1. [25 points] Design an algorithm to count and return the number of nodes in a binary tree that have two children. Express your solution as a pair of Java functions (not BST member functions), which would be implemented in the same package as the BST generic specified in Minor Project 2:

```java
public int numFullNodes( BST<T> Tree ) {
    return nFNHelper(Tree.root);
}

private int nFNHelper(BinaryNode sRoot) {
    if ( sRoot == null ) return 0;
    int countThis = sRoot.left != null && sRoot.right != null ? 1 : 0;
    return countThis + nFNHelper(sRoot.left) + nFNHelper(sRoot.right);
}
```

(Of course, the function shown above should have a recursive helper function.)
2. [25 points] Design an algorithm to count and return the greatest lower bound (GLB) of a data object X. Your solution will assume that the following public method has been added to the interface for the BST given in Minor Project 2:

```java
// Pre: X is a valid object of type T
// Returns: reference to the unique object Y in the BST such that
//          Y = max { Z in tree | X.compareTo(Z) >= 0 }
//          or NULL if no such element exists in the BST
//
public T GLB(T X) {
    return GLBHelper(X, root);
}
```

Complete the implementation of the following private helper function, which would also be added to the given BST interface:

```java
private T GLBHelper(T X, BinaryNode sroot) {
    if (sroot == null) return null;

    int compare = X.compareTo(sroot.element);

    // Three cases:
    // X == sroot.element, that's the GLB
    // X < sroot.element, GLB can only be in left subtree
    // X > sroot.element, GLB can only be here or in right subtree
    if (compare == 0) {
        return sroot.element;
    }
    if (compare < 0) {
        return GLBHelper(X, sroot.left);
    }
    if (compare > 0) {
        T candidateFromRight = GLBHelper(X, sroot.right);
        if (candidateFromRight == null) {
            return sroot.element;
        } else {
            return candidateFromRight;
        }
    }
}
```

The "..." indicates you may use additional parameters if you find them useful or necessary. Your implementation should operate as efficiently as possible; that is, it should not examine any branch of the BST unless that branch could contain relevant data.
3. [25 points] Use Induction to prove the following fact: for every integer, \(h \geq 0 \), a full binary tree with height \(h \) can have at most \(2^{h+1} - 1 \) nodes. (You may not use any of the tree theorems from the notes.)

proof: Let \(h = 0 \), then we have an empty tree, with 0 nodes, and \(2^{h+1} - 1 = 2^1 - 1 = 1 \), so the bound holds for \(h = 0 \).

Now assume that for some \(k \geq 0 \), whenever we have a full binary tree with height less than or equal to \(k \), the tree has no more than \(2^k - 1 \) nodes.

Suppose we have a full binary tree with \(k+1 \) nodes. Then the tree consists of a root node and two subtrees, which are also full binary trees, and note that each subtree has height less than or equal to \(k \). Thus, each subtree has no more than \(2^k - 1 \) nodes. Therefore, the number of nodes in the entire tree can be no more than \((2^{k+1} - 1) + (2^{k+1} - 1) + 1 = 2 \cdot 2^{k+1} - 1 = 2^{k+1} - 1 \).

Therefore, the result holds for all full binary trees.

(Note: the proof never uses the fact that the binary tree is full.)

4. [25 points] Use the result proved in question 3 to prove that: for every integer, \(N \geq 0 \), a full binary tree with \(N \) nodes must have at least \(\lceil \log(N+1) \rceil - 1 \) levels.

From problem 3, we know that we must have \(N \leq 2^{h+1} - 1 \).

Rearranging terms and taking the base-2 logarithm of both sides, we get that:

\[h + 1 \geq \log(N + 1) \]

Since the left side is an integer value, this implies that:

\[h + 1 \geq \lceil \log(N + 1) \rceil \]

And so,

\[h \geq \lceil \log(N + 1) \rceil - 1 \]