Music Recommendation by Unified Hypergraph: Combining Social Media Information and Music Content

Jiajun Bu, Shulong Tan, Chun Chen, Can Wang, Hao Wu, Lijun Zhang, Xiaofei He

Presented by Antuan Byalik
Goal

• Create a music recommendation system that is better than pure user rating
• Incorporate social media information to get better recommendations
Why Hypergraphs?

• The paper lists two main problems when using social media in this context:
 • “There are many different types of objects and relations in music social communities, which makes it difficult to develop a unified framework taking into account all objects and relations.”
 • “In these communities, some relations are much more sophisticated than pairwise relation, and thus cannot be simply modeled by a graph.”
Notation and Formal Definition

- $G(V, E, w)$ – denotes a Hypergraph where
 - V – set of vertices, E – set of hyperedges, w – weight function
- $D(e)$ – degree of a hyperedge = cardinality of that edge’s set
- Unified Hypergraph – Hypergraph with multi-type vertices and hyperedges
 - Vertices/edges represents users/groups/songs
The Approach

- Focus on six objects and nine relations
- Construct a unified Hypergraph
The Approach

- E_1 for each pairwise friendship with weight = 1
- E_2 with vertices corresponding to all users in a group including the group itself for every group with weight = 1
- E_3 for each user-track combination with weight = frequency
- $E_4/E_5/E_6$ for tracks/albums/artists with three vertices in each for user, tag and resource - weight = 1
The Approach

• E7/E8 represents album with all its tracks and similarly artist contains all albums by that artist with all weights = 1
• E9 is the hyperedge set for the knn graph on acoustic-based music similarities with the weight = similarity of the two tracks (internally defined formula for this)
• Lastly, construct the vertex-hyperedge incidence matrix
Methodology

• Offline training – construct the Hypergraph and compute incidence matrix
• Online recommendation – query based on a user and compute rankings
 • Use vertex for user in combination with a defined cost function
 • This gives sorted list of ‘closest’ results to a particular query
Conclusions

• Found to work very well on Last.fm and Pandora where data sets were taken and tested
• Similar process could be used for movies and pictures
 • Mentions that in something like facebook the weights might have to be adjusted based on how important social connection is to preference