Time and Ordering

The two critical differences between centralized and distributed systems are:
- absence of shared memory
- absence of a global clock

We will study:
- how programming mechanisms change as a result of these differences
- algorithms that operate in the absence of a global clock
- algorithms that create a sense of a shared, global time
- algorithms that capture a consistent state of a system in the absence of shared memory

Event Ordering

How can the events on P be related to the events on Q?

Which events of P "happened before" which events of Q?

Partial answer: events on P and Q are strictly ordered. So:

\[P_1 \rightarrow P_2 \rightarrow P_3 \]

and

\[Q_1 \rightarrow Q_2 \rightarrow Q_3 \]

Event Ordering

Realization: events only events on P that can causally affect events on Q are those that involve communication between P and Q.

If \(P_1 \) is a send event and \(Q_2 \) is the corresponding receive event then it must be the case that:

\[P_1 \rightarrow Q_2 \]

Lamport's Algorithm

Lamport's algorithm is based on two implementation rules that define how each process's local clock is incremented.

Notation:
- the processes are named \(P_i \)
- each process has a local clock, \(C_i \)
- the clock time for an event \(a \) on process \(P_i \) is denoted by \(C_i (a) \).

Rule 1: If \(a \) and \(b \) are two successive events in \(P_i \) and \(a \rightarrow b \) then \(C_i (b) = C_i (a) + d \) where \(d > 0 \).

Rule 2: If \(a \) is a message send event on \(P_i \) and \(b \) is the message receive event on \(P_j \) then:
- the message is assigned the timestamp \(t_m = C_i (a) \)
- \(C_j (b) = \max (C_j , t_m + d) \)

Limitation of Lamport's Algorithm

In Lamport's algorithm two events that are causally related will be related through their clock times. That is:

If \(a \rightarrow b \) then \(C(a) < C(b) \)

However, the clock times alone do not reveal which events are causally related. That is, if \(C(a) < C(b) \) then it is not known if \(a \rightarrow b \) or not. All that is known is:

- if \(C(a) < C(b) \) then \(b \not\rightarrow a \)

It would be useful to have a stronger property - one that guarantees that \(a \rightarrow b \) if \(C(a) < C(b) \)

This property is guaranteed by Vector Clocks.
Vector Clock Rules

Each process P_i is equipped with a clock C_i which is an integer vector of length n. $C_i(a)$ is referred to as the timestamp event a at P_i. $C_i[j]$, the jth entry of C_i, corresponds to P_i’s on logical time. $C_i[j]$, $j \neq i$ is P_i’s best guess of the logical time at P_j.

Implementation rules for vector clocks:

1. Clock C_i is incremented between any two successive events in process P_i.
 $$C_i[j] := C_i[j] + d \quad (d > 0)$$

2. If event a is the sending of the message m by process P_i, then message m is assigned a vector timestamp $tm = C_i(a)$; on receiving the same message m by process P_j, C_j is updated as follows:
 $$\forall k, C_j[k] := \max(C_j[k], tm[k])$$

Birman-Schiper-Stephenson Protocol

1. Before broadcasting a message m, a process P_i increments the vector time $VTP_i[i]$ and timestamps m. Note that $(VTP_i[i] - 1)$ indicates how many messages from P_i precede m.

2. A process $P_i \neq P_j$, upon receiving message m timestamped VT_m from P_j, delays its delivery until both the following conditions are satisfied.
 a. $VTP_j[i] = VT_m[i] - 1$
 b. $VTP_j[k] \geq VT_m[k] \forall k \in \{1,2,…,n\} - \{i\}$

 where n is the total number of processes. Delayed messages are queued at each process in a queue that is sorted by vector time of the messages. Concurrent messages are ordered by the time of their receipt.

3. When a message is delivered at a process P_j, VTP_j is updated according to the vector clocks rule [IR2].