CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia

Spring 2010

Copyright © 2010 by Clifford A. Shaffer
String Matching

Let \(A = a_1 a_2 \cdots a_n \) and \(B = b_1 b_2 \cdots b_m \), \(m \leq n \), be two strings of characters.

Problem: Given two strings \(A \) and \(B \), find the first occurrence (if any) of \(B \) in \(A \).

- Find the smallest \(k \) such that, for all \(i, 1 \leq i \leq m \),
 \[a_{k+i} = b_i. \]
String Matching Example

\[A = xyxyxyxyxyxxyxyxyxxyxyxyyxx \quad B = xyxyxyxyxyxx \]

1: x y x y
2: x
3: x y . . .
4: x y x y y
5: x
6: x y x y y x y x y x x
7: x
8: x y x
9: x
10: x
11: x y x y y
12: x
13: x y x y y x y x y x x

\(O(mn) \) comparisons.
String Matching Worst Case

Brute force isn’t too bad for small patterns and large alphabets. However, try finding: yyyyyx
in: $\text{yyyyyyyyyyyyyyyyyx}$

Alternatively, consider searching for: xyyyyyy
Finding a Better Algorithm

Find $B = \text{xyxyxyxyyxxx}$ in $A = \text{xyxxyxyxxyyxyxxyyxyxxyxx}$

When things go wrong, focus on what the prefix might be.

$\text{xyxxyxyxxyxyxyxxyxyxxx}$
xyxy -- no chance for prefix til last x
xyxyy -- xyx could be prefix
xyxyyyxyxyxxx -- last xyxy could be prefix
xyxyxyxyyxxx -- success!
Knuth-Morris-Pratt Algorithm

- Key to success:
 - Preprocess B to create a table of information on how far to slide B when a mismatch is encountered.
- Notation: $B(i)$ is the first i characters of B.
- For each character:
 - We need the maximum suffix of $B(i)$ that is equal to a prefix of B.
- $next(i) =$ the maximum j $(0 < j < i − 1)$ such that $b_{i−j}b_{i−j+1} \cdots b_{i−1} = B(j)$, and 0 if no such j exists.
- We define $next(1) = −1$ to distinguish it.
- $next(2) = 0$. Why?
Computing the table

\[B = \]

\[
\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\times & \times \\
\end{array}
\]
Computing the table

\[B = \]

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
x & y & x & y & y & x & y & x & y & x & x \\
-1 & 0 & 0 & 1 & 2 & 0 & 1 & 2 & 3 & 4 & 3 \\
\end{array}
\]

- The third line is the “next” table.
- At each position ask “If I fail here, how many letters before me are good?”
How to Compute Table?

- By induction.
- **Base cases:** $next(1)$ and $next(2)$ already determined.
- **Induction Hypothesis:** Values have been computed up to $next(i - 1)$.
- **Induction Step:** For $next(i)$: at most $next(i - 1) + 1$.
 - When? $b_{i-1} = b_{next(i-1)+1}$.
 - That is, largest suffix can be extended by b_{i-1}.
- If $b_{i-1} \neq b_{next(i-1)+1}$, then need new suffix.
- But, this is just a mismatch, so use $next$ table to compute where to check.
Complexity of KMP Algorithm

- A character of A may be compared against many characters of B.
 - For every mismatch, we have to look at another position in the table.
- How many backtracks are possible?
- If mismatch at b_k, then only k mismatches are possible.
- But, for each mismatch, we had to go forward a character to get to b_k.
- Since there are always n forward moves, the total cost is $O(n)$.
Example Using Table

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
<td>y</td>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
<td>x</td>
</tr>
</tbody>
</table>

\[x \ y \ x \ y \quad \text{next}(4) = 1, \text{ compare } B(2) \text{ to this} \]

\[-x \ y \quad \text{next}(2) = 0, \text{ compare } B(1) \text{ to this} \]

\[x \ y \ x \ y \ y \quad \text{next}(5) = 2, \text{ compare to } B(3) \]

\[-x-y-x \ y \ y \ x \ y \ x \ y \ x \ x \quad \text{next}(11) = 3 \]

\[-x-y-x \ y \ y \ x \ y \ x \ y \ x \ x \]

Note: \(-x\) means don’t actually compute on that character.
Boyer-Moore String Match Algorithm

- Similar to KMP algorithm
- Start scanning B from end of B.
- When we get a mismatch, we can shift the pattern to the right until that character is seen again.
- Ex: If “Z” is not in B, can move m steps to right when encountering “Z”.
- If “Z” in B at position i, move $m - i$ steps to the right.
- This algorithm might make less than n comparisons.
- Example: Find abc in
 xbycabc
 abc
 abc
 abc
 abc
Order Statistics

Definition: Given a sequence \(S = x_1, x_2, \ldots, x_n \) of elements, \(x_i \) has rank \(k \) in \(S \) if \(x_i \) is the \(k \)th smallest element in \(S \).

- Easy to find for a sorted list.
- What if list is not sorted?
- Problem: Find the maximum element.

Solution:
- Problem: Find the minimum AND the maximum elements.
- Solution: Do independently.
 - Requires \(2n - 3 \) comparisons.
 - Is this best?
Min and Max

Problem: Find the minimum AND the maximum values.

Solution: By induction.

Base cases:
- 1 element: It is both min and max.
- 2 elements: One comparison decides.

Induction Hypothesis:
- Assume that we can solve for \(n - 2 \) elements.

Try to add 2 elements to the list.
Min and Max

Induction Hypothesis:
- Assume that we can solve for $n - 2$ elements.

Try to add 2 elements to the list.
- Find min and max of elements $n - 1$ and n (1 compare).
- Combine these two with $n - 2$ elements (2 compares).
- Total incremental work was 3 compares for 2 elements.

Total Work:

What happens if we extend this to its logical conclusion?
Kth Smallest Element

Problem: Find the kth smallest element from sequence S.

(Also called **selection**.)

Solution: Find min value and discard (k times).
- If k is large, find $n - k$ max values.

Cost: $O(\min(k, n - k)n)$ – only better than sorting if k is $O(\log n)$ or $O(n - \log n)$.
Better Kth Smallest Algorithm

Use quicksort, but take only one branch each time.

Average case analysis:

$$f(n) = n - 1 + \frac{1}{n} \sum_{i=1}^{n} (f(i - 1))$$

Average case cost: $O(n)$ time.
Two Largest Elements in a Set

- **Problem**: Given a set S of n numbers, find the two largest.
- Want to minimize comparisons.
- Assume n is a power of 2.
- **Solution**: Divide and Conquer
- **Induction Hypothesis**: We can find the two largest elements of $n/2$ elements (lists P and Q).
- Using two more comparisons, we can find the two largest of q_1, q_2, p_1, p_2.

\[
T(2n) = 2T(n) + 2; T(2) = 1.
\]
\[
T(n) = 3n/2 - 2.
\]

- Much like finding the max and min of a set. Is this best?
A Closer Examination

- Again consider comparisons.
- If $p_1 > q_1$ then
 - compare p_2 and q_1 [ignore q_2]
Else
 - compare p_1 and q_2 [ignore p_2]
- We need only ONE of p_2, q_2.
- Which one? It depends on p_1 and q_1.
- **Approach**: Delay computation of the second largest element.
- **Induction Hypothesis**: Given a set of size $< n$, we know how to find the maximum element and a “small” set of candidates for the second maximum element.
Algorithm

- Given set S of size n, divide into P and Q of size $n/2$.
- By induction hypothesis, we know p_1 and q_1, plus a set of candidates for each second element, C_P and C_Q.
- If $p_1 > q_1$ then

 $$\text{new}_1 = p_1; C_{\text{new}} = C_P \cup q_1.$$

 Else

 $$\text{new}_1 = q_1; C_{\text{new}} = C_Q \cup p_1.$$

- At end, look through set of candidates that remains.
- What is size of C?
- Total cost:
Lower Bound for Second Best

At least $n - 1$ values must lose at least once.
- At least $n - 1$ compares.

In addition, at least $k - 1$ values must lose to the second best.
- I.e., k direct losers to the winner must be compared.

There must be at least $n + k - 2$ comparisons.

How low can we make k?
Adversarial Lower Bound

Call the strength of element $L[i]$ the number of elements $L[i]$ is (known to be) bigger than.

If $L[i]$ has strength a, and $L[j]$ has strength b, then the winner has strength $a + b + 1$.

What should the adversary do?

- Minimize the rate at which any element improves.
- Do this by making the stronger element always win.
- Is this legal?
What should the algorithm do?

If \(a \geq b \), then \(2a \geq a + b \).

- From the algorithm’s point of view, the best outcome is that an element doubles in strength.
- This happens when \(a = b \).
- All strengths begin at zero, so the winner must make at least \(k \) comparisons for \(2^{k-1} < n \leq 2^k \).

Thus, there must be at least \(n + \lceil \log n \rceil - 2 \) comparisons.
Probabilistic Algorithms

All algorithms discussed so far are deterministic.

Probabilistic algorithms include steps that are affected by random events.

Example: Pick one number in the upper half of the values in a set.

1. Pick maximum: \(n - 1 \) comparisons.
2. Pick maximum from just over 1/2 of the elements: \(n/2 \) comparisons.

Can we do better? Not if we want a guarantee.
Probabilistic Algorithm

- Pick 2 numbers and choose the greater.
- This will be in the upper half with probability $\frac{3}{4}$.
- Not good enough? Pick more numbers!
- For k numbers, greatest is in upper half with probability $1 - 2^{-k}$.
- Monte Carlo Algorithm: Good running time, result not guaranteed.
- Las Vegas Algorithm: Result guaranteed, but not the running time.
Probabilistic Quicksort

Quicksort runs into trouble on highly structured input.

Solution: Randomize input order.

- Chance of worst case is then $2/n!$.
Coloring Problem

- Let \(S \) be a set with \(n \) elements, let \(S_1, S_2, \ldots, S_k \) be a collection of distinct subsets of \(S \), each containing exactly \(r \) elements, \(k \leq 2^{r-2} \).
- **Problem**: Color each element of \(S \) with one of two colors, red or blue, such that each subset \(S_i \) contains at least one red and at least one blue.
- **Probabilistic solution**:
 - Take every element of \(S \) and color it either red or blue at random.
 - This may not lead to a valid coloring, with probability
 \[
 \frac{k}{2^{r-1}} \leq \frac{1}{2}.
 \]
- If it doesn’t work, try again!
Transforming to Deterministic Alg

- First, generalize the problem:
 - Let S_1, S_2, \ldots, S_k be distinct subsets of S.
 - Let $s_i = |S_i|$.
 - Assume $\forall i, s_i \geq 2$, $|S| = n$.
 - Color each element of S red or blue such that every S_i contains a red and blue element.
- The probability of failure is at most:

$$F(n) = \sum_{i=1}^{k} \frac{2}{2^{S_i}}$$

- If $F(n) < 1$, then there exists a coloring that solves the problem.
- **Strategy**: Color one element of S at a time, always choosing color that gives lower probability of failure.
Deterministic Algorithm

- Let $S = \{x_1, x_2, \cdots, x_n\}$.
- Suppose we have colored $x_{j+1}, x_{j+2}, \cdots, x_n$ and we want to color x_j. Further, suppose $F(j)$ is an upper bound on the probability of failure.

How could coloring x_j red affect the probability of failing to color a particular set S_i?

- Let $P_R(i, j)$ be this probability of failure.
- Let $P(i, j)$ be the probability of failure if the remaining colors are randomly assigned.
- $P_R(i, j)$ depends on these factors:
 1. whether x_j is a member of S_i.
 2. whether S_i contains a blue element.
 3. whether S_i contains a red element.
 4. the number of elements in S_i yet to be colored.
Deterministic Algorithm (cont)

Result:

1. If x_j is not a member of S_i, probability is unchanged.

 $$P_R(i, j) = P(i, j).$$

2. If S_i contains a blue element, then $P_R(i, j) = 0$.

3. If S_i contains no blue element and some red elements, then

 $$P_R(i, j) = 2P(i, j).$$

4. If S_i contains no colored elements, then probability of failure is unchanged.

 $$P_R(i, j) = P(i, j).$$
Deterministic Algorithm (cont)

- Similarly analyze $P_B(i, j)$, the probability of failure for set S_i if x_j is colored blue.
- Sum the failure probabilities as follows:

 $$F_R(j) = \sum_{i=1}^{k} P_R(i, j)$$

 $$F_B(j) = \sum_{i=1}^{k} P_B(i, j)$$

- Claim: $F_R(n - 1) + F_B(n - 1) \leq 2F(n)$.

 $$P_R(i, j) + P_B(i, j) \leq 2P(i, j).$$
Deterministic Algorithm (cont)

- Suffices to show that $\forall i$,

$$P_R(i, j) + P_B(i, j) \leq 2P(i, j).$$

- This is clear except in case (3) when $P_R(i, j) = 2P(i, j)$.

- But, then case (2) applies on the blue side, so $P_B(i, j) = 0$.
Final Algorithm

For \(j = n \) downto 1 do
 calculate \(F_R(j) \) and \(F_B(j) \);
 If \(F_R(j) < F_B(j) \) then
 color \(x_j \) red
 Else
 color \(x_j \) blue.

By the claim, \(1 \geq F(n) \geq F(n - 1) \geq \cdots \geq F(1) \).

This implies that the sets are successfully colored, i.e., \(F(1) = 0 \).

Key to transformation: We can calculate \(F_R(j) \) and \(F_B(j) \) efficiently, combined with the claim.
Random Number Generators

- Most computers systems use a deterministic algorithm to select **pseudorandom** numbers.

Linear congruential method:
- Pick a seed $r(1)$. Then,

$$r(i) = (r(i - 1) \times b) \mod t.$$

- Must pick good values for b and t.
- Resulting numbers must be in the range:
- What happens if $r(i) = r(j)$?
- t should be prime.
Random Number Generators (cont)

Some examples:

\[r(i) = 6r(i - 1) \mod 13 = \]
\[\cdots 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1 \cdots \]

\[r(i) = 7r(i - 1) \mod 13 = \]
\[\cdots 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1 \cdots \]

\[r(i) = 5r(i - 1) \mod 13 = \]
\[\cdots 1, 5, 12, 8, 1 \cdots \]
\[\cdots 2, 10, 11, 3, 2 \cdots \]
\[\cdots 4, 7, 9, 6, 4 \cdots \]
\[\cdots 0, 0 \cdots \]

The last one depends on the start value of the seed.
Suggested generator: \(r(i) = 16807r(i - 1) \mod 2^{31} - 1 \)
Mode of a Multiset

Multiset: not (necessarily) distinct elements.

A **mode** of a multiset is an element that occurs most frequently (there may be more than one).

The number of times that a mode occurs is its **multiplicity**.

Problem: Find the mode of a given multiset \(S \).

Solution: Sort, and then scan in sequential order counting multiplicities.

\(O(n \log n + n) \). Is this best?
Mode Induction

- **Induction Hypothesis:** We know the mode of a multiset of $n - 1$ elements.
- **Problem:** The nth element may break a tie, creating a new mode.
- **Stronger IH:** Assume that we know ALL modes of a multiset with $n - 1$ elements.
- **Problem:** We may create a new mode with the nth element.
- What if the nth element is chosen to be special?
 - Example: nth element is the maximum element
 - Better: Remove ALL occurrences of the maximal element.
- Still too slow – particularly if elements are distinct.
New Approach

- Use divide and conquer:
 - Divide the multiset into two approximately equal, disjoint parts.
- Note that we can find the median (position $n/2$) in $O(n)$ time.
- This makes 3 multilists: less than, equal to, and greater than the median.
- Solve for each part.

$$T(n) \leq 2T(n/2) + O(n), T(2) = 1.$$

- Result: $O(n \log n)$. No improvement.
- Observation: Don’t look at lists smaller than size M where M is the multiplicity of the mode.
Implementation

Look at each submultilist.

If all contain more than one element, subdivide them all.

\[T(n) \leq 2T(n/2) + O(n), \quad T(M) = O(M). \]
\[T(n) = O(n \log(n/M)). \]

This may be superior to sorting, but only if \(M \) is “large” and comparisons are expensive.