
Spanner: Google’s 
Globally-Distributed 
Database

James C. Corbett, Jeffrey Dean, et. al.
Google, Inc.

OSDI 2012 and TOCS 2013

Presented by: M. Safdar Iqbal



Problem statement

• Build a globally-distributed database that 

supports consistent distributed transactions 



Outline

• Motivation

• Spanner architecture

• TrueTime

• Transactional support

• Experiments



Challenges

• DBMS ensure consistency

• Any read sees all effects of all writes before it

• Scalability is a challenge

• Traditional DBMS solution is pay up or go home

• Disclaimer: This is changing rapidly in recent years



Motivation:
Google’s earlier solutions

• BigTable – Google’s distributed key-value store

• Eventually consistent

• Megastore – SQL-like joins on top of BigTable

• Slow write throughput



Solution: Spanner

• Spanner is

• Externally consistent

• Globally-distributed

• Provides SQL-like data motel



Outline

• Motivation

• Spanner architecture

• TrueTime

• Transactional support

• Experiments



Spanner architecture



Spanservers

• Spanserver maintains data and serves client 

requests

• Data are key-value pairs
(key:string, timestamp:int64) -> 
string

• Data is replicated across spanservers (could 

be in different datacenters) in the unit of tablets

• SQL-like data model is also supported



Consistent replication via 
Paxos

• Spanner uses Paxos To maintain consistency 

between tablet replicas

• Spanner maintains a Paxos state machine per 

tablet per spanserver

• Paxos group: the set of all replicas of a tablet



Paxos

• Paxos is a consensus protocol

Consider a system of n participants

• Each participant can send message to each 

other to exchange some state

• Participant states must be consistent for each 

one to have a consistent view of system state



Paxos

• Participants elect a leader

• Leader is responsible for achieving the 
consensus

• A majority of participants have to agree on a 
state for it be “chosen” as consistent

• Paxos maintains consistency while maintaining 
availability



Spanserver architecuture



Transaction manager 

• Transaction manager (TM) runs on every 

Paxos leader

• Paxos leader becomes a participant leader

• All the replicas become participants in the 

transactions

• Transactions involving just one Paxos group 

are not handled by the TM



Outline

• Motivation

• Spanner architecture

• TrueTime

• Transactional support

• Experiments



TrueTime

• API for syncing timestamps and time intervals 

across global data centers

• Exposes clock uncertainty to application

• TT.now.earliest < tabs(now) < TT.now.latest

Method Returns

TT.now() TTinterval = [earliest: TTstamp, latest: TTstamp]

TT.after(t: TTstamp) true if t has definitely passed

TT.before(t: TTstamp) true if t has definitely not arrived



TrueTime: implementation

• Time references

• GPS

• Antenna/receiver faults

• Radio interference

• System outages

• Atomic clocks

• Clock drift

• Atomic clock failures uncorrelated to GPS failures 
and vice versa



TrueTime: implementation

• Time masters in each data center
• Equipped with GPS or atomic clocks (Armageddon masters)

• Sync time with each other

• Advertise an uncertainty during syncs - based on worst-case 

clock drift

• Timeslave daemon on every machine
• Polls the time masters in nearby and farther datacenters

• Time uncertainty ε is derived from local clock drift, time-master 

uncertainty and communication delays

• ε is a sawtooth; 1 to 7 ms (6 ms from drift, 1 ms from delays)



Outline

• Motivation

• Spanner architecture

• TrueTime

• Transactional support

• Experiments



Concurrency control

• Enabled by TrueTime – leads to global 
consistency

• Supports the following features

• Externally consistent transactions

• Lock-free read-only transactions

• Non-blocking snapshot reads

• Snapshot reads are “reads from the past”

• Client can provide timestamp

• Client can provide a bound on staleness



Transactions in Spanner

Operation Concurrency control

Read-write transaction Two-phase

Read-only transaction Lock-free

Snapshot read Lock-free



Two-phase commit

• Transaction coordinator

sends ‘Prepare’

messages to all replicas

• Commit cannot take place

unless all replicas reply

‘YES’ to the prepare message



Paxos leader leases

• Spanserver sends request for timed lease 

votes

• Leadership is granted when it receives 

acknowledgements from a quorum

• Lease is extended on successful writes

• Disjoint leases are invariant within the same 

Paxos group



Read-write transactions

• Each transaction must assigned a timestamp

• Time-stamp invariants

1. Timestamps must be assigned in monotonically 

increasing order.

• Leader must only assign timestamps within the interval of 

its leader lease.

2. If transaction T1 commits before T2 starts, T2's 

timestamp must be greater than T1's

• External consistency



Read-write transactions

• Two-phase commit (cross-group transactions)

• Participant leaders choose prepare timestamps
and send prepare messages through Paxos to the 
coordinator

• Coordinator assigns a commit timestamp si no less 
than all prepare timestamps and TT.now().latest 
(computed when receiving the request)

• Coordinator ensures that clients cannot see any 
data commited by Ti until TT.after(si) is true (this is 
done by waiting until absolute time > si to commit)



Snapshot read transaction

• Safe time: a timestamp at which the replica is 
up-to-date

• Replicas are not up-to-date if they in the 
prepare phase or in-between prepare and 
commit phases

• Each replica tracks a safe time tsafe
Paxos

• Each participant leader has a safe time tsafe
TM

• To read snapshot at t, t < min(tsafe
Paxos, tsafe

TM)



Read-only transactions

• Leader assigns a timestamp to the read 

operation (derived from TT.now.latest)

• Then it does a snapshot read on any replica

• External consistency requires the read to see 

all transactions committed before the read 

starts - timestamp of the read must be no less 

than that of any committed writes



Outline

• Motivation

• Spanner architecture

• TrueTime

• Transactional support

• Experiments



Microbenchmarks

• Measure latency and throughput read-write, 

read-only and snapshot transactions (4 KB) 

individually



Availability

• Replicas manually killed to measure effect on 

read throughput



Distribution of ε values



Thank You!


