Models of Computing

In this course we will study a number of different models that appear in distributed systems:

- object model
- tuple space model
- agent model
- metasystem model
- transaction model
Object Model

- Encapsulated object
- Interacting objects
- Distributed objects

Tuple Space Model

- Processes
- Write/add
- Generate
- Read/remove
Agent Model

machine/node

local resource

agent

migrate

Metasystem model

Cluster:

very high speed, low latency network (e.g. myrinet)

Grid:
Examples of Models

- **Fixed computation-transportable data**
 - Object-based
 - CORBA (OMG)
 - RMI (Java)
 - Com/Dcom (MS)

- **Transportable computation-transportable data**
 - Metasystems
 - Globus
 - Legion
 - Agents
 - Voyager
 - Aglets
Major Topics

- Concurrency, Synchronization, Coordination
 - programming languages: Java
 - modeling/analysis languages: CCS
- Distributed Scheduling
- Fault Tolerance/Recovery
- Protection/Security

Concurrency, Synchronization, Coordination

- safety vs. liveness
 - safety: insuring consistency of system
 - liveness: insuring progress of systems activity
- conservative vs. optimistic:
 - conservative: refuse to perform any action unless the system's consistency can be guaranteed
 - optimistic: perform actions with the expectation of their successful completion and be prepared to recovery to a consistent state if they cannot be completed
Forms of Synchronization

- mutual exclusion - preventing concurrent access to shared objects to preserve the consistency of the object
- condition synchronization - blocking attempted operations on a shared object until that object is in a state where the operation will preserve the consistency of the object

Java as a Concurrency Programming Language

- Language:
 - language concepts for threads and synchronization
 - platform independent
- Libraries for basic network programming
 - sockets
 - Remote Method Invocation
- Used to implement distributed systems
 - Aglets
 - Voyager