1. Manber 5.11.

2. Manber 5.18

3. Let Σ be an alphabet of symbols, and let $X, Y, Z \in \Sigma^*$. Say that Z is a shuffle of X and Y if $|Z| = |X| + |Y|$ and if X and Y occur as disjoint substrings of Z. For example, if $X = \text{close}$ and $Y = \text{class}$, then cloclasess, classclo, and ccllaossse are all shuffles of X and Y, but clacloesss and lassosecl are not.

Describe an efficient algorithm to determine whether Z is a shuffle of X and Y. Let M be the length of X and N the length of Y. What is the time complexity of your algorithm as a function of M and N?