Algebraic Graph Theory on Hypergraphs

Michael Levet
Introduction

• What is Algebraic Graph Theory? Why do we care?
• Graph structure vs. Graph algorithms
Spectral Graph Theory- Simple Graphs

• Adjacency Matrix
 – Characteristic Polynomial
 – Trace-Eigenvalue Proof
 – Use of eigenvalues to quickly study graph structure
Linear Algebra and Hypergraphs

• No clear definition for adjacency matrix
• Module over Ring R (called R-Module)
 – Two operations: $+$ and \ast
 – Abelian Group on $+$
 – \ast: $M \times R \to M$
 – Multiplication distributes and is associative
• Tensor Algebra
 – Given M and N as modules over commutative rings R and S containing 1_R and 1_S, one can form a third module P such that, given m in M and n in N, mn is in P.
Hypermatrices

- Hypermatrix - Tensor over specific basis
- Matrix M_{nxm} in F^{nxm}, while vector m_{nm} in F^{nm}
- Hyper matrix of form $F^{a \times b \times c \times \ldots \times n}$
- $[A_1 \mid A_2 \mid A_3 \mid \ldots \mid A_n]$
Adjacency Hypermatrix

- Requires k-uniform hypergraph
- Dimension: $|V|^k$
- Analogous to a multi-dimensional array
 - MatrixA[1][1][3] = 1: Edge containing exactly \{v_1, v_3\}
 - MatrixB[2][5][7][6] = 0: No edge containing exactly \{v_2, v_5, v_6, v_7\}
- Symmetry- Elements given by permutations of index set have same value.
- Analogue to Square Matrices- Cubical (think Q_n)
Hyperdeterminant and Eigenvalues

• Over field \mathbb{C}, λ is an eigenvalue of hypermatrix A if the following is satisfied: $\det(A - \lambda I) = 0$.
• The \det function is defined as a hyperdeterminant.
• Analogue of Eigenvectors ($Ax = \lambda x$): $Ax^{k-1} = \lambda x^{j,k-1}$.
• Think of x^{k-1} as a basis of cardinality $|k-1|$ (i.e., x^i is an index for a vector coordinate).
• Rather than single equation as in linear algebra, multilinear analogue is system of $(k-1)$ equations.