READ THIS NOW!

- Print your name in the space provided below.
- Print your name and ID number on the Opscan form; be sure to code your ID number on the Opscan form. Code Form A on the Opscan.
- Choose the single best answer for each question — some answers may be partially correct. If you mark more than one answer, it will be counted wrong.
- Unless a question involves determining whether given C++ code is syntactically correct, assume that it is valid. The given code has been compiled and tested, except where there are deliberate errors. Unless a question specifically deals with compiler #include directives, you should assume the necessary header files have been included.
- Be careful to distinguish integer values from floating point (real) values (containing a decimal point). In questions/answers which require a distinction between integer and real values, integers will be represented without a decimal point, whereas real values will have a decimal point, [2704 (integer), 2704.0 (real)].
- The answers you mark on the Opscan form will be considered your official answers.
- When you have completed the test, sign the pledge at the bottom of this page and turn in the test.
- This is a closed-book, closed-notes examination. No calculators or other electronic devices may be used during this examination. You may not discuss (in any form: written, verbal or electronic) the content of this examination with any student who has not taken it. You must return this test form when you complete the examination. Failure to adhere to any of these restrictions is an Honor Code violation.
- There are 25 questions, equally weighted. The maximum score on this test is 100 points.

Do not start the test until instructed to do so!

Print Name (Last, First) ____________________________

Solution

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

N. D. Barnette
signature
OOP Identification

Given the description below of a Compact Disc (CD) mail order company:

A request for one or more CDs is received by the order department from a customer, (uniquely identified by their account number). The availability of the quantity of each CD ordered is checked in the stock records. For the CDs that are not in stock a back order is placed with the purchase department and a backorder notice is mailed to the customer. For the CDs of the order that are in stock, a bill is prepared and sent to the shipping department. A shipping clerk packages the CDs, updates the stock records, and mails the CDs to the customer. Customers may cancel backordered CDs by returning a cancellation post card. If a cancellation card is received before the backordered stock is received then the customer’s request is amended, but the purchase department does not delete the backorder.

Use the following responses for the next 6 questions.

(1) object (2) class (3) attribute (4) service (5) actor (6) none of the above

Identify each of the following using the above CD mail order description and responses:

#1 Account Number (3) attribute (of Customer) does not exist w/o a customer
#2 Customer (5) actor or (2) class or (1) object (direct object)
#3 Order (2) class or (1) object (direct object)
#4 Package (4) service (verb)
#5 Shipping Clerk (1) object (noun)
#6 CD Availability (3) attribute (of Order, adjective, does not exist w/o a order)

#7 Separation of the class interface from class implementation supports the software engineering goal of flexibility because

(1) It allows encapsulation of objects, and requires functions to access the objects only through the interface functions.
(2) It allows class implementations to be swapped without affecting other parts of the program.
(3) It allows creation of many different objects as class instances, instead of just one object.
(4) It allows us to write many different classes

#8 We consider scenarios in design because

(1) Large systems can be complicated and difficult to understand completely
(2) Scenarios allow us to understand the responsibilities of the objects in a system
(3) Scenarios allow us to view a single aspect of a system without trying to understand the whole system at one time.
(4) All of the above.
#9 In identifying responsibilities of objects in a system, if the system description includes a statement of the form “A player can move any of their game pieces to an adjacent square on the board”, which of the following assignments of responsibility matches best with this statement? Assume four classes Player, GamePiece, Square, and Board.

1. The Player class should have a function with a name like movePiece
2. The GamePiece class should have a function with a name like move
 (move is verb for the direct object gamepiece)
3. The Square class should have a function with a name like placePiece
4. The Board should have a function with a name like movePiece

#10 A class/object should be eliminated from a design for a system because

1. The functions of the class would all be really short
2. The class/object has no role in the system
 see slides: Identifying Classes #10, Identifying Responsibilities #18)
3. Both a and b
4. None of these

#11 Suppose you have identified several responsibilities for a class, but they don’t seem to go together. However, you can divide the responsibilities into two classes. Which of the following is the most appropriate action?

1. Eliminate the class
2. Divide the class into two classes (see slides: Identifying Responsibilities #7)
3. Replace the class with a more general class
4. Eliminate some of the responsibilities

#12 Suppose you have identified several responsibilities for a class, but for a few of them you can’t come up with a scenario in which they would be necessary. Which of the following is the most appropriate action?

1. Eliminate the class
2. Divide the class into two classes
3. Replace the class with a more general class
4. Eliminate some of the responsibilities (see slides: Identifying Responsibilities #9 & 12)
Objects and Memory

For the following 3 questions, consider the class `Aggregate` as declared below. Assume that the class `AggNode` has one int field.

```
class Aggregate {
    public:
        Aggregate() : fst(new AggNode(0)) {}  
        Aggregate(const Aggregate& a) :
            fst(new AggNode(*a.fst)) {}
        Aggregate& operator= (const Aggregate& a) {
            if (this != &a) {
                delete fst;
                fst = new AggNode(*(a.fst));
            }
            return *this;
        }
        void reset(const int& val) {
            delete fst;
            fst = new AggNode(val);
        }
    private:
        AggNode* fst;
};
```

#13 What memory problem would occur if this class is used as follows:

```
void main () {
    Aggregate a1;
    a1 = f();
}
Aggregate f() {
    Aggregate a;
    return a;
}
```

(1) Dangling pointer (2) Memory leak (3) Alias (but no abnormal termination) (4) None of these.

#14 What memory problem would occur if we use the same functions as in question #13, but change the copy constructor so that it has the form:

```
Aggregate(const Aggregate& a) : fst(a.fst) {}
```

(1) Dangling pointer (2) Memory leak (3) Alias (but no abnormal termination) (4) None of these.

#15 Again, what memory problem would occur if we use the same functions as in question #13, but allowed the compiler to create a copy constructor for us?

(1) Dangling pointer (2) Memory leak (3) Alias (but no abnormal termination) (4) None of these.

#13 “a1” is instantiated pointing to an AggNode with a zero value.
f() is invoked, local object “a” is instantiated pointing to an AggNode with a zero value. The return of “a” results in the execution of the copy constructor which instantiates a copy of “a”. f() goes out of scope, the destructor fires on “a” deallocating its AggNode. “a1” is assigned to the returned object copy this causes the execution of the overloaded assignment = function which deallocates the AggNode “a1” points to and allocates a new AggNode for “a1” initializing it to the returned Aggregate object’s AggNode value. After the assignment the returned object goes out of scope, the destructor fires on it deallocating its AggNode. As main() goes out of scope the destructor fires on “a1” deallocating its AggNode.

#14 w/o allocating a new AggNode and setting the copy’s fst pointer to the same address as the target, this copy constructor is performing a shallow copy. (see #15)

#15 The default compiler created copy constructor also performs the same shallow copy. When f() does out of scope the destructor deallocates “a” and its AggNode, but its fst pointer value is returned and assigned to “a1”.
For the following 4 questions consider the following declaration of the \texttt{Association} and \texttt{Associate} classes.

```cpp
class Associate {
public:
    Associate() : x(0) {}  
    void doSomething() { cout << "Wow, x is \"\" << x << \"end\"l; }
private:
    int x;
};
class Association {
public:
    Association() : aptr(NULL) {} 
    Association(const Association& a) : aptr(NULL) {} 
    void add(Associate& a) { aptr = &a; }
    void use() { aptr->doSomething(); }
    Association& operator= (const Association& a) { aptr = NULL; }
    ~Association() {}
private:
    Associate* aptr;
};
```

#16 What memory problems would occur if these classes were used as follows?

```cpp
void main() {
    Association a;
    Associate b;
    a.add(b);
    a.use();
}
```

1. Dangling pointer
2. Memory leak
3. Alias (but no abnormal termination)
4. None of these.

#17 Suppose we changed the destructor of the \texttt{Association} class to read

```cpp
~Association() { delete aptr; }
```

and used the \texttt{main()} function in question #16, what output would be seen?

1. Wow, x is 0
2. Wow, x is 1
3. No output would be seen, because the program would not compile.
4. No output would be seen, because a runtime error would occur first.

#18 Suppose we changed the destructor of the \texttt{Association} class to read

```cpp
~Association() { delete aptr; }
```

and used the functions \texttt{f} and \texttt{main()} below, what output would be seen?

```cpp
void main() {
    Association a;
    f(a);
    a.use();
}

void f(Association a) {
    Associate b;
    a.add(b);
}
```

1. Wow, x is 0
2. Wow, x is 1
3. No output would be seen, because the program would not compile.
4. No output would be seen, because a runtime error would occur first.
#19 If we changed the copy constructor of the Association class so that it does a shallow copy, it would look like:

(1) Association (const Association& a) : aptr(NULL) {}
(2) Association (const Association& a) : aptr(a.aptr) {}
(3) Association (const Association& a) : aptr(new Associate()) {}
(4) Association () : aptr(NULL) {}

Class Basics

Consider the following class declaration and implementation:

```c++
class Dimension {
private:
    int width, height;
public:
    Dimension(): width(0), height(0){};
    Dimension(int w, int h): width(w), height(h){};
    Dimension(const Dimension& d): width(d.width), height(d.height){};
    int getWidth() const {return width;};
    int getHeight() const {return height;};
    void setWidth (int w) {width = w;};
    void setHeight(int h) {height = h;};
};
```

#20 Given the array declaration below:

```c++
Dimension Compass[4];
```

what are the values of the data members, width and height, of Compass[3]?

(1) undefined, undefined (2) 0, 0 (3) w, h
(4) INT_MIN, INT_MIN (5) INT_MAX, INT_MAX (6) 3, 3
(7) 4, 4 (8) none of the above

#21 True/False:

In order to operate correctly, the above Dimension class should have an over-loaded assignment operator implementation added to the class?

(1) True (2) False

#21 since the class contains no pointers the byte copy of the data members, performed by the default assignment operator would not cause any problems.
Class Basics (continued)

Consider the class declaration and implementation:

```cpp
class RanList {
private:
    int Num, Lim;
    int* Ray;
public:
    RanList(int N=1, int L=INT_MAX);
    ~RanList();
    int Avg();
};
```

```cpp
int RanList::Avg() {
    int tSum = 0;
    for (int i=0; i< Num; i++)
    tSum += Ray[i];
    return (tSum/Num);
}
```

```cpp
RanList:: RanList (int N, int L) {
    Num = N;
    Lim = L;
    Ray = new int[Num];
    for (int i = 0; i < Num; i++)
        Ray[i] = rand() % Lim;
}
```

```cpp
RanList::~ RanList () {
    delete [] Ray;
}
```

#22 Consider the code fragments below. In which fragment does a memory leak occur?

<table>
<thead>
<tr>
<th>Fragment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) int sumavg = 0; for (int i=0; i<30; i++) { for (int j=0; j <1; j++) { RanList r(30,30); sumavg += r.Avg(); } } cout <<"Avg of Avgs="<<sumavg/30<<endl;</td>
<td>No memory leak.</td>
</tr>
<tr>
<td>(2) RanList* r; int sumavg = 0; for (int x=0; x<30; x++) { r = new RanList(30,30); sumavg += r->Avg(); } cout <<"Avg of Avgs="<<sumavg/30<<endl;</td>
<td>Memory leak: the RanList object is not deleted.</td>
</tr>
</tbody>
</table>

(3) Both 1 and 2 contain memory leaks | (4) None of the above contains memory leaks. |

#23 If class RanList contained a copy constructor in which of the following would it NOT be automatically called?

(1) When in the same statement a RanList object is defined and initialized to an existing RanList object (e.g., RanList s(r);)

(2) When a RanList object is passed to a function as a value parameter.

(3) When a RanList object is assigned to another RanList object.

(4) When a RanList object is returned by a function.

(5) both 1 and 3 | (6) both 2 and 4 | (7) none of the above |

#23 An over-loaded (or default byte copy) assignment operator is invoked for object assignment.
Consider the classes `PerLib` and `Book`:

```cpp
class PerLib {
    private:
        string Owner;
        int numBooks;
        Book* collection;
    public:
        PerLib(string O, int numB);
        bool AddBook(const Book& B);
        Book getBook(string title) const;
        ~PerLib();
    };
    PerLib::PerLib(string O, int numB) {
        Owner = O;
        numBooks = numB;
        collection = new Book[numB];
    }
    // ... other member FNs
    PerLib::~PerLib () {
        delete []collection;
    }

class Book {
    private:
        string Title, Author;
        int Pages;
    public:
        Book( string T= "", string A= "", int P = 0 );
        string getTitle() const;
        string getAuthor() const;
        int getPages() const;
    };
```

Assume a function is implemented to compute the total number of pages in a `PerLib` (Personal Library):

```cpp
int Pages(PerLib PL) {
    // Correct code to compute and return the total number
    // of all the pages in all books.
}
```

#24 Calling the function `Pages()` will have an unfortunate side effect (even though the body of the function is correct). Which of the following terms best labels the side effect?

1. Memory Leak
2. Dangling Pointer (see above)
3. Mutable Pointer
4. None of the above

#25 Which of the following changes can be implemented to correct the side effect?

1. Add a copy constructor to `PerLib` == 0.5 credit
2. Pass `PL` by const reference == 0.5 credit
3. Make `Pages` a `PerLib` member function
4. Make `Pages` a const function
5. Both (1) and (2)
6. Both (3) and (4)
7. None of the above