Wrap-up of Computational Systems Biology

T. M. Murali

May 2, 2006
What is Systems Biology?

- Systems Biology is the study of the parts of the cell, their properties, and their relationships.
What is Systems Biology?

- Systems Biology is the study of the parts of the cell, their properties, and their relationships.
- What are the structures and modules that make up cellular networks?
What is Systems Biology?

- Systems Biology is the study of the parts of the cell, their properties, and their relationships.
- What are the structures and modules that make up cellular networks?
- How do these modules interact with each other over time and in different situations?
What is Systems Biology?

- Systems Biology is the study of the parts of the cell, their properties, and their relationships.
- What are the structures and modules that make up cellular networks?
- How do these modules interact with each other over time and in different situations?
- How can we interrogate the cell and iteratively refine our models of the cell?
Continuum of Models in Systems Biology

We covered “high-level” models.
Emphasised a data-driven approach to systems biology.
Focussed on large-scale properties of biological systems.
Integrated massive quantities of different types of data.
Learnt techniques from clustering, data mining, and graph theory and applied them to solve specific biological questions.
What is Next?

- Must deeply integrate hypothesis generation into data-driven analysis.
What is Next?

- Must deeply integrate hypothesis generation into data-driven analysis.
- Existing methods predict...
What is Next?

- Must deeply integrate hypothesis generation into data-driven analysis.
- Existing methods predict gene function, interactions, lethality, knock-out phenotype.
What is Next?

- Must deeply integrate hypothesis generation into data-driven analysis.
- Existing methods predict gene function, interactions, lethality, knock-out phenotype.
- In the future, use data-driven methods to “simulate” biological networks.
What is Next?

- Must deeply integrate hypothesis generation into data-driven analysis.
- Existing methods predict gene function, interactions, lethality, knock-out phenotype.
- In the future, use data-driven methods to “simulate” biological networks.
 - Which genes should I knock out to obtain a particular phenotype?
 - Model the effect of multiple treatments.
 - Model the effect of changing the degree of a treatment.
What is Next?

▶ Must deeply integrate hypothesis generation into data-driven analysis.
▶ Existing methods predict gene function, interactions, lethality, knock-out phenotype.
▶ In the future, use data-driven methods to “simulate” biological networks.
 ▶ Which genes should I knock out to obtain a particular phenotype?
 ▶ Model the effect of multiple treatments.
 ▶ Model the effect of changing the degree of a treatment.
▶ Integrate data-driven methods with physics-driven techniques.