
1

DCS@VT 040309 B.G. Ryder
1

Blended Program Analysis

Collaborators: Bruno Dufour (Rutgers) & Gary Sevitsky (IBM
Research); Funded by IBM Open Collaborative Research Program
and NSF 08-0811518

Barbara G. Ryder
Virginia Tech

DCS@VT 040309 B.G. Ryder
2

Framework-based Applications

  Application is an iceberg
  Bulk of the code in libraries and

frameworks
  Genre not commonly addressed by

research community
  E.g., financial planning services, e-

commerce sites, online reservation
systems, Tomcat-based systems
software

  Programs are not just large, but
are more complex in interactions
between frameworks

  Performance problems span multiple
layers

Libraries and
Frameworks

App

Middleware

2

DCS@VT 040309 B.G. Ryder
3

Framework-based Applications
  Software characteristics

  Not amenable to static analyses
  Not scalable -- too complex

  Not amenable to dynamic
analysis
  Too intrusive to execution for

production codes
  Applications main function

often is data transformation
  Goal: design analyses for

performance diagnosis of
these systems

Libraries and
Frameworks

App

Middleware

DCS@VT 040309 B.G. Ryder
4

Outline

  Motivation
  Blended analysis paradigm
  Blended escape analysis

  Example
  Explanations of performance problems
  Newest empirical results

  Related work
  Summary and future work

3

DCS@VT 040309 B.G. Ryder
5

Initial Goals

  Devise new analyses to aid performance
diagnosis

  Gather data about the characteristics of
these important practical applications
  To enable code specialization, better benchmark

selection, establishment of API ‘best practices’

  Design initial experiments to test ideas
  Problem: overuse of temporaries or object churn
  Q: can we identify object churn through analysis?

DCS@VT 040309 B.G. Ryder
6

Eliminating Object Churn

  Identify temporary objects
  Need to approximate “object lifetime”

  Identify execution contexts with excessive
use of temporaries
  Based on total number of instances
  Not same as finding often-executed allocation sites

  Elimination strategies
  Optimize the use of frameworks and libraries together
  Introduce caching for temporary data structures
  Code specialization

  Can help understand construction of longer-
lived data

4

DCS@VT 040309 B.G. Ryder
7

Current Practice: Jinsight Trace of
HoldingDataBean_Ser.serialize()

Tens of thousands of calls
How to find churn locality?

DCS@VT 040309 B.G. Ryder
8

Optimized calling tree of trace
from HoldingDataBean_Ser.serialize()

Our analysis will offer something better!

5

DCS@VT 040309 B.G. Ryder
9

Blended Analysis - Scalability

1473

18267

8089

25012

348

3919

2223

5848

17

322

71

373

1

10

100

1000

10000

100000

Dct-Std Dct-WS EJB-Std EJB-WS

C
a

ll
in

g
 c

o
n

te
x

ts
2 orders of magnitude!

Looking at the entire trace

Approximating contexts that use temporaries

Identifying contexts that truly use temporaries

DCS@VT 040309 B.G. Ryder
10

Outline

  Motivation
  Blended analysis paradigm
  Blended escape analysis

  Example
  Explanations of performance problems
  Newest empirical results

  Related work
  Summary and future work

6

Method Representation
Entry

Exit

x = new B()

y = D.m()

z = C.m()

w = new A()

(FSE’08)

DCS@VT 040309 B.G. Ryder
11

What type of objects may be created when
this method is called?

DCS@VT 040309 B.G. Ryder
12

Blended Analysis Paradigm

Java
Application

Profile Loaded
Classes

Reflection Specification
+ Templates

Dynamic Calling Structure

Static
Analysis

Models of methods

7

Pruning Code in Methods
Entry

Exit

x = new B()

y = D.m()

z = C.m()

w = new A()

Allocated types: {B}
Observed targets: {D.m}

(FSE’08)

DCS@VT 040309 B.G. Ryder
13

DCS@VT 040309 B.G. Ryder
14

Blended Analysis Paradigm

Java
Application

Profile Loaded
Classes

Reflection Specification
+ Templates

Dynamic Calling Structure

Static
Analysis

Pruned models
of methods

8

DCS@VT 040309 B.G. Ryder
15

Outline

  Motivation
  Blended analysis paradigm
  Blended escape analysis

  Example
  Explanations of performance problems
  Newest empirical results

  Related work
  Summary
  Future work

DCS@VT 040309 B.G. Ryder
16

Escape Analysis

  Determines escape property of an object (i.e.,
an allocation site):
  Captured (not escaping)
  Arg-escaping (escaping through an argument)
  Globally escaping

  Builds connection graph for each method
  Shows points-to relations between object fields and

references
  Shows escape state of each object

Choi et. al, TOPLAS’03

9

C D

E

17

Escape analysis

zag()

foo()

bar() baz() A B C D

E

Captured Arg-escaping Globally escaping

void bar() {
 a = new A();
 a.x = new B();
}
C baz() {
 c = new C();
 c.y = new D();
 c.z = new E();
 return c;
}
void foo(F f) {
 c = baz();
 f.w = c.z;
}
void zag() {
 F f = new F();
 foo(f);
 G.global = f;
}

C D

E F E

F E G F E

A
B
C
D
E
F
G

Disposition

DCS@VT 040309 B.G. Ryder

DCS@VT 040309 B.G. Ryder
18

Outline

  Motivation
  Blended analysis paradigm
  Blended escape analysis

  Example
  Explanations of performance problems
  Newest empirical results

  Related work
  Summary and future work

10

DCS@VT 040309 B.G. Ryder
19

Calling Contexts with Lots of Temporaries

9

54 27 10

9 9
108

9 9 9

9

HoldingDataBean_Ser.serialize()
Formats stock holding records
into SOAP response

DateSerializer.getValueAsString()
Formats data field of record

Paths

DCS@VT 040309 B.G. Ryder
20

Reduced Connection Graph for
 DateSerializer.getValueAsString()

9

63 int[] 18 bool [] 9 long[] 9 int[]

108 captured
instances from
8 alloc sites
as many as 6 calls
away from the uses!

Gregorian calendars
From Calendar.createCalendar()

from Calendar()
3 sites

from Calendar()
2 sites

from Calendar()

from
GregorianCalendar()

11

Visualized Results

21

DateSerializer.getValueAsString()

DCS@VT 040309 B.G. Ryder

DCS@VT 040309 B.G. Ryder
22

Outline

  Motivation
  Blended analysis paradigm
  Blended escape analysis

  Example
  Retrieving explanations of performance problems
  Newest empirical results

  Related work
  Summary and future work

12

DCS@VT 040309 B.G. Ryder
23

Experiments [ISSTA’07, FSE’08]

  Elude
  Prototype built in WALA, uses Jinsight traces

  Benchmarks -Trade 6.0.1; Websphere
Application Server 6.0.0.1; DB2 v8.2.0
  Traced a single transaction
  4 configurations of Trade 6 depend on mode

choices
  Run-time mode (DB): Direct, EJB
  Access mode: Standard, WebServices

  Eclipse JDT Compiler 3.1.0
  Machine: Intel Core Duo 1.8Ghz, 3GB RAM,

Linux 2.6 kernel

DCS@VT 040309 B.G. Ryder
24

Size Comparison for Benchmarks

Benchmark
(First 4
rows are
Trade)

Allocated
Types

Allocated
Instances

Methods Calls Max Stack
Depth

Direct/Std 30 186 710 4 484 26

Direct/WS 166 5 522 3 308 127 794 53

EJB/Std 82 1 751 1 978 60 936 62

EJB/WS 210 7 088 4 479 184 288 72

JDT
Compiler

168 53 191 1 411 1 081 927 53

13

Metrics

Designed new metrics for blended escape
 analysis

  Measure effectiveness of pruning
  Scalability of analysis – % of blocks in methods

 pruned
  Precision improvement not observed in disposition

 metric

DCS@VT 040309 B.G. Ryder
25

Scalability: %blocks pruned

Benchmark Pruned
BBs

Running Time
(h:m:s)

Speedup

Orig Pruned

Direct/Std 42.9% 0:00:19 0:00:16 1.2

Direct/WS 36.1% 0:06:38 0:03:17 2.0
EJB/Std 41.1% 0:02:40 0:02:02 1.18
EJB/WS 38.3% N/A 18:33:13 N/A
Eclipse JDT 25.5% N/A 6:09:15 N/A
Average 36.8% 1.6

DCS@VT 040309 B.G. Ryder
26

14

Metrics

  Measure usage of temporaries
  Disposition- categorizes instances as globally:

 escaping, captured, mixed
  Concentration- measures locality of temporary

 usage
  Capturing depth- # calls between temporary

 creation and capture

DCS@VT 040309 B.G. Ryder
27

28

Disposition of Instances

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Direct/Std Direct/WS EJB/Std EJB/WS Eclipse

Pe
rc

en
ta

ge
 o

f I
ns

ta
nc

es
 in

 e
ac

h
es

ca
pe

 s
ta

te

escaped mixed captured

DCS@VT 040309 B.G. Ryder

15

29

Concentration of Instances

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Direct/Std Direct/WS EJB/Std Eclipse

Pe
rc

en
ta

ge
 o

f i
ns

ta
nc

es
 e

xp
la

in
ed

 b
y

x%

of
 m

et
ho

ds

x = 20% x = 10% x = 5%

DCS@VT 040309 B.G. Ryder

Metrics

  Estimate temporary data structure
 complexity
  # of types in data structures
  # of allocating methods for objects in a data

 structure
  Height of data structure
  Maximum capturing distance

DCS@VT 040309 B.G. Ryder
30

16

31

of Types in Data Structures

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5-11

%
 o

f
D

a
ta

 S
tr

u
c
tu

re
s

of Types

Direct/Std

Direct/WS

EJB/Std

EJB/WS

Eclipse

DCS@VT 040309 B.G. Ryder

DCS@VT 040309 B.G. Ryder
32

Outline

  Motivation
  Blended analysis paradigm
  Blended escape analysis

  Example
  Explanations of performance problems
  Newest empirical results

  Related work
  Summary and future work

17

DCS@VT 040309 B.G. Ryder
33

Related Work on Framework-based
 Systems

  Framework-based systems
  Profiling execution, Ammons et. al. [ECOOP’04]
  Characterizing where execution time is spent,

 Srinivas & Srinivasan [FSE ’05]
  Characterizing data structures in Java, Mitchell &

 Sevitsky [ECOOP ’03], Mitchell [ECOOP ’06],
 Blackburn et. al. [OOPSLA’06], Buytaert et. al.
 [ACES’05]

  Characterizing data transformations, Mitchell et.
 al. [ECOOP ’06]

DCS@VT 040309 B.G. Ryder
34

Related Work on Analysis

  Often static analysis used to direct
placement of instrumentation for dynamic
analysis for efficiency

  Some previous uses of dynamic analysis to
“direct” static:
  Hybrid slicing, Gupta et.al. [TOSEM 1997]
  Optimize model checking, Groce et.al. [TACAS’06]
  Dynamic points-to in slicing, Mock et.al. [FSE’02]
  Parameter mutability analysis, Artzi et.al. [MIT

TR, 9/2006]

18

DCS@VT 040309 B.G. Ryder
35

Outline

  Motivation
  Blended analysis paradigm
  Blended escape analysis

  Example
  Explanations of performance problems
  Newest empirical results

  Related work
  Summary and future work

DCS@VT 040309 B.G. Ryder
36

Summary
  New blended analysis paradigm

  Combines dynamic program info with static analysis
  Aimed at framework-intensive applications
  Obtains high precision at reasonable cost
  Algorithm aimed at greater scalability & precision,

and better data structure characterization
  Problem studied: performance understanding

of object churn

  Novel use of escape analysis
  Algorithm plus empirical results
  New metrics to characterize usage of temporaries

19

DCS@VT 040309 B.G. Ryder
37

Future Work

  Enhanced tooling
  Visualization of connection graphs
  Experiments with more precise calling
structure representations

  Integration into interactive tools

Future Work

  Explore wider applicability of blended
analyses
  Blended security analyses

 Permissions
 Information flow (i.e., taint)

  Blended value-flow
 Semantic exploration of specific test executions
 Help with debugging

DCS@VT 040309 B.G. Ryder
38

