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Gene Expression Analysis

I How do we automatically extract meaning from so much microarray
data?

Describe data in terms of clusters of samples and genes that have strong
internal similarities.
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Introduction k-means Hierarchical clustering

Example: Iyer and co-authors (Science 1999)

I Measure temporal expression profiles of
8600 human genes in fibroblasts in
response to serum addition.

I Over 200 previously unknown genes with
specific temporal expression profiles.

I Based on known genes in cluster, authors
assign putative functions to these genes.
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Introduction k-means Hierarchical clustering

Viewing DNA Microarray Data as
Multi-Dimensional Points

I m genes and n samples.
I Figure (b)

I Gene ≡ point: m points
I Condition ≡ dimension: n-dimensional

space
I Expression level ≡ coordinate.

I Figure (c)
I Sample ≡ point: n points.
I Condition ≡ dimension: m-dimensional

space.
I Expression level ≡ coordinate.

I For a point p, pi is its ith coordinate.
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Definition of Clustering

Given a set of m genes whose expression levels are measured across n
conditions, find the best partition of the genes into subsets such that each
subset contains genes whose expression profiles are similar to each other.

I How many subsets?

I How do we measure how similar the expression profiles of two genes
are?

I How do we compare two different partitions?
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Measuring Similarity of Points
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Introduction k-means Hierarchical clustering

Measuring Similarity of Points

I Distance between two points p and q is d(p, q).

I Euclidean metric: d(p, q) =
√∑

i (pi − qi )2.

I Manhattan metric: d(p, q) =
∑

i |pi − qi |.
I Pearson correlation coefficient:

1

n

∑
i

(
pi

− µ(p)

σ(p)

)(
qi

− µ(q)

σ(q)

)

I µ(p): average of p’s coordinates,

σ(p): standard deviation of p’s
coordinates.

I Other distances: normalised dot product, K-L divergence, relative
entropy.

I Metrics obey triangle inequality: d(p, q) + d(q, r) ≥ d(p, r).
I Euclidean, Manhattan distances are metrics.
I Correlation, dot product are not metrics.
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Introduction k-means Hierarchical clustering

Quality of a Partition

I Partition points into k clusters C = {C1,C2, . . . ,Ck}.
I Define quality qi of a cluster Ci and define quality q(C) in terms of

qi s.

I Sum of squared errors.

I µi = average of points in Ci .
I qi = 1

ni

∑
p∈Ci

d(p, µi )
2 = average of squared distance from every

point in Ci to qi .
I q(C) =

∑
i qi .
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Introduction k-means Hierarchical clustering

Algorithms

I k-means algorithm.

I Hierarchical clustering.

I k-means: find k cluster “centres” and form clusters by assigning a
point to the closest cluster centre.
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Introduction k-means Hierarchical clustering

k-means algorithm

Partition S into k clusters that minimise the sum of squared errors
q(C) =

∑
i

∑
p∈Ci
‖p − µi‖2 over all possible partitions of S into k

clusters.

1. Initialise centres µ1, µ2, . . . µk .

2. Repeat
I For each point p, put p in cluster Ci if µi is the centre closest to p.
I Recalculate µi ’s (average of points in Ci ).

3. until µi ’s don’t change.
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Introduction k-means Hierarchical clustering

Details of k-means algorithm

1. Initialise centres µ1, µ2, . . . µk .

2. Repeat
I For each point p, put p in cluster Ci if µi is the centre closest to p.
I Recalculate µi ’s (average of points in Ci ).

3. until µi ’s don’t change.

I Initialisation:

random µi ’s or “well-separated” µi ’s.

I Checking for termination :

I use thresholds to avoid numerical errors.
I check if sets in the partition do not change.
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Introduction k-means Hierarchical clustering

Properties of k-means

1. Initialise centres µ1, µ2, . . . µk .

2. Repeat
I For each point p, put p in cluster Ci if µi is the centre closest to p.
I Recalculate µi ’s (average of points in Ci ).

3. until µi ’s don’t change.

I Each iteration takes

O(kmn)

time.

I q(C)

does not increase.

I Algorithm can get stuck in a local minimum.

I Does not work particularly well in very high (≥ 40) dimensions.
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Hierarchical Clustering

I Attempt to recursively find sub-clusters within clusters.

I Natural way to “zoom into” areas of interest.

I Represent using a tree or dendrogram.
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Introduction k-means Hierarchical clustering

Hierarchical Clustering Algorithm

I Bottom-up clustering algorithm.

1. Start with every sample (gene) in its own cluster.

2. Repeat
I Let Ci and Cj be the clusters “nearest” each other.
I Merge Ci and Cj .

3. until all the samples (genes) are in one cluster.
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Hierarchical Clustering Result
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Introduction k-means Hierarchical clustering

Measuring Distance between Clusters

I dmin(Di ,Dj) = distance between closest pair of points.

I dmax(Di ,Dj) = distance between farthest pair of points.

I davg (Di ,Dj) = average of distances between all pairs of points.

I dmean(Di ,Dj) = d(µi , µj).

I Computing dmin, dmax , davg takes O(ninj) time.

I Computing dmean takes O(ni + nj) time.
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Running Time of Hierarchical Clustering

1. Start with every sample (gene) in its own cluster.

2. Repeat
I Let Di and Dj be the clusters “nearest” each other.
I Merge Di and Dj .

3. until all the samples (genes) are in one cluster.

I Store all O(m2) inter-point distances.

I At each iteration, compute distance between every pair of clusters:
takes O(nm2) time in total.

I There are n iterations, so overall running time is
O(nmm2) = O(nm3).
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Properties of Hierarchical Clustering

I Using dmin, tree tends to look like an elongated chain.

I Using dmax , clusters may not be well separated.

I Other measures try to alleviate this problem.

I In case of dmin, tree produced is the minimum spanning tree.

I In other cases, it is difficult to state what properties the partition
satisfies.
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Introduction k-means Hierarchical clustering

Evaluating Cluster Quality

I How do we know a cluster represents “useful” biological knowledge?

I Compute functional enrichment? If there are k genes with a particular
function in a cluster with with l genes, is this fact interesting?

I Must look at how many genes overall are annotated with that
function.

I Use χ2 test or Fisher’s exact test.
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Fisher’s Exact Test

I Let C be the cluster of interest, c = #genes in the cluster.

I Let u be the number of genes in the gene expression data set.

I Let f be the function of interest:
I uf = #genes in the data set annotated with f .
I cf = #genes in the cluster C annotated with f .

I Fisher’s exact test answers the following question:

If we selected c genes at random from the set of all u genes,
what is the probability that we will select cf or more genes from
the set of uf genes annotated with f ?

min(c,uf )∑
i=cf

(uf
i

)(u−uf
c−i
)(u

c

)
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Other Issues in Functional Enrichment

I Bioinformatics enrichment tools: paths toward the comprehensive
functional analysis of large gene lists, Huang et al., Nucleic acids
research, 2008

I Compute enrichment of each function, one at a time: multiple
hypotheses testing.

I Parent-child relationships between functions: Ontologizer algorithm
Bauer et al., Bioinformatics, 2008.

I Enrichment of multiple functions at the same time: GenGO algorithm
Lu et al., Nucleic Acids Research 2008

T. M. Murali February 14, 2011 CS 6824: Basic Clustering Algorithms for Gene Expression Analysis
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