Time and Ordering
The two critical differences between centralized and distributed systems are:

- absence of shared memory
- absence of a global clock

We will study:

- how programming mechanisms change as a result of these differences
- algorithms that operate in the absence of a global clock
- algorithms that create a sense of a shared, global time
- algorithms that capture a consistent state of a system in the absence of shared memory

Event Ordering

How can the events on P be related to the events on Q?
Which events of P “happened before” which events of Q?
Partial answer: events on P and Q are strictly ordered. So:

\[P_1 \rightarrow P_2 \rightarrow P_3 \]

and

\[Q_1 \rightarrow Q_2 \rightarrow Q_3 \]
Realization: events only events on P that can causally affect events on Q are those that involve communication between P and Q.

If P₁ is a send event and Q₂ is the corresponding receive event then it must be the case that:

\[P₁ \rightarrow Q₂ \]

“Happened Before” relation:
If \(E_i \) and \(E_j \) are two events of the same process, then
\[E_i \rightarrow E_j \]
if \(i < j \).
If \(E_i \) and \(E_j \) are two events of different processes, then
\[E_i \rightarrow E_j \]
if \(E_i \) is a message send event and \(E_j \) is the corresponding message receive event.
The relation is transitive.
Lamport's Algorithm

Lamport's algorithm is based on two implementation rules that define how each process's local clock is incremented.

Notation:
- the processes are named P_i,
- each process has a local clock, C_i
- the clock time for an event a on process P_i is denoted by $C_i(a)$.

Rule 1:
If a and b are two successive events in P_i and $a \rightarrow b$
then $C_i(b) = C_i(a) + d$ where $d > 0$.

Rule 2:
If a is a message send event on P_i and b is the message receive event on P_j
then:
- the message is assigned the timestamp $t_m = C_i(a)$
- $C_j(b) = \max(C_j, t_m + d)$

Limitation of Lamport's Algorithm

In Lamport's algorithm two events that are causally related will be related through their clock times. That is:

If $a \rightarrow b$ then $C(a) < C(b)$

However, the clock times alone do not reveal which events are causally related. That is, if $C(a) < C(b)$ then it is not known if $a \rightarrow b$ or not. All that is known is:

if $C(a) < C(b)$ then $b \not\rightarrow a$

It would be useful to have a stronger property - one that guarantees that

$a \rightarrow b$ iff $C(a) < C(b)$

This property is guaranteed by Vector Clocks.
Vector Clock Rules
Each process P_i is equipped with a clock C_i which is an integer vector of length n.
$C_i(a)$ is referred to as the timestamp event a at P_i
$C_i[i]$, the ith entry of C_i corresponds to P_i’s on logical time.
$C_i[j], j \neq i$ is P_i’s best guess of the logical time at P_j

Implementation rules for vector clocks:
[IR1] Clock C_i is incremented between any two successive events in process P_i
$$C_i[i] := C_i[i] + d \quad (d > 0)$$
[IR2] If event a is the sending of the message m by process P_i, then message m is assigned a vector timestamp $t_m = C_i(a)$; on receiving the same message m by process P_j, C_j is updated as follows:
$$\forall k, C_j[k] := \max(C_j[k], t_m[k])$$
Birman-Schiper-Stephenson Protocol

1. Before broadcasting a message m, a process P_i increments the vector time $VT_{P_i}[i]$ and timestamps m. Note that $(VT_{P_i}[i] - 1)$ indicates how many messages from P_i precede m.

2. A process $P_j \neq P_i$, upon receiving message m timestamped VT_m from P_i, delays its delivery until both the following conditions are satisfied.
 a. $VT_{P_j}[i] = VT_m[i] - 1$
 b. $VT_{P_j}[k] \geq VT_m[k] \forall k \in \{1,2,\ldots,n\} - \{i\}$

 where n is the total number of processes.

 Delayed messages are queued at each process in a queue that is sorted by vector time of the messages. Concurrent messages are ordered by the time of their receipt.

3. When a message is delivered at a process P_j, VT_{P_j} is updated according to the vector clocks rule [IR2]