Chapter 1
CS 3204: Introduction

Resource Abstraction
- How does the OS "manage resources"?
 - By providing Resource Abstraction to the other system software and applications
- What is Abstraction?
 - Abstraction hides the details
- Resource Abstraction
 - hides the "nitty-gritty" details of the underlying resource

What is an Operating System (OS)?
- Definition 1:
 - An OS is the interface between the hardware and the software environment, equivalent to an extended or virtual machine
- Definition 2:
 - An OS is a resource manager—provides "resource abstraction"

In fact, it achieves 1 through 2.
Therefore, both definitions are applicable at some times.

System Software and the OS Interface

Resource Abstraction ... an example
(Consider the C language statement `fprintf`)

\begin{verbatim}
fprintf (fileId , "%d" , var1)
write (block , 100 , device , 266 , 9)
load (block , 100 , device)
seek (device , 266)
out (device , 9)
\end{verbatim}

Typical resource abstractions
- Memory
- Disk
- Keyboard
- Monitor

\[
\begin{array}{c}
\text{System Software and the Operating System} \\
\text{Application Software} \\
\text{Drivers} \\
\text{Application Programming Interface} \\
\text{Disk System Software} \\
\text{Operating System Interface} \\
\text{Operating System} \\
\text{Software/Hardware Interface} \\
\text{Hardware} \\
\end{array}
\]
Resource Sharing

- Managing resources through abstractions implies the ability to ‘share resources’

- Types of Sharing:
 - Space Multiplexed
 - Divided into 2 or more distinct units of resource
 - Example: disk, memory
 - Time multiplexed
 - Exclusive control for a short period of time
 - Example: processor

OS Strategies for Providing Services

- Batch
- Time share
- PCs and Workstations
- Process Control & Real-time systems
- Networked

Resource Sharing

- Multiple processes accessing same resource concurrently
- Isolation: only one processor has access at any given time

Batch processing systems

- Sequentially loaded set of jobs
- Supported multiprogramming
- Jobs compete for Resources
 - 1st: memory
 - 2nd: processor
 - 3rd: ??
- No “real-time” interaction between user and computer
- Current examples include .bat files under DOS – Windows, shell files under Unix/Linux

Terminology

- Concurrency
 - The simultaneous execution of different programs
- Types of Concurrency
 - Physical – multiple processors
 - Logical – interleaved execution
 - Example: CPU, I/O
- Multiprogramming
 - The concurrent execution of multiple programs on a single processor
 - Could be space-multiplexed into memory and time-multiplexed in processors

Time share (1970s)

- Multiprogramming environment
- Multiple interactive users
- Why time-share (TS)?
 - To spread the cost of large machine
 - To fully utilize computing power
- TS provides each user with his/her own Virtual Machine
Time share system...

A Time-sharing System

Time share... ctd.

- TS eventually supported multitasking
 - Multitasking:
 - A time share system that support multiple processes per user, where.
 - A process is a "program in execution"

- TS elevated the importance of
 - Need for barriers and safeguards among users and there processes - User/User & Process/Process
 - Memory protection
 - File Protection

PCs Workstations... Evolution

- Earlier machines
 - Too large, too expensive, and too fast for one person

- Mini-computers
 - Smaller versions (like DEC PDP), yet they too grew in size

- Micro-computer
 - Single chip processor

- Workstation
 - Multiple user
 - Multiprogrammed
 - Multitasking

PCs & Workstations... Contribution

- Contributed to the growth of
 - Networking
 - Email
 - File server

 - Point and click interface
 - Like that in Mac and Windows

Personal Computers (PCs) & Workstations

- Originally
 - Single User
 - Single Processor

- Now
 - Single or Multiple Users
 - Multiprogrammed

Process Control & Real time Systems

- Process Control Systems (PCS)
 - Single application monitoring one process
 - Example: System to monitor the heat of a liquid

- Real Time Systems (RTS)
 - Tied together Process Control Systems
Real Time Systems... type

- Hard RTS
 - Had timing constraints that COULD NOT be missed
 - Example: Chemical processes, Nuclear power plants, Defense systems

- Soft RTS
 - Make best effort to accommodate time constraints
 - Example: Transaction processing (ATM)

RTS: Tradeoff of generality of operations/functionality to ensure that deadlines can be made

Networks of Computers

- Problem is too large
 - Partition it among machines

- Communication exchange
 - Email
 - File transfers

- Servers
 - File
 - Printer
 - Database

- Provide access to non-local resources
 - LAN, WAN
 - Client / Server

Summary