Kerberos

Phase 1

1. The user logs on to the client and the client asks for credentials for the user from Kerberos.
 - U → C: U (user id)
 - C → K: (U, tgs)

2. Kerberos constructs a ticket for U and tgs and a credential for the user and returns them to the client.
 - $T_{u,tgs} = E_{K(tgs)} \{ U, tgs, K_{U,tgs}, ts, lt \}$
 - $K \rightarrow C: E_{K(U)} \{ T_{u,tgs}, K_{U,tgs}, ts, lt \}$

The client obtains the user's password, P, and computes:

$$K'(U) = f(P)$$

The user is authenticated to the client if and only if $K(U)$ decrypts the credential.

Kerberos

Phase 2

3. The client constructs an 'authenticator' for user U and requests from TGS a ticket for server S:
 - $A_U = E_{K(U,tgs)} \{ C, ts \}$
 - $C \rightarrow TGS: (S, T_{u,tgs}, A_U)$

4. The server authenticates the request as coming from C and constructs a ticket with which C may use S:
 - $T_{C,S} = E_{K(S)} \{ C, S, K_{C,S}, ts, lt \}$
 - $T_{GS} \rightarrow C: E_{K(U,tgs)} \{ T_{C,S}, K_{C,U}, ts, lt \}$

Kerberos

Phase 3

5. The client builds an authenticator and sends it together with the ticket for the server to S:
 - $A_C = E_{K(C,S)} \{ C, ts \}$
 - $C \rightarrow S: (T_{C,S}, A_C)$

6. The server (optionally) authenticates itself to the client by replying:
 - $S \rightarrow C: E_{K(S)} \{ ts + 1 \}$