Scribe Notes for Algorithmic Number Theory
Class 16—June 9, 1998

Scribes: Yizhong Wang, Wen Wang, and Jeremy Rotter

Abstract

This section covers the Euclidean algorithm and continued fractions in a field of Laurent series. The structure for $\mathbb{K}[x]/(f)$ is also discussed.

1 Euclidean Algorithm

Definition 1.1. For a polynomial f, define

$$
dg f = \begin{cases}
1 & \text{if } f = 0; \\
1 + \deg f & \text{if } f \neq 0.
\end{cases}
$$

Theorem 1.2. (6.2.4. from text) Given nonzero polynomials $u, v \in \mathbb{K}[x]$, the extended Euclidean algorithm returns a and b such that $au + bv = \gcd(u, v)$, using $O((\deg u)(\deg v))$ bit operations in \mathbb{K}. Moreover, if $\deg u > \deg v > 0$, then we have $\deg a < \deg v$ and $\deg b < \deg u$.

2 Continued Fractions

Theorem 2.1. (6.3.1. from text) An element $f \in \mathbb{K}((1/x))$ is rational if and only if its continued fraction expansion is finite.

Example 2.2. Let

$$
f(y) = \frac{x^4y^3 + xy + 1}{x^3y^2 + x^5}.
$$

From the previous class, we know the extended Euclidean algorithm gives us

\begin{align*}
a_0 &= xy \\
a_1 &= x^5 + 1 \\
a_2 &= xy + x^3.
\end{align*}

So,

$$
f(y) = a_0 + \frac{1}{a_1 + \frac{1}{a_2}} = xy + \frac{1}{x^5 + 1 + \frac{1}{xy + x^3}}.
$$

Theorem 2.3. (6.3.2. from text) Let $f(x) = \sum_{i \geq 0} c_ix^{-i}$ be an element of $\mathbb{K}((1/x))$. Then f is rational if and only if the sequence c_0, c_1, c_2, \ldots satisfies a linear recurrence relation.
Proof. First suppose \(f = u/v \). Write

\[
 u = \sum_{j=0}^{s} u_j x^j \quad \text{where} \quad u_s \neq 0
\]

\[
 v = \sum_{k=0}^{t} v_k x^k \quad \text{where} \quad v_t \neq 0.
\]

For simplicity, assume \(u_j = 0 \) when \(j \) is outside the range \(0, \ldots, s \) and \(v_k = 0 \) if \(k \) is outside the range \(0, \ldots, t \).

From the definition of \(f \), we know that \(t \geq s \). Now,

\[
 u = \sum_{j=0}^{s} u_j x^j
 = v f
 = \sum_{i=0}^{\infty} \sum_{k=0}^{t} c_i v_k x^{k-i} \quad \text{substitute} \quad k - i \quad \text{with} \quad r
 = \sum_{r=-\infty}^{t} \left(\sum_{k=r}^{t} c_{k-r} v_k \right) x^r.
\]

So, for \(r \geq 0 \), we have,

\[
 r = t, \quad u_t = c_0 v_t, \quad \text{so} \quad c_0 = \frac{u_t}{v_t}
\]

\[
 r = t-1, \quad u_{t-1} = c_1 v_t + c_0 v_{t-1}, \quad \text{so} \quad c_1 = \frac{u_{t-1} - c_0 v_{t-1}}{v_t}
\]

\[
 \vdots \quad \vdots \quad \vdots
\]

\[
 r = 0, \quad u_0 = c_0 v_0 + c_1 v_1 + \cdots + c_{t-1} v_{t-1}, \quad \text{so} \quad c_t = \frac{u_0 - c_0 v_0 \cdots - c_{t-1} v_{t-1}}{v_t}
\]

For \(r < 0 \) we have,

\[
 0 = \sum_{k=r}^{t} c_{k-r} v_k = \sum_{k=0}^{t} c_{k-r} v_k.
\]

The second equality holds because \(v_k = 0 \) if \(k \) is outside the range \(0, \ldots, t \). Then we get,

\[
 v_t c_{t-r} = - \sum_{k=0}^{t-1} c_{k-r} v_k
\]

or

\[
 c_{t-r} = \sum_{k=0}^{t-1} \left(\frac{v_k}{v_t} \right) c_{k-r}
\]

\[
 v_t = \sum_{k=0}^{t-1} \left(\frac{c_{k-r}}{c_{t-r}} v_k \right)
\]
Making the substitution \(i = t - r \) in the first equation, we get

\[
c_i = \sum_{k=0}^{t-1} \left(-\frac{v_k}{v_t} \right) c_{i+k-t},
\]

Making the substitution \(j = i + k - t \), we now get

\[
c_i = \sum_{j=i-t}^{i-1} \left(-\frac{v_{j-i+t}}{v_t} \right) c_j,
\]

so we have

\[
\begin{align*}
 c_i &= \sum_{j=i-t}^{i-1} \left(-\frac{v_{j-i+t}}{v_t} \right) c_j \\
 v_t &= \sum_{k=0}^{t-1} \left(-\frac{c_{k-r}}{c_{t-r}} \right) v_k.
\end{align*}
\]

Now we can see that if \(f(x) \) is rational, \((*)\) and \((**)\) give the base case and the linear recurrence relation, respectively. On the other hand, if \((*)\) and \((**)\) hold for \(f(x) \), we can find a pair of polynomials \(u \) and \(v \) from \((*)\) and \((**)\) such that \(f(x) = \frac{u}{v} \), i.e., \(f(x) \) is rational. \(\square \)

The following example is an application of Theorem 2.3, used in pseudorandom sequence generation.

Example 2.4. Let \(\mathbb{K} = \mathbb{F}_2, u = 1 \) and \(v = x^3 + x + 1 \). Let \(t = 3 \) and \(s = 0 \).

- From \((*)\) we get \(c_0 = 0, c_1 = 0, c_2 = 0, \) and \(c_3 = 1 \).

- From \((**)\) we get the recurrence relation, for \(i > 3 \),

\[
 c_i = \sum_{j=i-3}^{i} (i-j-1) (v_j-c_{j+i-3}) c_j
 = v_0 c_{i-3} + v_1 c_{i-2} + v_2 c_{i-1}
 = c_{i-2} + c_{i-3}.
\]

From this relation, we can generate the pseudorandom sequence,

\[
 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, \ldots
\]

3 The Structure of \(\mathbb{K}[x]/(f) \)

Theorem 3.1 (CRT version 2). (6.6.1. from text) Let \(f_1, f_2, \ldots, f_r \) be polynomials of positive degree in \(\mathbb{K}[x] \) that are pairwise relatively prime, and let \(f \) denote there product. Then

\[
\mathbb{K}[x]/(f) \cong \mathbb{K}[x]/(f_1) \oplus \mathbb{K}[x]/(f_2) \oplus \cdots \oplus \mathbb{K}[x]/(f_r).
\]
Theorem 3.2 (CRT version 1). Let f and f_1, f_2, \ldots, f_r be as in the previous theorem. Then there exists a solution $a \in \mathbb{K}[x]$ to the system of congruences

\[
\begin{align*}
a & \equiv a_1 \pmod{f_1} \\
a & \equiv a_2 \pmod{f_2} \\
& \quad \vdots \\
a & \equiv a_r \pmod{f_r}.
\end{align*}
\]

Moreover, a is unique modulo f and a can be computed in $O((\log f)^2)$ bit operations, assuming $\deg a_i < \deg f_i$.

Example 3.3. Let $\mathbb{K} = \mathbb{F}_8$ and find a such that

\[
\begin{align*}
a & \equiv x^3 \pmod{y + x^6} \\
a & \equiv x^2 \pmod{y + x} \\
a & \equiv x^4 \pmod{y + x^5}.
\end{align*}
\]

Here, we use the same notation we have used before with the Chinese remainder theorem:

\[
\begin{align*}
m_1 &= y + x^6 & m_2 &= y + x & m_3 &= y + x^5 \\
a_1 &= x^3 & a_2 &= x^2 & a_3 &= x^4.
\end{align*}
\]

First, we solve for e_1. We start by computing

\[
f_1 = m_2m_3 = (y + x)(y + x^5) = y^2 + x^6y + x^6.
\]

Now that we have f_1, we can compute

\[
\overline{f_1} = f_1 \pmod{m_1} = x^6.
\]

From here, we can easily see that

\[
\overline{f_1}^{-1} = x,
\]

so we can compute e_1:

\[
e_1 = f_1\overline{f_1}^{-1} = xy^2 + y + 1.
\]

Computing e_2 requires the same steps:

\[
\begin{align*}
f_2 &= m_1m_3 = (y + x^6)(y + x^5) = y^2 + xy + x^4 \\
\overline{f_2} &= f_2 \pmod{m_2} = x^4 \\
\overline{f_2}^{-1} &= x^3 \\
e_2 &= f_2\overline{f_2}^{-1} = x^3y^2 + x^4y + 1,
\end{align*}
\]

as does e_3:

\[
\begin{align*}
f_3 &= m_1m_2 = (y + x^6)(y + x) = y^2 + x^5y + 1 \\
\overline{f_3} &= f_3 \pmod{m_3} = 1 \\
\overline{f_3}^{-1} &= 1 \\
e_3 &= f_3\overline{f_3}^{-1} = y^2 + x^5y + 1.
\end{align*}
\]
Now, finding a is simply a matter of plugging values into the equation

\[
a = a_1e_1 + a_2e_2 + a_3e_3
\]
\[
= x^4y^2 + x^3y + x^3 + x^5y^2 + x^6y + x^2 + x^4y^2 + x^2y + x^4
\]
\[
= x^5y^2 + xy + 1.
\]

Theorem 3.4. (6.6.3. from text) \mathbb{F}_q^* is a cyclic group of order $q - 1$ (where $q = p^n$ for some prime p).

Proof. Let e be the smallest integer such that $x^e = 1$ for all $x \in \mathbb{F}_q^*$. Alternately,

\[
e = \text{lcm}_{x \in \mathbb{F}_q^*} \text{ord}(x).
\]

Invoking some group theory, we know that $e \mid q - 1$, since \mathbb{F}_q^* must contain an element of order e. Also, $x^e - 1$ has $q - 1$ roots in \mathbb{F}_q^*, so $e \geq q - 1$. Hence $e = q - 1$.

Therefore, \mathbb{F}_q^* contains an element of order $q - 1$ and must be cyclic of order $q - 1$. \qed

4 Galois Theory

Definition 4.1. A polynomial $f \in \mathbb{F}_p[x]$ of degree n that is irreducible over \mathbb{F}_p is **primitive** if a root x of f generates the cyclic group $\mathbb{F}_{p^n}^*$. Such a root is called a **primitive element** of \mathbb{F}_{p^n}.

Theorem 4.2. The number of primitive polynomials of degree n over \mathbb{F}_p is $\phi(p^n - 1)/n$ and the number of primitive elements of \mathbb{F}_{p^n} is $\phi(p^n - 1)$.

Proof. \mathbb{F}_{p^n} is a cyclic group of order $p^n - 1$. Hence it has $\phi(p^n - 1)$ generators or primitive elements. Each primitive element has a minimal polynomial of degree n that is primitive. All the roots of that polynomial are primitive\(^1\). Hence, the number of primitive polynomials is $\phi(p^n - 1)/n$. \qed

5 Next Time

Next time, we will begin to study chapter 7. We should cover sections 7.1 through 7.4.

\(^1\)This statement needs to be proved by using the properties of the Galois group of \mathbb{F}_{p^n} over \mathbb{F}_p.