I/O devices can be characterized by
- Behavior: input, output, storage
- Partner: human or machine
- Data rate: bytes/sec, transfers/sec

I/O bus connections

Diagram of I/O bus connections:
- Processor
- Cache
- Main memory
- I/O controller
- Disk
- Graphics output
- Network
- Memory-I/O Interconnect
- Interrupts

Diagram shows connections between these components, illustrating the flow of information and control signals.
I/O Device Summary

<table>
<thead>
<tr>
<th>Device</th>
<th>Behavior</th>
<th>Partner</th>
<th>Data rate (Mbit/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyboard</td>
<td>Input</td>
<td>Human</td>
<td>0.0001</td>
</tr>
<tr>
<td>Mouse</td>
<td>Input</td>
<td>Human</td>
<td>0.0038</td>
</tr>
<tr>
<td>Voice input</td>
<td>Input</td>
<td>Human</td>
<td>0.2640</td>
</tr>
<tr>
<td>Sound input</td>
<td>Input</td>
<td>Machine</td>
<td>3.0000</td>
</tr>
<tr>
<td>Scanner</td>
<td>Input</td>
<td>Human</td>
<td>3.2000</td>
</tr>
<tr>
<td>Voice output</td>
<td>Output</td>
<td>Human</td>
<td>0.2640</td>
</tr>
<tr>
<td>Sound output</td>
<td>Output</td>
<td>Human</td>
<td>8.0000</td>
</tr>
<tr>
<td>Laser printer</td>
<td>Output</td>
<td>Human</td>
<td>3.2000</td>
</tr>
<tr>
<td>Graphics display</td>
<td>Output</td>
<td>Human</td>
<td>800.0000–8000.0000</td>
</tr>
<tr>
<td>Cable modem</td>
<td>Input or output</td>
<td>Machine</td>
<td>0.1280–6.0000</td>
</tr>
<tr>
<td>Network/LAN</td>
<td>Input or output</td>
<td>Machine</td>
<td>100.0000–10000.0000</td>
</tr>
<tr>
<td>Network/wireless LAN</td>
<td>Input or output</td>
<td>Machine</td>
<td>11.0000–54.0000</td>
</tr>
<tr>
<td>Optical disk</td>
<td>Storage</td>
<td>Machine</td>
<td>80.0000–220.0000</td>
</tr>
<tr>
<td>Magnetic tape</td>
<td>Storage</td>
<td>Machine</td>
<td>5.0000–120.0000</td>
</tr>
<tr>
<td>Flash memory</td>
<td>Storage</td>
<td>Machine</td>
<td>32.0000–200.0000</td>
</tr>
<tr>
<td>Magnetic disk</td>
<td>Storage</td>
<td>Machine</td>
<td>800.0000–3000.0000</td>
</tr>
</tbody>
</table>
I/O System Characteristics

Dependability is important
 - Particularly for storage devices

Performance measures
 - Latency (response time)
 - Throughput (bandwidth)
 - Desktops & embedded systems
 - Mainly interested in response time & diversity of devices
 - Servers
 - Mainly interested in throughput & expandability of devices
Fault: failure of a component
- May or may not lead to system failure

Service accomplishment
Service delivered as specified

Restoration

Failure

Service interruption
Deviation from specified service
Dependability Measures

Reliability: mean time to failure (MTTF)

Service interruption: mean time to repair (MTTR)

Mean time between failures
- \(MTBF = MTTF + MTTR \)

Availability = \(\frac{MTTF}{MTTF + MTTR} \)

Improving Availability
- Increase MTTF: fault avoidance, fault tolerance, fault forecasting
- Reduce MTTR: improved tools and processes for diagnosis and repair
Disk Storage

Nonvolatile, rotating magnetic storage
Disk Sectors and Access

Each sector records
- Sector ID
- Data (512 bytes, 4096 bytes proposed)
- Error correcting code (ECC)
 - Used to hide defects and recording errors
- Synchronization fields and gaps

Access to a sector involves
- Queuing delay if other accesses are pending
- Seek: move the heads
- Rotational latency
- Data transfer
- Controller overhead
Disk Access Example

Given
- 512B sector, 15,000rpm, 4ms average seek time, 100MB/s transfer rate, 0.2ms controller overhead, idle disk

Average read time
- 4ms seek time
 + ½ / (15,000/60) = 2ms rotational latency
 + 512 / 100MB/s = 0.005ms transfer time
 + 0.2ms controller delay
 = 6.2ms

If actual average seek time is 1ms
- Average read time = 3.2ms
Disk Performance Issues

Manufacturers quote average seek time
 - Based on all possible seeks
 - Locality and OS scheduling lead to smaller actual average seek times

Smart disk controller allocate physical sectors on disk
 - Present logical sector interface to host
 - SCSI, ATA, SATA

Disk drives include caches
 - Prefetch sectors in anticipation of access
 - Avoid seek and rotational delay
Contemporary Examples

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Seagate ST33000655SS</th>
<th>Seagate ST31000340NS</th>
<th>Seagate ST973451SS</th>
<th>Seagate ST9160821AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk diameter (inches)</td>
<td>3.50</td>
<td>3.50</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>Formatted data capacity (GB)</td>
<td>147</td>
<td>1000</td>
<td>73</td>
<td>160</td>
</tr>
<tr>
<td>Number of disk surfaces (heads)</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Rotation speed (RPM)</td>
<td>15,000</td>
<td>7200</td>
<td>15,000</td>
<td>5400</td>
</tr>
<tr>
<td>Internal disk cache size (MB)</td>
<td>16</td>
<td>32</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>External interface, bandwidth (MB/sec)</td>
<td>SAS, 375</td>
<td>SATA, 375</td>
<td>SAS, 375</td>
<td>SATA, 150</td>
</tr>
<tr>
<td>Sustained transfer rate (MB/sec)</td>
<td>73–125</td>
<td>105</td>
<td>79–112</td>
<td>44</td>
</tr>
<tr>
<td>Minimum seek (read/write) (ms)</td>
<td>0.2/0.4</td>
<td>0.8/1.0</td>
<td>0.2/0.4</td>
<td>1.5/2.0</td>
</tr>
<tr>
<td>Average seek read/write (ms)</td>
<td>3.5/4.0</td>
<td>8.5/9.5</td>
<td>2.9/3.3</td>
<td>12.5/13.0</td>
</tr>
<tr>
<td>Mean time to failure (MTTF) (hours)</td>
<td>1,400,000 @ 25°C</td>
<td>1,200,000 @ 25°C</td>
<td>1,600,000 @ 25°C</td>
<td>—</td>
</tr>
<tr>
<td>Annual failure rate (AFR) (percent)</td>
<td>0.62%</td>
<td>0.73%</td>
<td>0.55%</td>
<td>—</td>
</tr>
<tr>
<td>Contact start-stop cycles</td>
<td>—</td>
<td>50,000</td>
<td>—</td>
<td>>600,000</td>
</tr>
<tr>
<td>Warranty (years)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Nonrecoverable read errors per bits read</td>
<td><1 sector per 10^{16}</td>
<td><1 sector per 10^{15}</td>
<td><1 sector per 10^{16}</td>
<td><1 sector per 10^{14}</td>
</tr>
<tr>
<td>Size: dimensions (in.), weight (pounds)</td>
<td>1.0” × 4.0” × 5.8”, 1.5 lbs</td>
<td>1.0” × 4.0” × 5.8”, 1.4 lbs</td>
<td>0.6” × 2.8” × 3.9”, 0.5 lbs</td>
<td>0.4” × 2.8” × 3.9”, 0.2 lbs</td>
</tr>
<tr>
<td>Power: operating/idle/standby (watts)</td>
<td>15/11/—</td>
<td>11/8/1</td>
<td>8/5.8/—</td>
<td>1.9/0.6/0.2</td>
</tr>
<tr>
<td>GB/cu. in., GB/watt</td>
<td>6 GB/cu.in., 10 GB/W</td>
<td>43 GB/cu.in., 91 GB/W</td>
<td>11 GB/cu.in., 9 GB/W</td>
<td>37 GB/cu.in., 84 GB/W</td>
</tr>
<tr>
<td>Price in 2008, $/GB</td>
<td>~ $250, ~ $1.70/GB</td>
<td>~ $275, ~ $0.30/GB</td>
<td>~ $350, ~ $5.00/GB</td>
<td>~ $100, ~ $0.60/GB</td>
</tr>
</tbody>
</table>
Flash Storage

Nonvolatile semiconductor storage

- 100× – 1000× faster than disk
- Smaller, lower power, more robust
- But more $/GB (between disk and DRAM)
Flash Types

NOR flash: bit cell like a NOR gate
- Random read/write access
- Used for instruction memory in embedded systems

NAND flash: bit cell like a NAND gate
- Denser (bits/area), but block-at-a-time access
- Cheaper per GB
- Used for USB keys, media storage, …

Flash bits wears out after 1000’s of accesses
- Not suitable for direct RAM or disk replacement
- Wear leveling: remap data to less used blocks
Contemporary Examples

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Kingston SecureDigital (SD) SD4/8 GB</th>
<th>Transend Type I CompactFlash TS16GCF133</th>
<th>RiDATA Solid State Disk 2.5 inch SATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formatted data capacity (GB)</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Bytes per sector</td>
<td>512</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>Data transfer rate (read/write MB/sec)</td>
<td>4</td>
<td>20/18</td>
<td>68/50</td>
</tr>
<tr>
<td>Power operating/standby (W)</td>
<td>0.66/0.15</td>
<td>0.66/0.15</td>
<td>2.1/—</td>
</tr>
<tr>
<td>Size: height × width × depth (inches)</td>
<td>0.94 × 1.26 × 0.08</td>
<td>1.43 × 1.68 × 0.13</td>
<td>0.35 × 2.75 × 4.00</td>
</tr>
<tr>
<td>Weight in grams (454 grams/pound)</td>
<td>2.5</td>
<td>11.4</td>
<td>52</td>
</tr>
<tr>
<td>Mean time between failures (hours)</td>
<td>> 1,000,000</td>
<td>> 1,000,000</td>
<td>> 4,000,000</td>
</tr>
<tr>
<td>GB/cu. in., GB/watt</td>
<td>84 GB/cu.in., 12 GB/W</td>
<td>51 GB/cu.in., 24 GB/W</td>
<td>8 GB/cu.in., 16 GB/W</td>
</tr>
<tr>
<td>Best price (2008)</td>
<td>~ $30</td>
<td>~ $70</td>
<td>~ $300</td>
</tr>
</tbody>
</table>
Interconnecting Components

Need interconnections between
- CPU, memory, I/O controllers

Bus: shared communication channel
- Parallel set of wires for data and synchronization of data transfer
- Can become a bottleneck

Performance limited by physical factors
- Wire length, number of connections

More recent alternative: high-speed serial connections with switches
- Like networks
Bus Types

Processor-Memory buses
- Short, high speed
- Design is matched to memory organization

I/O buses
- Longer, allowing multiple connections
- Specified by standards for interoperability
- Connect to processor-memory bus through a bridge
Bus Signals and Synchronization

Data lines
- Carry address and data
- Multiplexed or separate

Control lines
- Indicate data type, synchronize transactions

Synchronous
- Uses a bus clock

Asynchronous
- Uses request/acknowledge control lines for handshaking
I/O Bus Examples

<table>
<thead>
<tr>
<th></th>
<th>Firewire</th>
<th>USB 2.0</th>
<th>USB 3.0</th>
<th>PCI Express</th>
<th>Serial ATA</th>
<th>Serial Attached SCSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intended use</td>
<td>External</td>
<td>External</td>
<td>External</td>
<td>Internal</td>
<td>Internal</td>
<td>External</td>
</tr>
<tr>
<td>Devices per channel</td>
<td>63</td>
<td>127</td>
<td>127</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Data width</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2/lane</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Peak bandwidth</td>
<td>400 Mb/s or 800 Mb/s</td>
<td>1.6 Mb/s, 12 Mb/s, or 480 Mb/s</td>
<td>5 Gb/s, 10 Gb/s</td>
<td>2 Gb/s/lane, 1×, 2×, 4×, 8×, 16×, 32×</td>
<td>2.4 Gb/s</td>
<td>2.4 Gb/s</td>
</tr>
<tr>
<td>Hot pluggable</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Depends</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Max length</td>
<td>4.5m</td>
<td>5m</td>
<td>?</td>
<td>0.5m</td>
<td>1m</td>
<td>8m</td>
</tr>
<tr>
<td>Standard</td>
<td>IEEE 1394</td>
<td>USB Implementers Forum</td>
<td>USB Implementers Forum</td>
<td>PCI-SIG</td>
<td>SATA-IO</td>
<td>INCITS TC T10</td>
</tr>
</tbody>
</table>

- **Firewire**
- **USB 2.0**
- **USB 3.0**
- **PCI Express**
- **Serial ATA**
- **Serial Attached SCSI**

- **Intended use**: External, External, External, Internal, Internal, External
- **Devices per channel**: 63, 127, 127, 1, 1, 4
- **Data width**: 4, 2, 4, 2/lane, 4, 4
- **Peak bandwidth**: 400 Mb/s or 800 Mb/s, 1.6 Mb/s, 12 Mb/s, or 480 Mb/s, 5 Gb/s, 10 Gb/s, 2 Gb/s/lane, 1×, 2×, 4×, 8×, 16×, 32×, 2.4 Gb/s, 2.4 Gb/s
- **Hot pluggable**: Yes, Yes, Yes, Depends, Yes, Yes
- **Max length**: 4.5m, 5m, ?, 0.5m, 1m, 8m
- **Standard**: IEEE 1394, USB Implementers Forum, USB Implementers Forum, PCI-SIG, SATA-IO, INCITS TC T10
Typical x86 PC I/O System

- Intel Xeon 5300 processor
- Front Side Bus (1333 MHz, 10.5 GB/sec)
- Memory controller hub (north bridge) 5000P
 - FB DDR2 667 (5.3 GB/sec)
 - Serial ATA (300 MB/sec)
 - LPC (1 MB/sec)
 - USB 2.0 (60 MB/sec)
- PCIe x16 (or 2 PCIe x8) (4 GB/sec)
- ESI (2 GB/sec)
- PCIe x8 (2 GB/sec)
- I/O controller hub (south bridge) Entreprise South Bridge 2
 - PCIe x4 (1 GB/sec)
 - PCIe x4 (1 GB/sec)
 - PCI-X bus (1 GB/sec)
 - PCI-X bus (1 GB/sec)
 - Parallel ATA (100 MB/sec)
- CD/DVD
I/O Management

I/O is mediated by the OS
- Multiple programs share I/O resources
 - Need protection and scheduling
- I/O causes asynchronous interrupts
 - Same mechanism as exceptions
- I/O programming is fiddly
 - OS provides abstractions to programs
I/O Commands

I/O devices are managed by I/O controller hardware
- Transfers data to/from device
- Synchronizes operations with software

Command registers
- Cause device to do something

Status registers
- Indicate what the device is doing and occurrence of errors

Data registers
- Write: transfer data to a device
- Read: transfer data from a device
I/O Register Mapping

Memory mapped I/O
- Registers are addressed in same space as memory
- Address decoder distinguishes between them
- OS uses address translation mechanism to make them only accessible to kernel

I/O instructions
- Separate instructions to access I/O registers
- Can only be executed in kernel mode
- Example: x86
Polling

Periodically check I/O status register
- If device ready, do operation
- If error, take action

Common in small or low-performance real-time embedded systems
- Predictable timing
- Low hardware cost

In other systems, wastes CPU time
Interrupts

When a device is ready or error occurs
- Controller interrupts CPU

Interrupt is like an exception
- But not synchronized to instruction execution
- Can invoke handler between instructions
- Cause information often identifies the interrupting device

Priority interrupts
- Devices needing more urgent attention get higher priority
- Can interrupt handler for a lower priority interrupt
Polling and interrupt-driven I/O
- CPU transfers data between memory and I/O data registers
- Time consuming for high-speed devices

Direct memory access (DMA)
- OS provides starting address in memory
- I/O controller transfers to/from memory autonomously
- Controller interrupts on completion or error
DMA/Cache Interaction

- If DMA writes to a memory block that is cached
 - Cached copy becomes stale

- If write-back cache has dirty block, and DMA reads memory block
 - Reads stale data

Need to ensure cache coherence
- Flush blocks from cache if they will be used for DMA
- Or use non-cacheable memory locations for I/O
OS uses virtual addresses for memory
 - DMA blocks may not be contiguous in physical memory

Should DMA use virtual addresses?
 - Would require controller to do translation

If DMA uses physical addresses
 - May need to break transfers into page-sized chunks
 - Or chain multiple transfers
 - Or allocate contiguous physical pages for DMA