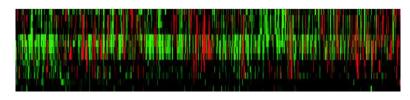
CS 6824: Basic Clustering Algorithms for Gene Expression Analysis

T. M. Murali

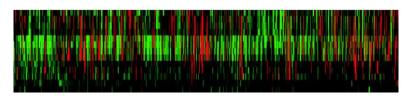
February 14, 2011

Gene Expression Analysis

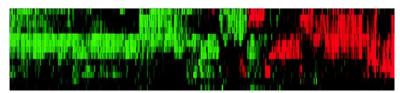


► How do we automatically extract meaning from so much microarray data?

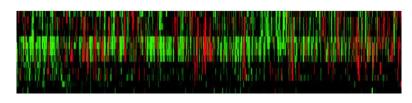
Gene Expression Analysis



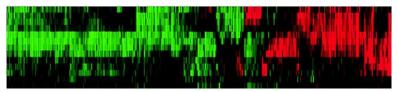
► How do we automatically extract meaning from so much microarray data?



Gene Expression Analysis



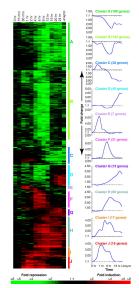
How do we automatically extract meaning from so much microarray data?



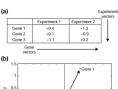
Describe data in terms of clusters of samples and genes that have strong internal similarities.

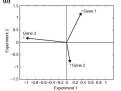
Example: Iyer and co-authors (Science 1999)

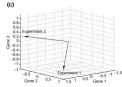
- Measure temporal expression profiles of 8600 human genes in fibroblasts in response to serum addition.
- Over 200 previously unknown genes with specific temporal expression profiles.
- ▶ Based on known genes in cluster, authors assign putative functions to these genes.



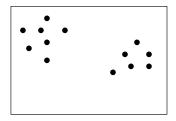
Viewing DNA Microarray Data as Multi-Dimensional Points

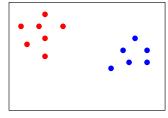




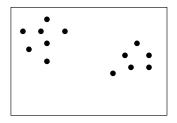


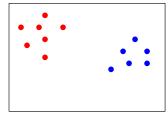
- m genes and n samples.
- ► Figure (b)
 - Gene \equiv point: m points
 - ► Condition ≡ dimension: n-dimensional space
 - Expression level ≡ coordinate.
- ► Figure (c)
 - ▶ Sample \equiv point: *n* points.
 - ► Condition ≡ dimension: m-dimensional space.
 - ▶ Expression level \equiv coordinate.
- For a point p, p_i is its ith coordinate.





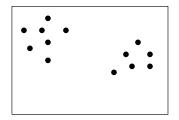
Given a set of m genes whose expression levels are measured across n conditions, find the best partition of the genes into subsets such that each subset contains genes whose expression profiles are similar to each other.

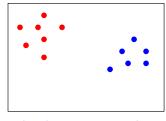




Given a set of m genes whose expression levels are measured across n conditions, find the best partition of the genes into subsets such that each subset contains genes whose expression profiles are similar to each other.

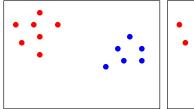
How many subsets?

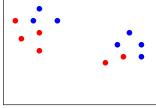




Given a set of m genes whose expression levels are measured across n conditions, find the best partition of the genes into subsets such that each subset contains genes whose expression profiles are similar to each other.

- How many subsets?
- ► How do we measure how similar the expression profiles of two genes are?





Given a set of m genes whose expression levels are measured across n conditions, find the best partition of the genes into subsets such that each subset contains genes whose expression profiles are similar to each other.

- How many subsets?
- ▶ How do we measure how similar the expression profiles of two genes are?
- How do we compare two different partitions?

- ▶ Distance between two points p and q is d(p, q).
- ► Euclidean metric: $d(p,q) = \sqrt{\sum_i (p_i q_i)^2}$.

- ▶ Distance between two points p and q is d(p, q).
- Euclidean metric: $d(p,q) = \sqrt{\sum_i (p_i q_i)^2}$.
- ▶ Manhattan metric: $d(p,q) = \sum_i |p_i q_i|$.

- ▶ Distance between two points p and q is d(p, q).
- Euclidean metric: $d(p,q) = \sqrt{\sum_i (p_i q_i)^2}$.
- Manhattan metric: $d(p,q) = \sum_i |p_i q_i|$.
- Pearson correlation coefficient:

$$\frac{1}{n}\sum_{i}\left(\frac{p_{i}}{}\right)\left(\frac{q_{i}}{}\right)$$

- ▶ Distance between two points p and q is d(p,q).
- Euclidean metric: $d(p,q) = \sqrt{\sum_i (p_i q_i)^2}$.
- Manhattan metric: $d(p,q) = \sum_i |p_i q_i|$.
- Pearson correlation coefficient:

$$\frac{1}{n}\sum_{i}\left(\frac{p_{i}-\mu(p)}{}\right)\left(\frac{q_{i}}{}\right)$$

• $\mu(p)$: average of p's coordinates,

- ▶ Distance between two points p and q is d(p, q).
- ▶ Euclidean metric: $d(p,q) = \sqrt{\sum_i (p_i q_i)^2}$.
- Manhattan metric: $d(p,q) = \sum_i |p_i q_i|$.
- Pearson correlation coefficient:

$$\frac{1}{n}\sum_{i}\left(\frac{p_{i}-\mu(p)}{\sigma(p)}\right)\left(\frac{q_{i}}{}\right)$$

• $\mu(p)$: average of p's coordinates, $\sigma(p)$: standard deviation of p's coordinates.

- ▶ Distance between two points p and q is d(p, q).
- Euclidean metric: $d(p,q) = \sqrt{\sum_i (p_i q_i)^2}$.
- Manhattan metric: $d(p,q) = \sum_i |p_i q_i|$.
- ▶ Pearson correlation coefficient:

$$\frac{1}{n}\sum_{i}\left(\frac{p_{i}-\mu(p)}{\sigma(p)}\right)\left(\frac{q_{i}-\mu(q)}{\sigma(p)}\right)$$

• $\mu(p)$: average of p's coordinates, $\sigma(p)$: standard deviation of p's coordinates.

- ▶ Distance between two points p and q is d(p, q).
- ▶ Euclidean metric: $d(p,q) = \sqrt{\sum_i (p_i q_i)^2}$.
- Manhattan metric: $d(p,q) = \sum_i |p_i q_i|$.
- ▶ Pearson correlation coefficient:

$$\frac{1}{n}\sum_{i}\left(\frac{p_{i}-\mu(p)}{\sigma(p)}\right)\left(\frac{q_{i}-\mu(q)}{\sigma(q)}\right)$$

• $\mu(p)$: average of p's coordinates, $\sigma(p)$: standard deviation of p's coordinates.

- ▶ Distance between two points p and q is d(p, q).
- ► Euclidean metric: $d(p,q) = \sqrt{\sum_i (p_i q_i)^2}$.
- ▶ Manhattan metric: $d(p,q) = \sum_i |p_i q_i|$.
- ▶ Pearson correlation coefficient:

$$\frac{1}{n}\sum_{i}\left(\frac{p_{i}-\mu(p)}{\sigma(p)}\right)\left(\frac{q_{i}-\mu(q)}{\sigma(q)}\right)$$

- $\mu(p)$: average of p's coordinates, $\sigma(p)$: standard deviation of p's coordinates.
- Other distances: normalised dot product, K-L divergence, relative entropy.

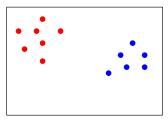
- ▶ Distance between two points p and q is d(p, q).
- ► Euclidean metric: $d(p,q) = \sqrt{\sum_i (p_i q_i)^2}$.
- ▶ Manhattan metric: $d(p,q) = \sum_i |p_i q_i|$.
- ▶ Pearson correlation coefficient:

$$\frac{1}{n}\sum_{i} \left(\frac{p_{i} - \mu(p)}{\sigma(p)}\right) \left(\frac{q_{i} - \mu(q)}{\sigma(q)}\right)$$

- $\mu(p)$: average of p's coordinates, $\sigma(p)$: standard deviation of p's coordinates.
- Other distances: normalised dot product, K-L divergence, relative entropy.
- ▶ Metrics obey triangle inequality: $d(p,q) + d(q,r) \ge d(p,r)$.
 - Euclidean, Manhattan distances are metrics.
 - Correlation, dot product are not metrics.

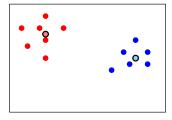
Quality of a Partition

- ▶ Partition points into k clusters $C = \{C_1, C_2, \dots, C_k\}$.
- ▶ Define quality q_i of a cluster C_i and define quality q(C) in terms of q_i s.



Quality of a Partition

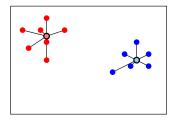
- ▶ Partition points into k clusters $C = \{C_1, C_2, \dots, C_k\}$.
- ▶ Define quality q_i of a cluster C_i and define quality q(C) in terms of q_i s.



- Sum of squared errors.
 - μ_i = average of points in C_i .

Quality of a Partition

- ▶ Partition points into k clusters $C = \{C_1, C_2, \dots, C_k\}$.
- ▶ Define quality q_i of a cluster C_i and define quality q(C) in terms of q_i s.



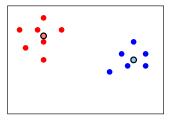
- Sum of squared errors.
 - μ_i = average of points in C_i .
 - $q_i = \frac{1}{n_i} \sum_{p \in C_i} d(p, \mu_i)^2 = \text{average of squared distance from every point in } C_i \text{ to } q_i.$

Algorithms

- ► *k*-means algorithm.
- Hierarchical clustering.

Algorithms

▶ *k*-means: find *k* cluster "centres" and form clusters by assigning a point to the closest cluster centre.



k-means algorithm

Partition S into k clusters that minimise the sum of squared errors $q(C) = \sum_i \sum_{p \in C_i} \|p - \mu_i\|^2$ over all possible partitions of S into k clusters.

k-means algorithm

Partition S into k clusters that minimise the sum of squared errors $q(C) = \sum_i \sum_{p \in C_i} \|p - \mu_i\|^2$ over all possible partitions of S into k clusters.

- 1. Initialise centres $\mu_1, \mu_2, \dots \mu_k$.
- 2. Repeat
 - ▶ For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - ▶ Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.

- 1. Initialise centres $\mu_1, \mu_2, \dots \mu_k$.
- 2. Repeat
 - ▶ For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.

- 1. Initialise centres $\mu_1, \mu_2, \dots \mu_k$.
- 2. Repeat
 - ▶ For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
 - Initialisation:

- 1. Initialise centres $\mu_1, \mu_2, \dots \mu_k$.
- 2. Repeat
 - ▶ For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - ▶ Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
- ▶ Initialisation: random μ_i 's or "well-separated" μ_i 's.

- 1. Initialise centres $\mu_1, \mu_2, \dots \mu_k$.
- 2. Repeat
 - ▶ For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
- ▶ Initialisation: random μ_i 's or "well-separated" μ_i 's.
- Checking for termination :

- 1. Initialise centres $\mu_1, \mu_2, \dots \mu_k$.
- 2. Repeat
 - ▶ For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
- ▶ Initialisation: random μ_i 's or "well-separated" μ_i 's.
- Checking for termination :
 - use thresholds to avoid numerical errors.
 - check if sets in the partition do not change.

- 1. Initialise centres $\mu_1, \mu_2, \dots \mu_k$.
- 2. Repeat
 - ▶ For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - ▶ Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
 - Each iteration takes time.

- 1. Initialise centres $\mu_1, \mu_2, \dots \mu_k$.
- 2. Repeat
 - ▶ For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - ▶ Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
 - ► Each iteration takes O(kmn) time.

- 1. Initialise centres $\mu_1, \mu_2, \dots \mu_k$.
- 2. Repeat
 - ▶ For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - ▶ Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
- ▶ Each iteration takes O(kmn) time.
- ▶ q(C)

- 1. Initialise centres $\mu_1, \mu_2, \dots \mu_k$.
- 2. Repeat
 - ▶ For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - ▶ Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
- ▶ Each iteration takes O(kmn) time.
- ▶ q(C) does not increase.

Properties of *k***-means**

- 1. Initialise centres $\mu_1, \mu_2, \dots \mu_k$.
- 2. Repeat
 - ▶ For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - ▶ Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
- ▶ Each iteration takes O(kmn) time.
- q(C) does not increase.
- Algorithm can get stuck in a local minimum.

Properties of *k***-means**

- 1. Initialise centres $\mu_1, \mu_2, \dots \mu_k$.
- 2. Repeat
 - ▶ For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - ▶ Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
- ▶ Each iteration takes O(kmn) time.
- q(C) does not increase.
- Algorithm can get stuck in a local minimum.

Properties of *k***-means**

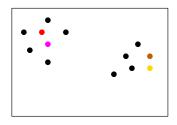
- 1. Initialise centres $\mu_1, \mu_2, \dots \mu_k$.
- 2. Repeat
 - ▶ For each point p, put p in cluster C_i if μ_i is the centre closest to p.
 - ▶ Recalculate μ_i 's (average of points in C_i).
- 3. until μ_i 's don't change.
- ▶ Each iteration takes O(kmn) time.
- q(C) does not increase.
- Algorithm can get stuck in a local minimum.
- ▶ Does not work particularly well in very high (\geq 40) dimensions.

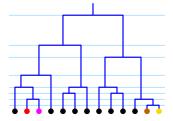
Algorithms

- ▶ *k*-means algorithm.
- Hierarchical clustering.

Hierarchical Clustering

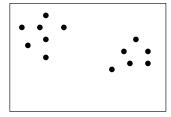
- Attempt to recursively find sub-clusters within clusters.
- Natural way to "zoom into" areas of interest.
- Represent using a tree or dendrogram.





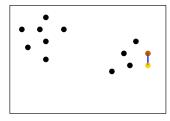
▶ Bottom-up clustering algorithm.

- ▶ Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.

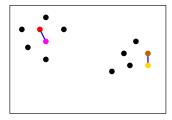


• • • • • • • • • • •

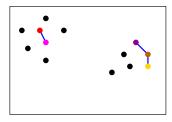
- ▶ Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - Let C_i and C_j be the clusters "nearest" each other.
 - ▶ Merge C_i and C_j .



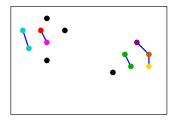
- ▶ Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - ▶ Let C_i and C_j be the clusters "nearest" each other.
 - ▶ Merge C_i and C_j .



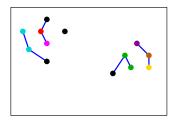
- Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - ▶ Let C_i and C_i be the clusters "nearest" each other.
 - ▶ Merge C_i and C_j .



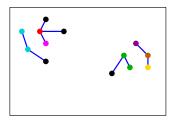
- Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - ▶ Let C_i and C_i be the clusters "nearest" each other.
 - ▶ Merge C_i and C_j .



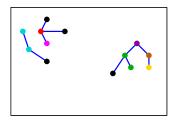
- ▶ Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - Let C_i and C_j be the clusters "nearest" each other.
 - ▶ Merge C_i and C_j .

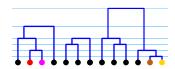


- Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - ▶ Let C_i and C_i be the clusters "nearest" each other.
 - ▶ Merge C_i and C_j .

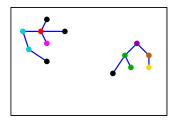


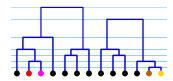
- ▶ Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - ▶ Let C_i and C_i be the clusters "nearest" each other.
 - ▶ Merge C_i and C_j .



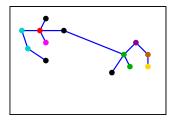


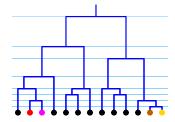
- ▶ Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - ▶ Let C_i and C_i be the clusters "nearest" each other.
 - ▶ Merge C_i and C_j .



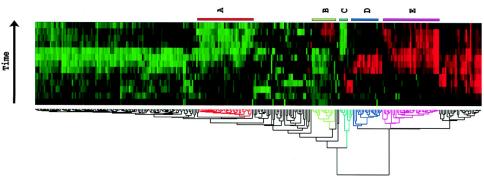


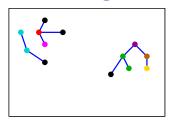
- Bottom-up clustering algorithm.
- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - ▶ Let C_i and C_i be the clusters "nearest" each other.
 - ▶ Merge C_i and C_j .
- 3. until all the samples (genes) are in one cluster.

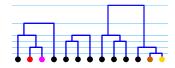


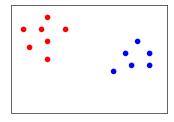


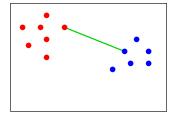
Hierarchical Clustering Result



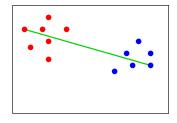




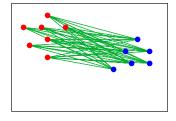




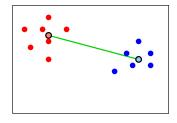
▶ $d_{min}(D_i, D_j)$ = distance between closest pair of points.



- $ightharpoonup d_{min}(D_i, D_j) = \text{distance between closest pair of points.}$
- ▶ $d_{max}(D_i, D_j)$ = distance between farthest pair of points.



- $ightharpoonup d_{min}(D_i, D_j) = \text{distance between closest pair of points.}$
- ▶ $d_{max}(D_i, D_j)$ = distance between farthest pair of points.
- $d_{avg}(D_i, D_j)$ = average of distances between all pairs of points.



- $ightharpoonup d_{min}(D_i, D_j) = \text{distance between closest pair of points.}$
- ▶ $d_{max}(D_i, D_j)$ = distance between farthest pair of points.
- $d_{avg}(D_i, D_j)$ = average of distances between all pairs of points.
- $\qquad \qquad \bullet \ \, d_{mean}(D_i,D_j) = d(\mu_i,\mu_j).$

- ▶ $d_{min}(D_i, D_j)$ = distance between closest pair of points.
- $ightharpoonup d_{max}(D_i, D_j) = \text{distance between farthest pair of points.}$
- ▶ $d_{avg}(D_i, D_j)$ = average of distances between all pairs of points.
- $\qquad \qquad \bullet \ \, d_{mean}(D_i,D_j)=d(\mu_i,\mu_j).$
- ▶ Computing d_{min} , d_{max} , d_{avg} takes $O(n_i n_j)$ time.
- ▶ Computing d_{mean} takes $O(n_i + n_i)$ time.

Running Time of Hierarchical Clustering

- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - Let D_i and D_i be the clusters "nearest" each other.
 - ▶ Merge D_i and D_i .
- 3. until all the samples (genes) are in one cluster.

Running Time of Hierarchical Clustering

- 1. Start with every sample (gene) in its own cluster.
- 2. Repeat
 - Let D_i and D_j be the clusters "nearest" each other.
 - ▶ Merge D_i and D_i .
- 3. until all the samples (genes) are in one cluster.
- ▶ Store all $O(m^2)$ inter-point distances.
- At each iteration, compute distance between every pair of clusters: takes $O(nm^2)$ time in total.
- ► There are *n* iterations, so overall running time is $O(nmm^2) = O(nm^3)$.

Properties of Hierarchical Clustering

- ▶ Using d_{min} , tree tends to look like an elongated chain.
- Using d_{max} , clusters may not be well separated.
- Other measures try to alleviate this problem.
- In case of d_{min} , tree produced is the minimum spanning tree.
- In other cases, it is difficult to state what properties the partition satisfies.

▶ How do we know a cluster represents "useful" biological knowledge?

- ► How do we know a cluster represents "useful" biological knowledge?
- ► Compute functional enrichment? If there are *k* genes with a particular function in a cluster with with *l* genes, is this fact interesting?

- ▶ How do we know a cluster represents "useful" biological knowledge?
- ► Compute functional enrichment? If there are *k* genes with a particular function in a cluster with with *l* genes, is this fact interesting?
- Must look at how many genes overall are annotated with that function.

- ▶ How do we know a cluster represents "useful" biological knowledge?
- ► Compute functional enrichment? If there are *k* genes with a particular function in a cluster with with *l* genes, is this fact interesting?
- Must look at how many genes overall are annotated with that function.
- Use χ^2 test or Fisher's exact test.

- ▶ Let C be the cluster of interest, c = #genes in the cluster.
- ightharpoonup Let u be the number of genes in the gene expression data set.

- ▶ Let *C* be the cluster of interest, c = #genes in the cluster.
- ightharpoonup Let u be the number of genes in the gene expression data set.
- ▶ Let f be the function of interest:

- ▶ Let *C* be the cluster of interest, c = #genes in the cluster.
- ▶ Let *u* be the number of genes in the gene expression data set.
- ▶ Let *f* be the function of interest:
 - $u_f = \#$ genes in the data set annotated with f.
 - $c_f = \#$ genes in the cluster C annotated with f.

- ▶ Let *C* be the cluster of interest, c = #genes in the cluster.
- ▶ Let *u* be the number of genes in the gene expression data set.
- ▶ Let *f* be the function of interest:
 - $u_f = \#$ genes in the data set annotated with f.
 - $c_f = \#$ genes in the cluster C annotated with f.
- Fisher's exact test answers the following question:

If we selected c genes at random from the set of all u genes,

- ▶ Let *C* be the cluster of interest, c = #genes in the cluster.
- \blacktriangleright Let u be the number of genes in the gene expression data set.
- ▶ Let *f* be the function of interest:
 - $u_f = \#$ genes in the data set annotated with f.
 - $c_f = \#$ genes in the cluster C annotated with f.
- Fisher's exact test answers the following question:

If we selected c genes at random from the set of all u genes, what is the probability that we will select c_f or more genes from the set of u_f genes annotated with f?

- ▶ Let *C* be the cluster of interest, c = #genes in the cluster.
- ▶ Let *u* be the number of genes in the gene expression data set.
- ▶ Let *f* be the function of interest:
 - $u_f = \#$ genes in the data set annotated with f.
 - $ightharpoonup c_f = \#$ genes in the cluster C annotated with f.
- ► Fisher's exact test answers the following question:

If we selected c genes at random from the set of all u genes, what is the probability that we will select c_f or more genes from the set of u_f genes annotated with f?

$$\sum_{i=c_f}^{\min(c,u_f)}$$

- ▶ Let *C* be the cluster of interest, c = #genes in the cluster.
- ▶ Let *u* be the number of genes in the gene expression data set.
- ▶ Let *f* be the function of interest:
 - $u_f = \#$ genes in the data set annotated with f.
 - $c_f = \#$ genes in the cluster C annotated with f.
- Fisher's exact test answers the following question:

If we selected c genes at random from the set of all u genes, what is the probability that we will select c_f or more genes from the set of u_f genes annotated with f?

$$\sum_{i=c_f}^{\min(c,u_f)} \frac{\binom{u_f}{i}\binom{u-u_f}{c-i}}{\binom{u}{c}}$$

 Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Huang et al., Nucleic acids research, 2008

- Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Huang et al., Nucleic acids research, 2008
- Compute enrichment of each function, one at a time:

- Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Huang et al., Nucleic acids research, 2008
- Compute enrichment of each function, one at a time: multiple hypotheses testing.

- Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Huang et al., Nucleic acids research, 2008
- Compute enrichment of each function, one at a time: multiple hypotheses testing.
- Parent-child relationships between functions:

- Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Huang et al., Nucleic acids research, 2008
- Compute enrichment of each function, one at a time: multiple hypotheses testing.
- ▶ Parent-child relationships between functions: Ontologizer algorithm Bauer et al., *Bioinformatics*, 2008.

- Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Huang et al., Nucleic acids research, 2008
- Compute enrichment of each function, one at a time: multiple hypotheses testing.
- ▶ Parent-child relationships between functions: Ontologizer algorithm Bauer et al., *Bioinformatics*, 2008.
- ▶ Enrichment of multiple functions at the same time:

- ▶ Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Huang et al., *Nucleic acids research*, 2008
- Compute enrichment of each function, one at a time: multiple hypotheses testing.
- ▶ Parent-child relationships between functions: Ontologizer algorithm Bauer et al., *Bioinformatics*, 2008.
- ► Enrichment of multiple functions at the same time: GenGO algorithm Lu et al., *Nucleic Acids Research* 2008