Solutions to Homework Assignment 4
CS 6104: Algorithmic Number Theory

Suppose

\[f = \sum_{i \leq s} c_i X^i \]
\[g = \sum_{i \leq t} a_i X^i \]

\(f = g^2 \) if and only if:

1. \(s = 2t \); and

2. \(\sum_{i \leq s} c_i X^i = (\sum_{i \leq t} a_i X^i)^2 = \sum_{i \leq 2t} (\sum_{j=i-t}^t a_j a_{i-j}) X^i \)

That is,

1) \(s = 2t \); and

2) \(c_i = \sum_{j=i-t}^t a_j a_{i-j} \quad (i \leq s) \).

If \(k \) is of characteristic 2, then the conditions are:

1. \(s = 2t \)

2. For the coefficients:

\[
c_i = \sum_{j=i-t}^t a_j a_{i-j}
\]

\[
= \begin{cases}
 a_{i/2}^2 + 2 \sum_{j=i/2+1}^t a_j a_{i-j} & (i = 2t, 2t-2, \ldots) \\
 2 \sum_{j=(i+1)/2}^t a_j a_{i-j} & (i = 2t-1, 2t-3, \ldots)
\end{cases}
\]

\[
= \begin{cases}
 a_{i/2}^2 & (i = 2t, 2t-2, \ldots) \\
 0 & (i = 2t-1, 2t-3, \ldots)
\end{cases}
\]

If \(k \) is not of characteristic 2, then the conditions are:

1) \(s = 2t \); and
2) For the coefficients:

\[c_i = \sum_{j=t-1}^{t} a_j a_{i-j} = \begin{cases} a_i^2 & (i = s) \\ 2a_t a_{i-t} + \sum_{j=i-t+1}^{t-1} a_j a_{i-j} & (i < s) \end{cases} \]

That is,

\[a_t = \sqrt{c_s} \]

\[a_i = \frac{c_{i+t} - \sum_{j=i+1}^{t-1} a_j a_{i-j}}{2a_t} \quad i < t. \]

This requires that \(c_s \) be a square.

Hence, if \(k \) is of characteristic 2, \(f \) is a square in \(k((1/x)) \) if and only if \(\text{deg}(f) \) is even, and \(\alpha_{2i-1} = 0 \) \((i \leq s/2)\). If \(k \) is not of characteristic 2, \(f \) is a square in \(k((1/x)) \) if and only if \(\text{deg}(f) \) is even, and the first coefficient is a square in \(k \).

Problem 2. [Solution Courtesy of Craig Struble] This problem is inspired by problem 13 in Chapter 6. For \(m \geq 1 \), define

\[\tau(m) = \frac{m}{\phi(m)}, \]

where \(\phi \) is the Euler phi function.

A. For what value of \(m \), where \(1 \leq m \leq 10,000,000 \), is \(\tau(m) \) maximized?

B. More generally, for what values of \(m \) (as \(m \) goes from 1 to \(\infty \)), does \(\tau(m) \) reach new maxima? (A new maximum is an \(m \) such that \(\tau(m') < \tau(m) \), whenever \(m' < m \).)

C. Use methods from Chapter 2 to show Landau’s result that \(\tau(m) = O(\log \log m) \).

D. Fix a prime \(p \). Give an asymptotic lower bound on the probability that a randomly selected polynomial in \(\mathbb{F}_p[X] \) of degree \(n \) is primitive.

A. The value at which \(\tau(m) \) is maximized where \(1 \leq m \leq 10,000,000 \) is

\[m = 9,699,690 \]

\[= 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \]

Part B explains why this is the maximum value.
B. Suppose \(m = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k} \) is the unique prime factorization of \(m \). Equation (2.2) on page 23 of the text states

\[
\phi(m) = \prod_{1 \leq i \leq k} (p_i - 1)p_i^{e_i - 1}.
\]

Simplifying \(\tau(m) \),

\[
\tau(m) = \frac{m}{\phi(m)} = \frac{p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}}{(p_1 - 1)p_1^{e_1 - 1}(p_2 - 1)p_2^{e_2 - 1} \cdots (p_k - 1)p_k^{e_k - 1}} = \frac{p_1p_2 \cdots p_k}{(p_1 - 1)(p_2 - 1) \cdots (p_k - 1)}.
\]

The value of \(\tau(m) \) depends only on the prime factors of \(m \), regardless of their exponents. So, consider only values of \(m \) that are the product of unique primes. Each prime \(p \) contributes a factor of

\[
\frac{p}{p - 1} = \frac{1}{1 - \frac{1}{p}}
\]

to \(\tau(m) \). Clearly, if \(x < y \), then \(\frac{1}{1 - x} > \frac{1}{1 - y} \). So \(\tau(m) \) is maximized by multiplying primes that are as small as possible; that is, \(\tau(m) \) is maximized when \(m \) is the product of the first \(k \) primes, and the maximum changes when \(m \) is multiplied by the next prime. So, to find the value \(m \) that maximizes \(\tau(m) \) when \(1 \leq m \leq n \), multiply consecutive primes \(p_i \) together until \(m = p_1p_2 \cdots p_k \leq n \leq p_1p_2 \cdots p_{k+1} \).

C. For this part, assume that \(m = p_1p_2 \cdots p_k \) is the product of the first \(k \) primes. We see from Part B that

\[
\tau(m) = \prod_{i=1}^{k} \frac{1}{1 - \frac{1}{p_i}}.
\]

To use the techniques in Chapter 2, we need to manipulate the product and find a sum that can be bounded. Consider writing

\[
\tau(m) = \prod_{i=1}^{k} e^{f_i}
\]

where \(e \) is the exponential and \(f_i \) is a polynomial such that

\[
e^{f_i} = \frac{1}{1 - \frac{1}{p_i}}.
\]

Hence,

\[
f_i = \ln \left(\frac{1}{1 - \frac{1}{p_i}} \right)
\]
Using the laws of logarithms and Maclaurin expansion,

\[
\ln \left(\frac{1}{1 - \frac{1}{p_i}} \right) = - \ln \left(1 - \frac{1}{p_i} \right) = \frac{1}{p_i} + \frac{1}{2p_i^2} + \frac{1}{3p_i^3} + \cdots = \frac{1}{p_i} + O \left(\frac{1}{p_i^2} \right)
\]

So, \(f_i = \frac{1}{p_i} + O \left(\frac{1}{p_i^2} \right) \). Now \(\tau(m) \) can be written as

\[
\tau(m) = \prod_{i=1}^{k} e^{\frac{1}{p_i} + O \left(\frac{1}{p_i^2} \right)} \leq \prod_{i=1}^{k} e^{\frac{1}{p_i} + \frac{N}{p_i^2}}
\]

where \(N \) is a constant as defined for the \(O \) notation. Exponents add when multiplying powers together, so now we can apply techniques from Chapter 2. Begin by bounding the sum of the \(\frac{1}{p_i} \) terms.

\[
\sum_{p \leq p_k} \frac{1}{p} \sim \sum_{n \leq p_k} \frac{1}{n \log n} \approx \int_{2}^{p_k} \frac{1}{t \log t} dt = \log \log p_k - \log \log 2 = \log \log p_k
\]

To bound the sum \(\sum_{i=1}^{k} \frac{N}{p_i^2} \), note that \(\sum_{x=1}^{\infty} \frac{1}{x^2} \) converges. Thus the sum \(\sum_{i=1}^{k} \frac{N}{p_i^2} \) also converges to a constant, call it \(D \). Now, ignoring constant factors, we get

\[
\prod_{i=1}^{k} e^{\frac{1}{p_i} + \frac{N}{p_i^2}} \sim e^{\log \log p_k + D} \sim e^D \log p_k \sim \log p_k
\]

One final step is necessary to reach our goal. How is \(p_k \) related to \(m \)? Consider \(\log m \),

\[
\log m = \log(p_1 p_2 \cdots p_k) = \log p_1 + \log p_2 + \cdots + \log p_k = \sum_{p \leq p_k} \log p \sim \sum_{n=1}^{p_k} \log n \log n
\]
\[
\begin{align*}
\tau(m) &= \sum_{n=1}^{p_k} \frac{1}{p_k} \\
&= \Theta(\log \log m).
\end{align*}
\]

Hence, \(\tau(m) = O(\log \log m) \).

D. The number of monic primitive polynomials of degree \(n \) in \(\mathbb{F}_p[X] \) is

\[
\frac{\phi(p^n - 1)}{n}.
\]

The total number of monic polynomials of degree \(n \) in \(\mathbb{F}_p[X] \) is \(p^n \). So the probability of selecting a primitive polynomial of degree \(n \) in \(\mathbb{F}_p[X] \) is

\[
\frac{\phi(p^n - 1)}{np^n}.
\]

In Part C, we gave an upper bound for \(\tau(m) \). Use this to obtain a lower bound for \(\phi(m) \).

\[
\begin{align*}
\tau(m) &= \frac{m}{\phi(m)} \\
O(\log \log m) &= \frac{m}{\phi(m)} \\
O\left(\frac{\log \log m}{m}\right) &= \frac{1}{\phi(m)} \\
\phi(m) &= \Omega\left(\frac{m}{\log \log m}\right).
\end{align*}
\]

The probability is then bounded by

\[
\begin{align*}
\frac{\phi(p^n - 1)}{np^n} &= \Omega\left(\frac{p^n - 1}{np^n \log \log (p^n - 1)}\right) \\
&= \Omega\left(\frac{1}{n \log (p^n - 1)}\right) \\
&= \Omega\left(\frac{1}{n \log (n \log p)}\right) \\
&= \Omega\left(\frac{1}{n \log n}\right).
\end{align*}
\]

Problem 3. [Solution Courtesy of Degong Song] Chapter 7, problem 4. Flesh out the solution in the back of the book.

From \(p \equiv 3 \pmod{4} \) we get \(\left(\frac{-1}{p}\right) = -1 \). This means that the equation \(X^2 = -1 \) does not have solution in \(\mathbb{F}_p \), so \(i \not\in \mathbb{F}_p \).
From \(i^2 = -1 \) and definition of \(\mathbb{F}_p(i) \), we know

\[
\mathbb{F}_p(i) = \left\{ \frac{a + bi}{c + di} \mid a, b, c, d \in \mathbb{F}_p \right\},
\]

where \(c \) and \(d \) can not be 0 simultaneously.

First we show that \(c^2 + d^2 = 0 \) if and only if \(c = d = 0 \). Otherwise, assume \(c \neq 0 \), then \(c^{-1} \in \mathbb{F}_p \) and hence from \((c^{-1})^2 (c^2 + d^2) = 0 \) we see that \((c^{-1})d + 1 = 0 \) while \(c^{-1}d \in \mathbb{F}_p \). This is in contradiction with \(\left(\frac{-1}{p} \right) = -1 \).

Thus, from

\[
\frac{a + bi}{c + di} = \frac{(a + bi)(c - di)}{(c + di)(c - di)} = \frac{ac + bd}{c^2 + d^2} + \frac{bc - ad}{c^2 + d^2}i,
\]

and \(c^2 + d^2 \in \mathbb{F}_p^* \), it is not difficult to verify that

\[
\mathbb{F}_p(i) = \mathbb{F}_p[i] = \{ a + bi \mid a, b \in \mathbb{F}_p \}.
\]

\(\mathbb{F}_p(i) \) (or \(\mathbb{F}_p[i] \)) has \(p^2 \) elements and it is an extension field of \(\mathbb{F}_p \) with operation compatible to that of \(\mathbb{F}_p \). From book, any two finite fields with \(p^2 \) elements are isomorphic, and from above discussion, one Model of \(\mathbb{F}_p^* \) can be given as \(\mathbb{F}_p(i) \).

Since \(\left(\frac{1}{p} \right) = 1 \) and \(\left(\frac{p-1}{p} \right) = \left(\frac{-1}{p} \right) = -1 \), we can use binary search to find a \(x \) such that

\[1 \leq x < p - 1, \quad \left(\frac{x}{p} \right) = 1 \quad \text{and} \quad \left(\frac{x+1}{p} \right) = -1. \]

The algorithm for doing this is given below (in the algorithm, legendre[x,p] means \(\left(\frac{x}{p} \right) \));

```
procedure FindX(left,right)
{
    if(right-left=1)
        return left;
    mid=Floor[(left+right)/2];
    if(legendre[mid,p]=1)
        return FindX(mid,right);
    else
        return FindX(left,mid);
}
```

We use \(\text{FindX}(1,p-1) \) to call the program and get \(x \).

Use power algorithm and \(\left(\frac{x}{p} \right) = x^{(p-1)/2} \mod p \), the time complexity to get \(\left(\frac{x}{p} \right) \) is \(O((\log p)^3) \) bit operation. Due to binary search, there will be \(\log p \) such operations. After considering all the other operations, the complexity to find this \(x \) using above algorithm is \((\log p)^4 \).
Using the above x, we can construct a non-square element in \mathbb{F}_{p^2}. The fact that \(\left(\frac{x}{p} \right) = 1 \) and

\[
\left(\frac{-x}{p} \right) = \left(\frac{x}{p} \right) \left(\frac{-1}{p} \right)
= (-1)(-1)
= 1
\]
tell us that both x and $-(x + 1)$ have root in \mathbb{F}_p. Noting that $p = 3 \mod 4$, from Corollary 7.1.2, we have

\[
u \equiv \sqrt{x} \\
= x^{(p+1)/4}
\]

and

\[
v \equiv \sqrt{-(x + 1)} \\
= -(x + 1)^{(p+1)/4},
\]
and these u and v can be computed using $O((\lg p)^3)$ bit operation.

Now, the element $u + vi$ must be a non-square element in \mathbb{F}_{p^2}. Otherwise, there exists $a + bi$ with $a, b \in \mathbb{F}_p$ such that

\[
u + iv = (a + ib)^2 \\
= a^2 - b^2 + 2abi,
\]
which implies $u = a^2 - b^2$, $v = 2ab$, and hence

\[
u^2 + v^2 = (a^2 - b^2)^2 + (2ab)^2 \\
= (a^2 + b^2)^2.
\]

On the other hand, from $u^2 = x$, $v^2 = -(x + 1)$ we see that $u^2 + v^2 = -1$. This together with above equation implies $(a^2 + b^2)^2 = -1$. Since $a^2 + b^2 \in \mathbb{F}_p$, we get \(\left(\frac{-1}{p} \right) = 1 \). This is in contradiction with \(\left(\frac{-1}{p} \right) = -1 \).

Any square roots in \mathbb{F}_{p^2} can be computed using Tonelli’s algorithm. Tonelli’s algorithm is nondeterministic only because it randomly chooses an element $g \in \mathbb{F}_{p^2}$ and hope it is not a square (and thus it will be a generator). Now that we have found a non-square element $u + vi$ in \mathbb{F}_{p^2} using above procedure, we can use this $u + vi$ as g in Tonelli’s algorithm. In this situation, Tonelli’s algorithm would become deterministic.

The time complexity for computing $u + vi$ is $O((\lg p)^4)$ bit operation. The running time for the modified Tonelli’s algorithm is also $O((\lg p)^4)$ bit operation (cf. Theorem 7.1.3). So, the total running time for computing square roots in \mathbb{F}_{p^2} using this method is $O((\lg p)^4)$ bit operation. So, it is deterministic polynomial time.