You will submit your solution to this assignment to the Curator System (as HW02). Your solution must be either a plain text file (e.g., NotePad) or a typed MS Word document; submissions in other formats will not be graded.

Except as noted, credit will only be given if you show relevant work.

1. [15 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of the body of the following function.

   ```java
   public double eval(double[] c, double x) {
       double polyx = c[0];
       double xToK = x;
       for (int k = 1; k < c.length; k++) {
           polyx = polyx + c[k] * xToK;
           xToK = x * xToK;
       }
       return polyx;
   }
   ```

 State both a precise complexity function T(N) and the Θ-complexity of T(N).

2. [15 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of the body of the following function.

   ```java
   public double eval(double[] c, double x) {
       double polyx = c[0];
       for (int k = 1; k < c.length; k++) {
           double xToK = x;
           for (int i = 1; i < k; i++) {
               xToK = x * xToK;
           }
           polyx = polyx + c[k] * xToK;
       }
       return polyx;
   }
   ```

 State both a precise complexity function T(N) and the Θ-complexity of T(N).

3. [20 points] For each part, determine the simplest possible function g(n) such that the given function is Θ(g). No justification is necessary, but you might have to do some analysis using the theorems from the notes.

 a) \(a(n) = 14n^3 + 3n^2 \log n \)

 b) \(b(n) = 3n \log n + 5n \)

 c) \(c(n) = 3n \log \left(n^2 \right) + 3n^2 \log n \)

 d) \(d(n) = n^2 + 2^n + 3^n \)

 e) \(e(n) = \frac{n^2 + 2n + 3}{n^2} \)
4. [15 points] Suppose that executing an algorithm on input of size \(N \) requires executing \(T(N) = 8N + \log N \) instructions. How long would it take to execute this algorithm on hardware capable of carrying out \(2^{28} \) instructions per second if \(N = 2^{40} \)? (Give your answer in hours, minutes and seconds, to the nearest second.)

5. [25 points] Design an efficient algorithm for solving the following problem:

Given an array \(A \) holding \(N \) elements, such that \(A[0] < A[1] < A[2] < \ldots < A[N-1] \), determine whether there is an index \(k \) such that \(0 \leq k \leq N-1 \) and \(A[k] = k \).

Write your algorithm as a Java function and state its \(\Theta \)-complexity.

6. [10 points] Prove the following:

\[
\text{if } x \text{ is a real number then } \left\lfloor x \right\rfloor + 1 = \left\lfloor x + 1 \right\rfloor
\]