - Like that in Mac and Windows

Process Control & Real time Systems

- Process Control Systems (PCS)
 - Single application monitoring one process
 - Example: System to monitor the heat of a liquid

- Real Time Systems (RTS)
 - Tied together Process Control Systems
Real Time Systems... type

- Hard RTS
 - Had timing constraints that COULD NOT be missed
 - Example: Chemical processes, Nuclear power plants, Defense systems

- Soft RTS
 - Make best effort to accommodate time constraints
 - Example: Transaction processing (ATM)

RTS: Tradeoff of generality of operations/functionality to ensure that deadlines can be made

Networks of Computers

- Problem is too large
 - Partition it among machines

- Communication exchange
 - Email
 - File transfers

- Servers
 - File
 - Printer
 - Database

- Provide access to non-local resources
 - LAN, WAN
 - Client / Server
Distributed OS

- Wave of the future

![Diagram of Distributed OS with multiple applications and a network connection]

Multiple Computers connected by a Network

Small Computers

- PDAs, STBs, embedded systems became commercially significant
- Have an OS, but
 - Not general purpose
 - Limited hardware resources
 - Different kinds of devices
 - Touch screen, no keyboard
 - Graffiti
 - Evolving & leading to new class of Oses
- PalmOS, Pocket PC (WinCE), VxWorks, ...
Examples of Modern OS

- UNIX variants (e.g. Linux) -- have evolved since 1970
- Windows NT/2K -- has evolved since 1989 (much more modern than UNIX
 - Win2K = WinNT, V5
- Research OSes – still evolving ...
- Small computer OSes – still evolving ...