CS 5984: Application of Basic Clustering Algorithms to Find Expression Modules in Cancer

T. M. Murali

January 31, 2006
Innovative Application of Hierarchical Clustering

- *A module map showing conditional activity of expression modules in cancer*, Eran Segal, Nir Friedman, Daphne Koller and Aviv Regev, Nature Genetics 36, 1090–1098, 2004
- Analyse gene expression data to find groups of genes expressed in concert between different cancers.
- Use hierarchical clustering innovatively.
Key Ideas

- Group genes into predefined *gene sets*, e.g., groups of genes with the same functional annotation.
- Hierarchically cluster gene sets in this matrix.
- Identify “interesting” gene set clusters (nodes) in the tree.
- In each gene set cluster, remove genes not expressed consistently with the cluster.
Gene Expression Data Sets

![Gene Expression Data Sets Diagram]

- Various tumors: 155 (7%)
- B lymphoma: 313 (15%)
- Breast cancer: 195 (9%)
- Fibroblast EWS/FLI: 10 (<1%)
- Fibroblast infection: 18 (1%)
- Fibroblast serum: 18 (1%)
- Gliomas: 47 (2%)
- HeLa cell cycle: 114 (5%)
- Lung cancer: 276 (13%)
- Liver cancer: 207 (10%)
- Leukemia: 142 (7%)
- Stimulated immune: 53 (3%)
- Stimulated PBMCs: 183 (9%)
- Neuro tumors: 90 (4%)
- NCI60: 152 (7%)
Data Normalisation

- Needed because some arrays measure "absolute" value of gene expression and others measure "relative" values.
- Affymetrix microarrays: take logarithm to the base-2 and zero transform within data set.
- cDNA microarrays: zero transform within data set.
Data Normalisation

- Needed because some arrays measure “absolute” value of gene expression and others measure “relative” values.
- Affymetrix microarrays: take logarithm to the base-2 and zero transform within data set.
- cDNA microarrays:
Data Normalisation

- Needed because some arrays measure “absolute” value of gene expression and others measure “relative” values.
- Affymetrix microarrays: take logarithm to the base-2 and zero transform within data set.
- cDNA microarrays: zero transform within data set.
Pre-defined Genes Sets

- Tissue-specific gene sets 101 (4%)
- Gene ontology 1,281 (45%)
- Gene expression clusters 1,300 (45%)
- GenMapp pathways 53 (2%)
- Kegg pathways 114 (4%)
Computing Gene-Set-By-Array Matrix

- Goal is to construct a gene-set-by-array matrix.
- For each gene set-array pair, find an “average” expression value of that gene set in that array.
Computing Gene-Set-By-Array Matrix

- Goal is to construct a gene-set-by-array matrix.
- For each gene set-array pair, find an “average” expression value of that gene set in that array.
- A gene is *induced* (respectively, *repressed* in an array if its change in expression is ≥ 2 (respectively, ≤ 2).
- For each gene set-array pair, compute the fraction of genes induced or repressed.
- Use these values in the gene-set-by-array matrix.
Computing Significant Entries in the Gene-Set-By-Array Matrix

- Many entries in the gene-set-by-array matrix may not be statistically significant.
Computing Significant Entries in the Gene-Set-By-Array Matrix

- Many entries in the gene-set-by-array matrix may not be statistically significant.
- For a given array, fraction of induced genes in a gene set may be close to the fraction of induced genes in the array.

Statistical test: for a given array, is the fraction of induced genes in a gene set much larger than the fraction of induced genes in the entire array?

Compute the p-value of the fraction using the hypergeometric test.

Do so for every gene-set-array pair.

Use false discovery rate correction to account for multiple hypotheses testing.

Replace insignificant entries by 0.
Computing Significant Entries in the Gene-Set-By-Array Matrix

- Many entries in the gene-set-by-array matrix may not be statistically significant.
- For a given array, fraction of induced genes in a gene set may be close to the fraction of induced genes in the array.
- Statistical test: for a given array, is the fraction of induced genes in a gene set much larger than the fraction of induced genes in the entire array?

Compute the p-value of the fraction using the hypergeometric test. Do so for every gene-set-array pair. Use false discovery rate correction to account for multiple hypotheses testing. Replace insignificant entries by 0.
Computing Significant Entries in the Gene-Set-By-Array Matrix

- Many entries in the gene-set-by-array matrix may not be statistically significant.
- For a given array, fraction of induced genes in a gene set may be close to the fraction of induced genes in the array.
- Statistical test: for a given array, is the fraction of induced genes in a gene set much larger than the fraction of induced genes in the entire array?
- Compute the p-value of the fraction using the hypergeometric test.
- Do so for every gene-set-array pair.
- Use false discovery rate correction to account for multiple hypotheses testing.
- Replace insignificant entries by 0.
Computing the Significance of an Entry in the Gene-Set-By-Array Matrix

- Let m be the number of genes in the data set.
- let m_G be the number of genes in a gene set G.
- Let u_a be the number of induced genes in an array a.
- let $u_{G,a}$ be the number of genes in G induced in a.

Informally, $\frac{u_{G,a}}{m} \approx \frac{u_a}{m}$ is not statistically significant.

Formally, what is the probability that if we pick m_G genes at random from m genes, we will select $u_{G,a}$ or more that are induced in a?

$$\sum_{i \geq u_{G,a}} \binom{u_a}{i} \binom{m-u_a}{m_G-i} \frac{(m_G-1)!}{(m-G)!}$$

If this probability is at most a user-specified threshold, we deem that entry to be statistically significant.
Computing the Significance of an Entry in the Gene-Set-By-Array Matrix

- Let m be the number of genes in the data set.
- Let m_G be the number of genes in a gene set G.
- Let u_a be the number of induced genes in an array a.
- Let $u_{G,a}$ be the number of genes in G induced in a.
- Informally, $u_{G,a}/m_G \approx u_a/m$ is not statistically significant.
Computing the Significance of an Entry in the Gene-Set-By-Array Matrix

- Let m be the number of genes in the data set.
- let m_G be the number of genes in a gene set G.
- Let u_a be the number of induced genes in an array a.
- let $u_{G,a}$ be the number of genes in G induced in a.
- Informally, $u_{G,a}/m_G \approx u_a/m$ is not statistically significant.
- Formally, what is the probability that if we pick m_G genes at random from m genes, we will select $u_{G,a}$ or more that are induced in a?
Computing the Significance of an Entry in the Gene-Set-By-Array Matrix

- Let m be the number of genes in the data set.
- Let m_G be the number of genes in a gene set G.
- Let u_a be the number of induced genes in an array a.
- Let $u_{G,a}$ be the number of genes in G induced in a.
- Informally, $u_{G,a}/m_G \approx u_a/m$ is not statistically significant.
- Formally, what is the probability that if we pick m_G genes at random from m genes, we will select $u_{G,a}$ or more that are induced in a?

$$\sum_{i \geq u_{G,a}}$$
Computing the Significance of an Entry in the Gene-Set-By-Array Matrix

- Let \(m \) be the number of genes in the data set.
- Let \(m_G \) be the number of genes in a gene set \(G \).
- Let \(u_a \) be the number of induced genes in an array \(a \).
- Let \(u_{G,a} \) be the number of genes in \(G \) induced in \(a \).
- Informally, \(u_{G,a}/m_G \approx u_a/m \) is not statistically significant.
- Formally, what is the probability that if we pick \(m_G \) genes at random from \(m \) genes, we will select \(u_{G,a} \) or more that are induced in \(a \)?

\[
\sum_{i \geq u_{G,a}} \frac{u_a^i (m-u_a^{m_G-i})}{m^{m_G-i} m^{m_G-i}}
\]

If this probability is at most a user-specified threshold, we deem that entry to be statistically significant.
Computing the Significance of an Entry in the Gene-Set-By-Array Matrix

- Let m be the number of genes in the data set.
- Let m_G be the number of genes in a gene set G.
- Let u_a be the number of induced genes in an array a.
- Let $u_{G,a}$ be the number of genes in G induced in a.
- Informally, $u_{G,a}/m_G \approx u_a/m$ is not statistically significant.
- Formally, what is the probability that if we pick m_G genes at random from m genes, we will select $u_{G,a}$ or more that are induced in a?

\[
\sum_{i \geq u_{G,a}} \frac{\binom{u_a}{i} \binom{m - u_a}{m_G - i}}{\binom{m}{m_G}}
\]

- If this probability is at most a user-specified threshold, we deem that entry to be statistically significant.
Hierarchical Clustering

- Start from a gene-set-by-array matrix containing fraction of induced/repressed genes. Fraction is negative if repressed.
- Apply bottom-up hierarchical clustering.
- Vector at internal node is average of vectors at descendant leaves.

Which nodes do we select as clusters in the tree?

- Associate each interior node with Pearson correlation between the two children.
- Cluster \equiv node whose Pearson correlation differs by more than 0.05 from the Pearson correlation of its parent.
Hierarchical Clustering

- Start from a gene-set-by-array matrix containing fraction of induced/repressed genes. Fraction is negative if repressed.
- Apply bottom-up hierarchical clustering.
- Vector at internal node is average of vectors at descendant leaves.
- Which nodes do we select as clusters in the tree?
 - Associate each interior node with Pearson correlation between the two children.
 - Cluster \equiv node whose Pearson correlation differs by more than 0.05 from the Pearson correlation of its parent.
Hierarchical Clustering

- Start from a gene-set-by-array matrix containing fraction of induced/repressed genes. Fraction is negative if repressed.
- Apply bottom-up hierarchical clustering.
- Vector at internal node is average of vectors at descendant leaves.
- Which nodes do we select as clusters in the tree?

Associate each interior node with Pearson correlation between the two children. Cluster \equiv node whose Pearson correlation differs by more than 0.05 from the Pearson correlation of its parent.
Hierarchical Clustering

- Start from a gene-set-by-array matrix containing fraction of induced/repressed genes. Fraction is negative if repressed.
- Apply bottom-up hierarchical clustering.
- Vector at internal node is average of vectors at descendant leaves.
- Which nodes do we select as clusters in the tree?
 - Associate each interior node with Pearson correlation between the two children.
 - Cluster \equiv node whose Pearson correlation differs by more than 0.05 from the Pearson correlation of its parent.
Turning Clusters into Modules

- Each cluster is the union of descendant gene sets (leaves).
- Module \equiv Cluster minus genes whose expression is not consistent with the rest of the cluster.
Testing Consistency of a Gene with a Gene Set

- Let \(g \) be the gene and \(G \) be the gene set \(G \).
Testing Consistency of a Gene with a Gene Set

- Let g be the gene and G be the gene set G.
- Let I (respectively, R) be the set of arrays in which G is significantly induced (respectively, repressed).
- For an array a in I (or R), let p_a be the fraction of genes that are induced (or repressed) by two-fold or more in a.

Score(g) = $\sum_{a \in I|g \text{ induced in } a} - \log(p_a) + \sum_{a \in R|g \text{ repressed in } a} - \log(p_a)$

No contribution from an array in I (or R) is g is not induced (or not repressed).

Larger contribution from arrays with fewer induced genes.

Compute statistical significance of this score.
Testing Consistency of a Gene with a Gene Set

- Let g be the gene and G be the gene set G.
- Let I (respectively, R) be the set of arrays in which G is significantly induced (respectively, repressed).
- For an array a in I (or R), let p_a be the fraction of genes that are induced (or repressed) by two-fold or more in a.
- Measure extent to which g’s expression changed by more (or less) than two-fold in the arrays in I (or R):

$$\text{Score}(g) = \sum_{a \in I} |g \text{ is induced in } a - \log(p_a)| + \sum_{a \in R} |g \text{ is repressed in } a - \log(p_a)|$$

No contribution from an array in I (or R) is g is not induced (or not repressed).
Larger contribution from arrays with fewer induced genes.
Compute statistical significance of this score.
Testing Consistency of a Gene with a Gene Set

- Let g be the gene and G be the gene set G.
- Let I (respectively, R) be the set of arrays in which G is significantly induced (respectively, repressed).
- For an array a in I (or R), let p_a be the fraction of genes that are induced (or repressed) by two-fold or more in a.
- Measure extent to which g‘s expression changed by more (or less) than two-fold in the arrays in I (or R):

$$
\text{Score}(g) = \sum_{a \in I \mid g \text{ is induced in } a} - \log(p_a) + \sum_{a \in R \mid g \text{ is repressed in } a} - \log(p_a)
$$

- No contribution from an array in I (or R) is if g is not induced (or not repressed) in a.
- Larger contribution from arrays with fewer induced genes.
- Compute statistical significance of this score.
Testing Consistency of a Gene with a Gene Set

- Let g be the gene and G be the gene set G.
- Let I (respectively, R) be the set of arrays in which G is significantly induced (respectively, repressed).
- For an array a in I (or R), let p_a be the fraction of genes that are induced (or repressed) by two-fold or more in a.
- Measure extent to which g's expression changed by more (or less) than two-fold in the arrays in I (or R):

$$
\text{Score}(g) = \sum_{a \in I | g \text{ is induced in } a} - \log(p_a) + \sum_{a \in R | g \text{ is repressed in } a} - \log(p_a)
$$

- No contribution from an array in I (or R) is g is not induced (or not repressed) in a.
- Larger contribution from arrays with fewer induced genes.
- Compute statistical significance of this score.
Computing Statistical Significance of Score(g)

\[
\text{Score}(g) = \sum_{a \in I \mid g \text{ is induced in } a} - \log(p_a) + \sum_{a \in R \mid g \text{ is repressed in } a} - \log(p_a)
\]
Computing Statistical Significance of Score(g)

$$\text{Score}(g) = \sum_{a \in I | g \text{ is induced in } a} - \log(p_a) + \sum_{a \in R | g \text{ is repressed in } a} - \log(p_a)$$

- Null hypotheses: genes in each array are randomly permuted, i.e., the p_a induced genes in an array $a \in I$ are chosen randomly.
Computing Statistical Significance of Score(g)

$$\text{Score}(g) = \sum_{a \in I | g \text{ is induced in } a} -\log(p_a) + \sum_{a \in R | g \text{ is repressed in } a} -\log(p_a)$$

- Null hypotheses: genes in each array are randomly permuted, i.e., the p_a induced genes in an array $a \in I$ are chosen randomly.
- Each element in Score(g) is an independent binary random variable.
- Random variable takes the value $-\log(p_a)$ with probability p_a and the value 0 with the probability $1 - p_a$.
Computing Statistical Significance of Score(g)

$$\text{Score}(g) = \sum_{a \in I \mid g \text{ is induced in } a} -\log(p_a) + \sum_{a \in R \mid g \text{ is repressed in } a} -\log(p_a)$$

- Null hypotheses: genes in each array are randomly permuted, i.e., the p_a induced genes in an array $a \in I$ are chosen randomly.
- Each element in Score(g) is an independent binary random variable.
- Random variable takes the value $-\log(p_a)$ with probability p_a and the value 0 with the probability $1 - p_a$.
- Mean of Score(g) is $\sum_{a \in I \cup R} -p_a \log p_a$ and variance is $\sum_{a \in I \cup R} p_a(1 - p_a) \log^2 p_a$.

Central limit theorem \Rightarrow that the distribution of Score(g) is well-approximated by a Gaussian distribution with this mean and variance.

Assess statistical significance by computing the tail of this Gaussian.
Computing Statistical Significance of Score(g)

Score(g) = \sum_{a \in I | g \text{ is induced in } a} - \log(p_a) + \sum_{a \in R | g \text{ is repressed in } a} - \log(p_a)

- Null hypotheses: genes in each array are randomly permuted, i.e., the p_a induced genes in an array $a \in I$ are chosen randomly.
- Each element in Score(g) is an independent binary random variable.
- Random variable takes the value $- \log(p_a)$ with probability p_a and the value 0 with the probability $1 - p_a$.
- Mean of Score(g) is $\sum_{a \in I \cup R} - p_a \log p_a$ and variance is $\sum_{a \in I \cup R} p_a (1 - p_a) \log^2 p_a$.
- Central limit theorem \Rightarrow that the distribution of Score(g) is well-approximated by a Gaussian distribution with this mean and variance.
- Assess statistical significance by computing the tail of this Gaussian.
Further Analysis

- Statistical significance of computed modules using leave-one-out cross validation (read supplement).
- Compute enrichment of clinical annotations of the arrays in a module.
- Visualisation of modules.
- Literature-based analysis of modules
Conclusions

- Used pre-defined gene sets to drive hierarchical clustering algorithm.
- Remove genes from a cluster of gene sets if the gene’s expression profile deviates from the cluster.
- Automatically decide which arrays are part of a module.
- Natural segue into lectures on biclustering where we will automatically decide which arrays *and* which genes to include in a bicluster.