Kerberos

Phase 1

1. The user logs on to the client and the client asks for credentials for the user from Kerberos

 $$ U \rightarrow C : \quad U \text{ (user id)} $$

 $$ C \rightarrow K : \quad (U, \text{ tgs}) $$

2. Kerberos constructs a ticket for U and tgs and a credential for the user and returns them to the client

 $$ T_{u,tgs} = E_{K(tgs)} \{ U, \text{ tgs}, K_{U,tgs} \ , ts, lt \} $$

 $$ K \rightarrow C : \quad E_{K(U)} \{ T_{u,tgs} , K_{U,tgs} , ts, lt \} $$

 The client obtains the user's password, P, and computes:

 $$ K'(U) = f(P) $$

 The user is authenticated to the client if and only if $K'(U)$ decrypts the credential.
Kerberos

Phase 2

3. The client constructs an “ authenticator” for user U and requests from TGS a ticket for server, S:

\[A_U = E_{K(U,tgs)} \{ C, ts \} \]
\[C \rightarrow TGS : (S, T_{U,tgs}, A_U) \]

4. The server authenticates the request as coming from C and constructs a ticket with which C may use S:

\[T_{C,S} = E_{K(S)} \{ C, S, K_{C,S}, ts, lt \} \]
\[TGS \rightarrow C : E_{K(U,tgs)} \{ T_{C,S}, K_{C,S}, ts, lt \} \]

Kerberos

Phase 3

5. The client builds an authenticator and send it together with the ticket for the server to S:

\[A_C = E_{K(C,S)} \{ C, ts \} \]
\[C \rightarrow S : (T_{C,S}, A_C) \]

6. The server (optionally) authenticates itself to the client by replying:

\[S \rightarrow C : E_{K(C,S)} \{ ts + 1 \} \]