1. [15 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of the body of the following function.

```java
public double eval(double[] c, double x) {
    double polyx = c[0]; // 2
    double xToK = x; // 1
    for (int k = 1; k < c.length; k++) { // 1 before, 2 per pass, 1 exit
        polyx = polyx + c[k] * xToK; // 4
        xToK = x * xToK; // 2
    }
    return polyx; // 1
}
```

State both a complexity function $T(N)$ and the Θ-complexity of $T(N)$.

From the line-by-line analysis above,

$$T(N) = 2 + 1 + 1 + \sum_{k=1}^{N-1} (2 + 4 + 2) + 1 + 1$$

$$= \sum_{k=1}^{N-1} 8 + 6$$

$$= 8N - 2$$

If you counted the "dot" operator, you'd get a slightly different answer:

$$T(N) = 2 + 1 + 1 + \sum_{k=1}^{N-1} (3 + 4 + 2) + 2 + 1$$

$$= \sum_{k=1}^{N-1} 9 + 7$$

$$= 9N - 2$$

And either way, it's clear from the theorems that $T(N)$ is $\Theta(N)$.
2. [15 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of the body of the following function.

```java
public double eval(double[] c, double x) {
    double polyx = c[0];                   // 2
    for (int k = 1; k < c.length; k++) {   // 1 before, 2 per pass, 1 exit
        double xToK = x;                    // 1
        for (int i = 1; i < k; i++) {       // 1 before, 2 per pass, 1 exit
            xToK = x * xToK;                // 2
        }
        polyx = polyx + c[k] * xToK;       // 4
    }
    return polyx;                         // 1
}
```

State both a complexity function \(T(N) \) and the \(\Theta \)-complexity of \(T(N) \).

From the line-by-line analysis above,

\[
T(N) = 2 + 1 + \sum_{k=1}^{N-1} \left(2 + 1 + 1 + \sum_{i=1}^{k-1} (2 + 2) + 1 + 4 \right) + 1 + 1 \\
= \sum_{k=1}^{N-1} \left(\sum_{i=1}^{k-1} 4 + 9 \right) + 5 \\
= \sum_{k=1}^{N-1} (4k + 5) + 5 \\
= 4 \frac{(N-1)N}{2} + 5(N-1) + 5 \\
= 2N^2 + 3N \\
\]

If you counted the "dot" operation to access `length`, as 1, then you would get a slightly different result:

\[
T(N) = 2 + 1 + \sum_{k=1}^{N-1} \left(2 + 1 + 1 + \sum_{i=1}^{k-1} (2 + 2) + 1 + 4 \right) + 2 + 1 \\
= 2N^2 + 4N \\
\]

And either way, it's clear from the theorems that \(T(N) \) is \(\Theta(N^2) \).
3. [20 points] For each part, determine the simplest possible function $g(n)$ such that the given function is $\Theta(g)$. No justification is necessary, but you might have to do some analysis using the theorems from the notes.

a) $a(n) = 14n^3 + 3n^2 \log n$

$a(n)$ is $\Theta(n^3)$ by Theorem 13 and Theorem 5.

b) $b(n) = 3n \log n + 5n$

$b(n)$ is $\Theta(n \log n)$ by Theorem 13 and Theorem 5.

c) $c(n) = 3n \log \left(n^2 \right) + 3n^2 \log n$

This is not covered by Theorem 5, so you needed to make a guess and apply Theorem 8:

$$\lim_{n \to \infty} \frac{3n \log \left(n^2 \right) + 3n^2 \log n}{n^2 \log n} = \lim_{n \to \infty} \left(\frac{3n \log(n^2)}{n^2 \log n} + \frac{3n^2 \log n}{n^2 \log n} \right) = \lim_{n \to \infty} \left(\frac{3 \log(n^2)}{n \log n} + 3 \right)$$

$$= \lim_{n \to \infty} \left(\frac{6 \log(n)}{n \log n} + 3 \right) = \lim_{n \to \infty} \left(\frac{6}{n} + 3 \right) = 0 + 3 = 3$$

So, $c(n)$ is $\Theta(n^2 \log n)$.

d) $d(n) = n^2 + 2^n + 3^n$

d(n) is $\Theta(3^n)$ by Theorems 13 and 5 again.

e) $e(n) = \frac{n^2 + 2n + 3}{n^2}$

This is also not covered by Theorem 5, but Theorem 8 settles the issue if you make the right guess:

$$\lim_{n \to \infty} \frac{n^2 + 2n + 3}{n^2} = \lim_{n \to \infty} \frac{n^2 + 2n + 3}{n^2} = \lim_{n \to \infty} \left(1 + \frac{2}{n} + \frac{3}{n^2} \right) = 1$$

So, $e(n)$ is $\Theta(1)$.

4. [15 points] Suppose that executing an algorithm on input of size \(N \) requires executing \(T(N) = 8N + \log N \) instructions. How long would it take to execute this algorithm on hardware capable of carrying out \(2^{28} \) instructions per second if \(N = 2^{40} \)? (Give your answer in hours, minutes and seconds, to the nearest second.)

The number of instructions that the algorithm would execute is given by

\[
T(2^{40}) = 8 \cdot 2^{40} + \log 2^{40} = 8 \cdot 2^{40} + 40
\]

The number of seconds required is

\[
\frac{T(2^{40})}{2^{28}} = \frac{8 \cdot 2^{40} + 40}{2^{28}} \approx 8 \cdot 2^{12} = 32768
\]

That works out to be about 9 hours, 6 minutes, 8 seconds.

5. [25 points] Design an efficient algorithm for solving the following problem:

Given an array \(A \) holding \(N \) elements, such that \(A[0] < A[1] < A[2] < \ldots < A[N-1] \), determine whether there is an index \(k \) such that \(0 \leq k \leq N-1 \) and \(A[k] = k \).

Write your algorithm as a Java function and state its \(\Theta \)-complexity.

This can be solved by simply changing the binary search algorithm in the notes. The key insights are:

- if \(A[k] < k \) then there cannot be a solution for \(i < k \)
- if \(A[k] > k \) then there cannot be a solution for \(i > k \)

The changes are minimal, and left to you. The complexity is that of binary search, Theta(log N).

6. [10 points] Prove the following:

if \(x \) is a real number then \(\lfloor x \rfloor + 1 = \lfloor x + 1 \rfloor \)

proof:

If \(x \) is a real number, then there is an integer \(k \leq x \) and a real number \(0 \leq \alpha < 1 \) such that \(x = k + \alpha \). Therefore

\[
k \leq x < k + 1 \implies k + 1 + \alpha = x + 1 < k + 2
\]

Now, \(k \), \(k+1 \) and \(k+2 \) are consecutive integers, so it’s clear that \(k = \lfloor x \rfloor \) and \(k + 1 = \lfloor x + 1 \rfloor \), and therefore

\[
\lfloor x \rfloor + 1 = k + 1 = \lfloor x + 1 \rfloor
\]