Corey: An Operating System For
Many Cores

Silas Boyd-Wickizer” Haibo Chent Rong Cheni Yandong Maot
Frans Kaashoek™ Robert Morris™ Aleksey Pesterev’
Lex Stein§ Ming Wu§
Yuehua Dait Yang Zhang™ Zheng Zhang§

"MIT
tFudan University
TMicrosoft Research Asia
§Xi'an Jiaotong University
OSDI'08

Background, Motivation

what is an operating system?

* a laye

e sond

TrElisEpvilieE

t tries to general

-~ between applications and hardware

rovider

ize possible conditions

observation: as there are more cores, some
systems suffer from unnecessary resource sharing

applications know better what they need, return
the power to the applications

7

Virtual Address Space

Each process sees memory address space as
linear, but in fact it is not vitual memory Physicl
Each process has its own PageTable

Kernel has its own PageTable
in kernel space

Translation Lookaside Buffer(TLB)

f/T:

s L)

Disk

source http://en.wikipedia.org/wiki/File:Virtual_memory.svg

Traditional Address Space Management

core a core b

address space

g\~

stack a stack b results a results b

(a) A single address space.

(oee) (o)

address space a address space b
N7/
stack a results a | [results b stack b

(b) Separate address spaces.

4

PROBLEM # |

file descriptor duplication
* unnecessary shared resource contention

 shared data structures

rFrr-r 1 -t & 17 °T 17 1 1T 1"

1000s of dup + close per second
@
S
S
|

I T I N B
1 23 45 6 7 8 910111213141516
Cores

Figure 1: Throughput of the file descriptor dup and close mi-
crobenchmark on Linux.

main()

sys_dup() rcu_read_lock()

fget() spin_lock()

dupfd() spin_lock()

fd_install()

close()

Loop, executed by many threads

sys_dup()

asmlinkage long sys dup(unsigned int fildes)

{
int ret = -EBADF;
struct file * file =
if (file)
t; _

et =
return re

foet()

look up fd in fd_table

struct file *fget(unsigned int £d)
{

struct file *file;
struct files struct *files = current->files;

if (file) {
if (!atomic inc not zero(&file->f count)) ({
/* File object ref couldn't be taken */
rcu read unlock();
return NULL;

}
}

rcu read unlock();

return file;

dupfd()

duplicate given file descriptor

static int dupfd(struct file *file, unsigned int start, int cloexec)

{

struct files struct * files = current->files;
struct fdtable *fdt;
IS Ed e

spin lock(&files->file lock);
fd = locate fd(files, file, start);
if (fd >= 0) {
/* locate fd() may have expanded fdtable, load the ptr */
fdt = files fdtable(files);
FD SET(fd, fdt->open fds);
if (cloexec)”
FD SET(fd, fdt->close on exec);
else

Sp

} else
spin_unlock(&files->file lock);
fput(file);

}

return £fd;

fd_install()

where things really went wrong

void fd install(unsigned int fd, struct file *file)

{

struct files struct *files = current->files;
struct fdtable *fdt;
spin_lock(&files->file lock);

fdt = files fdtable(files);

}

// recall that fd install is called by every thread

PROBLEM #2

cache miss is expensive, ft. lock contention
* unnecessary shared resource contention

* locks: (cache miss cost)

5@ @ ©
3067
= Z
< |[141a.44 201/0.86 <
Al L2 a
L3
25511 84
273/1.46
> >
3 "~ 327/1.33 35
A a

nanoseconds per acquire + release

T 1T T 1

1T 1T T 1T 1

[1 1 1 1 | | |

| 1 1 | |
3456 7 8 910111213 141516

@

ores

LORERS

spin lock: spin on global variable, cache miss happens
when a thread release or acquire a lock, high cache
B =nce traffic

Test And Set (TAS) lock: spin on local variable, atomic,
better than spin lock, but no fairness guarantee

MCS lock: spin on local variable, atomic, FIFO queue,
when a thread release its own lock, it handles over the
ownership to the next node In queue

MCS LOCK (QUEUE)

tail_of_queue

B> R > True \l

MCS LOCK (QUEUE)

a thread releases a lock

tail_of_queue mylLock -> prev -> aquire = true
o False‘

’ Tl’ucl

o

a thread attempts to require lock
mylock -> prev = tail
False mylLock -> next = tail -> next
mylLock -> aquire = false
tail -> next = myLock

Corey

* Inspired by ExoKernel: protect but do not
mManage system resource

« 3 abstractions
» Address range
» kernel core
* shares

Address Range

Why Not Both

An abstraction that corresponds to a range of virtual-
to- physical mappings.

- private(default): only owner core Is able to access

- shared: assign by application

avold contention | corea | | coreb |

ar_alloc() to create

root address range a root address range b

stack a >< stack b

shared address range a shared address range b

results a results b

(c) Two address spaces with shared result mappings.

Address Range kvaluation

* private memory access: memclone
» each core allocate 100MB on rts own DRAM pool

* Use round-robin to allocate new core

* shared memory access: mempass
B core allocates [O0OMB

B Gl COf'e dccesses every page

140000
120000
100000
80000
60000

cycles per page

40000

20000

Memclone

1 1 1. 1T 1 1 T T 1T 1T T T T T 1
Linux single —©—
Linux separate
Corey address ranges

1 2 3 4 6 7 8 9 101112131415 16
Cores

(a) memclone

18

Memclone

* Linux single memory

* shared memory access: mempass
» one core allocates |00MB

* each core accesses every page

Time (milliseconds)

500

400

300

200

100

Mempass

1 1 1 1 11 1 T 1 T 1 1T T 11
Linux single —o—

Linux separate ——
Corey address ranges —&—

(1 1 1 [| | |

[R T N
1 2 3 4 5 6 7 8 9 101112131415 16
Cores

(b) mempass

20

Kernel Core
A Hint Of Resource Isolation

an abstraction that specifies a core to kernel
functions and data

a kernel core can manage hardware devices and
execute system calls

among kernel cores, they communicate via IPC
increase scalability by avoiding cache miss

ess [LB invalidation (TLB i1s cleared in every
context switch)

2|

Kernel Core Evaluation

» simple TCP service that accepts and responds with a |28
bytes message to each connection before closing it

«) modes

* dedicated. one kernel core handles everything except for
computation

* polling: a kernel core only to poll for received packet
notifications and transmit completion

ERIERBethi cases, each other core runs private [CPR/R servigs
with private TCP/IP stack

)

Kernel Core kvaluation
Dedicated Mode

service core do computation
dedicated core do handling

dedicated core

buffer exchange
via IPC

285

Kernel Core Ekvaluation
Polling Mode

receive packet
notification & transmission completion

aammmmm—o DOllINg kernel

receive packets
notification

DMA buffer
transfer

i

Kernel Core Evaluation

hroughput

120000 T T T T T T T T T T T T T T 1

100000 -
o
=
Q

S 80000 - -
D)
Q.

2" 60000 |- -
o
=
Q

2 40000 —
=
S

20000 Polline —&— —

Dedicate
0 Ll Ll 1111y Lipux —e
1 23 4 5 6 7 8 910111213 141516
Cores

EEiRcore |s able to handle more connections per seconcNiENis
Dedicated configuration than in Polling

25

Kernel Core Evaluation
e @ dcne Hliss

1 1 1 1 1T 1T 1T T 1T T T T T T 1
200 - -
=
S
g=
!
g 150 |- m
S
Q
2
» 100 _
2
E
50 - -
Dedicate
O||||||||||||L|mu¥||
1 2 3 4 5 6 7 8 9 101112131415 16

Cores

(b) L3 cache misses.

26

Shares
A Explicit Way Of Avoiding Cache Miss

* a book keeping mechanism

» conceptually similar to encapsulation in OOP

» applications can specify If a kernel object Is
shared among cores

L7

SHARES EVALUATION

add/remove per-core segment to global/local share

1T T T T T T T T T T T T T 1
8000 [~ Global share —&— 7

Per—core shares

7000 -
6000 -
5000 [~
4000 -
3000 -
2000 -

1000s of add + del per second

1000 |~

N I N N (N N N AN NN (NN NN NN (N N N
1 2 3 45 6 7 8 91011121314 1516
Cores

(a) Throughput.

modifying global data structure causes contention

28

SHARES EVALUATION

add/remove per-core segment to global/local share

— 1T T T T T T T T T T T T T T 1
Global share —&—
10 Per—core shares —4&— A—A—A—A—A—A -
5
[av]
)
&
5 O N
Q.
S
@ 4— _
=
on
—
2_ —
0 A A A A A A A A A A A A A A A
1 2 3 4 5 6 7 8 9 10111213 14 15 16

Cores

(b) L3 cache misses.

i

APPLICATION

MapReduce

framework: Metis

* bound to core by calling sched_setAffinity()
* mostly benefit from address range

« webd

* mostly benefit from kernel core

30

e reduce

space

Mapreduce tvaluation

DUUE

" COpY |

« word Inverted Index
« |GB In

pler neimealaier ElRE

ntermediate valu

31

e to shared address

Time (seconds)

Mapreduce tvaluation

T 1 1
Corey
Linux

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
Cores

(a) Corey and Linux performance.

£

Mapreduce Evaluation (Cont.)

et - (\®) [\
)) () (W)
|

Improvement (%)

)

1 2 3 4 5 6 7 8 9 101112 13 14 15 16
Cores

(b) Corey improvement over Linux.
Linux’s soft page fault handler is about 10% faster than Corey’s when there is no

contention £

VWebdad Ekvaluation

» 8 webd core, 8 application core
* FleSum: returns sum of bytes of a given file

*) modes

* random: webd Is allowed to pass request to any
application cores

* locality: each each webd will only passes
request to a certain application core

B

Webd Ekvaluation (Cont.)

IPC | IPC IPC | IPC
filesum filesum
buffer cache

60000 [~

50000 [~

40000

30000 [~

20000

connections per second

10000 -

Locality —&—

128

256

512 1024 2048 4096
File size (Kbytes, log scale)

when file is small, both mode is limited by webd's network stack

when file size is big, locality mode has (some) advantage of
being able to cache bigger files (L3 Cache = 2MB)

515

Discussion

Baumann, Andrew, et al. "The multikernel: a new OS architecture for

scalable multicore systems." Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles. ACM, 2009.

Han, Sangjin, et al. "PacketShader: a GPU-accelerated software
router.” ACM SIGCOMM Computer Communication Review 4 1.4
CAOHE B0 UG,

Boyd-Wickizer, Silas, et al. "An analysis of Linux scalability to many
cores.” (2010).

36

Discussion

Baumann, Andrew, et al. "The multikernel: a new OS architecture for

scalable multicore systems." Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles. ACM, 2009.

Han, Sangjin, et al. "PacketShader: a GPU-accelerated software
router.” ACM SIGCOMM Computer Communication Review 4 1.4
CAOE DRSS 2015,

Boyd-Wickizer, Silas, et al. "An analysis of Linux scalability to many

Linux still has hope

36

MILLENNIUM TECHNOLOGY,PRIZE)

Boyd-Wickizer, Silas, et al. "An analysis of Linux scalability to many
cores." (20T6s

36

Discussion (Cont.)

Yoo, Richard M., Anthony Romano, and Christos Kozyrakis. "Phoenix

rebirth: Scalable MapReduce on a large-scale shared-memory

system.” Workload Characterization, 2009. [ISWC 2009. [EEE
International Symposium on. IEEE, 2009

Soares, Livio, and Michael Stumm. "FlexSC: Flexible system call

scheduling with exception-less system calls." Proceedings of the 9th

USENIX conference on Operating systems design and implementation.
USENIX Association, 2010.

B

1T HE END

SUPPLEMENT SLIDE

Virtual address space Physical address space

0x00000000
0x00010000
text \ 0x00000000
0x10000000
data
o OxOOffffff
..... T CRREE
.............. page belonging to process
ox7fffeeeF L page not belonging to process

source: http://upload.wikimedia.org/wikipedia/commons/thumb/3/32/Virtual _address_space_and_physical_address_space_relationship.svg///3px-
Virtual_address_space and_physical_address_space_relationship.svg.png

http://upload.wikimedia.org/wikipedia/commons/thumb/3/32/Virtual_address_space_and_physical_address_space_relationship.svg/773px-Virtual_address_space_and_physical_address_space_relationship.svg.png

AMD K10 Architecture

Red: Difference between K8 and K10 Architecture
(Die Anderungen zwischen der K8- und K10-Architektur sind rot markiert)

L2-TLB |: 512-entry
D: 512-entry

1 GByte: 8-entry

Level 2 Cache
512K, 16 way
exclusive

L2 ECC

L2 Tags

L2 Tag ECC

A

Level 3 Cache
2 MByte...8 MByte

32 way

System Request
Queue (SRQ)

Cross Bar
(XBAR)

= 1]

2 Memory
Controller

Hyper
Transport

7ot TR

[——

2 x DDR2-800
2...6 X 6,4 GByte/s

256

ITLB
48 -entry

Level 1 Instruction Cache
64 KByte

256 Bit + Bit152
Predecode, Branch, Parity

Fetch 2-transit

Pick Buffer
32 Byte
x86 Ops Target Addre
; ; e 512 indirect
Decode
DirectPath VectorPath
Macro Ops
(RISC-like)
Instruction Control Unit (72-entry) l l l
8-entry 8-entry 8-entry 36-entry
Scheduler Scheduler Scheduler Scheduler
| e v v v v y R
ALU | | AGU ALU | |/AGU ALU | |AGU FADD FMUL | [FMISC
IMUL m SSE SSE
64 64 464 4128 _L128
Load / Store Queue (44-entry)
64¢ 64¢ $128$128
Data TLB
48-entry Level 1 Data Cache, 64 KByte, 2 way ECC

http://upload.wikimedia.org/wikipedia/commons/thumb/d/d6/AMD_K10_Arch.svg/2000px-AMD_K10_Arch.svg.png

“The cache-management logic for the L3 cache is
unique. When an item is loaded from L3 cache
into a core’s L| cache (the L2 cache Is always by-
passed), the item Is sometimes removed from
the L3 cache and sometimes not. The

determining factor is whether other cores are still
accessing the rtem. If so, It's not removed from L3
and a copy of the data is loaded into LI. If no

other cores are accessing the data ritem, then 1t is
removed from the L3 cache”

http://upload.wikimedia.org/wikipedia/commons/thumb/d/d6/AMD_KI10_Arch.svg/2000px-AMD_KI10_Arch.svg.png

http://upload.wikimedia.org/wikipedia/commons/thumb/d/d6/AMD_K10_Arch.svg/2000px-AMD_K10_Arch.svg.png

oo CLOUTE

CLOSE FILE POINTED BY FD

asmlinkage long sys close(unsigned int £d)

{
e initialize
spin_lock(&files->file lock);
fdt = files fdtable(files);
//magic that releases the file descriptor
spin unlock(&files->file lock);
retval = filp close(filp, files); // more locks in flip close()
//magic that checks error, in case of error, go to out unlock
return retval;

spin_unlock(&files->file
return -EBADF;

}
#define files fdtable(files)

(rcu_dereference((files)->£fdt))

405

MM struct

How Processes Use Page Table

struct mm struct {
int count;
pgd t * pgd; //page global directory
unsigned long context;
unsigned long start code, end code, start data, end data;
unsigned long start brk, brk, start stack, start mmap;
unsigned long arg start, arg end, env _start, env end;
unsigned long rss, total vm, locked vm;
unsigned long def flags;
struct vm area struct * mmap;
struct vm area struct * mmap avl;
struct semaphore mmap sem;

}i

44

mm_struct (cont.)

Page Global Directory

Page Middle Directory

Page lable Entry

user data in physical memory

45

More costs: soft page faults

memory the OS doesn't actually

When an application allocates antiateS page tables
fill in the PTEs.

pace private address spaces
- i
mm_struct
« Contend on mm_struct: * No contention on mm_struct

locks, counters, lists...

source: http://pdos.csail.mit.edu/~sbw/corey/osdi- | 2-08-2008.pdf

http://pdos.csail.mit.edu/~sbw/corey/osdi-12-08-2008.pdf

More costs: soft page faults

The first time a page is touched [g ntiates page tables

the core will signal a memory
fault...

Dace private address spaces
- oo
mm_struct
« Contend on mm_struct: * No contention on mm_struct

locks, counters, lists...

source: http://pdos.csail.mit.edu/~sbw/corey/osdi- 1 2-08-2008.pdf

http://pdos.csail.mit.edu/~sbw/corey/osdi-12-08-2008.pdf

More costs: soft page faults

physical page and adds and

...and the OS allocates a antiates page tab|es
adds a PTE to the pgtable.

pace private address spaces

- o
mm_struct
e Contend on mm_struct: * No contention on mm_struct

locks, counters, lists...
* One soft page fault per page

source: http://pdos.csail.mit.edu/~sbw/corey/osdi- | 2-08-2008.pdf

http://pdos.csail.mit.edu/~sbw/corey/osdi-12-08-2008.pdf

More costs: soft page faults

e LinuXx |az||y Instantiates Pa Each mm struct has a different

pgtable, so each core soft page
faults on each page.

@ pgtable

mm_struct

shared address space

V@

e Contend on mm_struct: * No contention on mm_struct

locks, counters, lists... « Each core soft page faults

* One page fault per page on each page

source: http://pdos.csail.mit.edu/~sbw/corey/osdi- 1 2-08-2008.pdf

http://pdos.csail.mit.edu/~sbw/corey/osdi-12-08-2008.pdf

NOTES

» the presentation is for Boyd-Wickizer, Silas, et al. "Corey: An
Operating System for Many Cores.” OSDI. Vol. 8. 2008.

B s Al cainside 45, | 1,16, 18,20,25,26,28, 29, 52, 33, 355 cicHiRei
original paper

« source code used In slide /,8,9,10,43,44 are from Linux kernel 2.6.25

source code on http://www.cs.fsu.edu/~baker/devices/Ixr/http/search?
v=2.6.25

» this slide Is created and presented by |in, Yilong for C55204 Fall 2014 on
Wieie 6ih 20| 4

http://www.cs.fsu.edu/~baker/devices/lxr/http/search?v=2.6.25

