
Corey: An Operating System For
Many Cores

Silas Boyd-Wickizer˚ Haibo Chen‡ Rong Chen‡ Yandong Mao‡
 Frans Kaashoek˚ Robert Morris˚ Aleksey Pesterev˚

Lex Stein§ Ming Wu§
 Yuehua Dai† Yang Zhang˚ Zheng Zhang§

˚MIT
‡Fudan University

†Microsoft Research Asia
§Xi'an Jiaotong University

OSDI’08

1

Background, Motivation
• what is an operating system?

• a layer between applications and hardware
• resource/service provider
• it tries to generalize possible conditions

• observation: as there are more cores, some
systems suffer from unnecessary resource sharing

• applications know better what they need, return
the power to the applications

2

Virtual Address Space
• Each process sees memory address space as

linear, but in fact it is not
• Each process has its own PageTable
• Kernel has its own PageTable

in kernel space
• Translation Lookaside Buffer(TLB)

3
source http://en.wikipedia.org/wiki/File:Virtual_memory.svg

Traditional Address Space Management

4

PROBLEM #1
file descriptor duplication

• unnecessary shared resource contention
• shared data structures
• locks: (cache miss cost)

5

sys_dup()

fget()

main()

dupfd()

close()

Loop, executed by many threads

rcu_read_lock()

fd_install()

spin_lock()

spin_lock()

asmlinkage long sys_dup(unsigned int fildes)
{
 int ret = -EBADF;
 struct file * file = fget(fildes);

 if (file)
 ret = dupfd(file, 0, 0);
 return ret;
}

sys_dup()

7

fget()
look up fd in fd_table

struct file *fget(unsigned int fd)
{
 struct file *file;
 struct files_struct *files = current->files;

 rcu_read_lock();
// internally it is implemented by a global mutex locked by a read_lock

 file = fcheck_files(files, fd);
 if (file) {
 if (!atomic_inc_not_zero(&file->f_count)) {
 /* File object ref couldn't be taken */
 rcu_read_unlock();
 return NULL;
 }
 }
 rcu_read_unlock();

 return file;
}

8

dupfd()
duplicate given file descriptor

static int dupfd(struct file *file, unsigned int start, int cloexec)
{
 struct files_struct * files = current->files;
 struct fdtable *fdt;
 int fd;

 spin_lock(&files->file_lock);
 fd = locate_fd(files, file, start);
 if (fd >= 0) {
 /* locate_fd() may have expanded fdtable, load the ptr */
 fdt = files_fdtable(files);
 FD_SET(fd, fdt->open_fds);
 if (cloexec)`
 FD_SET(fd, fdt->close_on_exec);
 else
 FD_CLR(fd, fdt->close_on_exec);
 spin_unlock(&files->file_lock);

 fd_install(fd, file); // write to fd array
 } else {
 spin_unlock(&files->file_lock);
 fput(file);
 }

 return fd;
}

9

fd_install()
where things really went wrong

void fd_install(unsigned int fd, struct file *file)
{
 struct files_struct *files = current->files;
 struct fdtable *fdt;
 spin_lock(&files->file_lock);
 fdt = files_fdtable(files);
 BUG_ON(fdt->fd[fd] != NULL);
 rcu_assign_pointer(fdt->fd[fd], file);
 spin_unlock(&files->file_lock);
}

// recall that fd_install is called by every thread

10

PROBLEM #2
cache miss is expensive, ft. lock contention

• unnecessary shared resource contention
• shared data structures
• locks: (cache miss cost)

11

255

3

LOCKS
spin lock: spin on global variable, cache miss happens
when a thread release or acquire a lock, high cache
coherence traffic

Test And Set (TAS) lock: spin on local variable, atomic,
better than spin lock, but no fairness guarantee

MCS lock: spin on local variable, atomic, FIFO queue,
when a thread release its own lock, it handles over the
ownership to the next node in queue

12

MCS LOCK (QUEUE)

13

NULL

False TrueFalseFalse

tail_of_queue

MCS LOCK (QUEUE)

14

NULL

False

True

FalseFalse

tail_of_queue

False

True

a thread releases a lock
myLock -> prev -> aquire = true

False

a thread attempts to require lock
myLock -> prev = tail
myLock -> next = tail -> next
myLock -> aquire = false
tail -> next = myLock

Corey
• Inspired by ExoKernel: protect but do not

manage system resource

• 3 abstractions
• Address range
• kernel core
• shares

15

Address Range
Why Not Both

• An abstraction that corresponds to a range of virtual-
to- physical mappings.

• - private(default): only owner core is able to access
- shared: assign by application

• avoid contention
• ar_alloc() to create

16

Address Range Evaluation
• private memory access: memclone

• each core allocate 100MB on its own DRAM pool
• use round-robin to allocate new core

• shared memory access: mempass
• one core allocates 100MB
• each core accesses every page

17

Memclone

18

Memclone

19

• Linux single memory
• shared memory access: mempass

• one core allocates 100MB
• each core accesses every page

Mempass

20

Kernel Core
A Hint Of Resource Isolation

• an abstraction that specifies a core to kernel
functions and data

• a kernel core can manage hardware devices and
execute system calls

• among kernel cores, they communicate via IPC
• increase scalability by avoiding cache miss
• less TLB invalidation (TLB is cleared in every

context switch)

21

Kernel Core Evaluation
• simple TCP service that accepts and responds with a128

bytes message to each connection before closing it

• 2 modes
• dedicated: one kernel core handles everything except for

computation
• polling: a kernel core only to poll for received packet

notifications and transmit completion
• In both cases, each other core runs private TCP/IP service

with private TCP/IP stack

22

Kernel Core Evaluation
Dedicated Mode

23

NIC

dedicated core

Service_0 Service_1 Service_2

buffer exchange
via IPC

service core do computation
dedicated core do handling

Kernel Core Evaluation
Polling Mode

24

NIC polling kernel

Service_0 Service_1 Service_2

receive packet
notification & transmission completion

DMA buffer
transfer

receive packets
notification

Kernel Core Evaluation
Throughput

25

each core is able to handle more connections per second in the
Dedicated configuration than in Polling

Kernel Core Evaluation
L3 Cache Miss

26

Shares
A Explicit Way Of Avoiding Cache Miss

• a book keeping mechanism
• conceptually similar to encapsulation in OOP
• applications can specify if a kernel object is

shared among cores

27

SHARES EVALUATION
add/remove per-core segment to global/local share

28

modifying global data structure causes contention

SHARES EVALUATION
add/remove per-core segment to global/local share

29

APPLICATION
• MapReduce

• framework: Metis
• bound to core by calling sched_setAffinity()
• mostly benefit from address range

• webd
• mostly benefit from kernel core

30

Mapreduce Evaluation
• word inverted index
• 1GB input, 2GB for intermediate value
• reducer copy intermediate value to shared address

space

31

Mapreduce Evaluation

32

Mapreduce Evaluation (Cont.)

33

Linux’s soft page fault handler is about 10% faster than Corey’s when there is no
contention

Webd Evaluation
• 8 webd core, 8 application core
• FileSum: returns sum of bytes of a given file
• 2 modes

• random: webd is allowed to pass request to any
application cores

• locality: each each webd will only passes
request to a certain application core

34

Webd Evaluation (Cont.)

35

when file is small, both mode is limited by webd’s network stack
when file size is big, locality mode has (some) advantage of

being able to cache bigger files (L3 Cache = 2MB)

Discussion

36

Baumann, Andrew, et al. "The multikernel: a new OS architecture for
scalable multicore systems." Proceedings of the ACM SIGOPS 22nd

symposium on Operating systems principles. ACM, 2009.

Han, Sangjin, et al. "PacketShader: a GPU-accelerated software
router." ACM SIGCOMM Computer Communication Review 41.4

(2011): 195-206.

Boyd-Wickizer, Silas, et al. "An analysis of Linux scalability to many
cores." (2010).

Discussion

36

Baumann, Andrew, et al. "The multikernel: a new OS architecture for
scalable multicore systems." Proceedings of the ACM SIGOPS 22nd

symposium on Operating systems principles. ACM, 2009.

Han, Sangjin, et al. "PacketShader: a GPU-accelerated software
router." ACM SIGCOMM Computer Communication Review 41.4

(2011): 195-206.

Boyd-Wickizer, Silas, et al. "An analysis of Linux scalability to many
cores." (2010).

Linux still has hope

Discussion

36

Baumann, Andrew, et al. "The multikernel: a new OS architecture for
scalable multicore systems." Proceedings of the ACM SIGOPS 22nd

symposium on Operating systems principles. ACM, 2009.

Han, Sangjin, et al. "PacketShader: a GPU-accelerated software
router." ACM SIGCOMM Computer Communication Review 41.4

(2011): 195-206.

Boyd-Wickizer, Silas, et al. "An analysis of Linux scalability to many
cores." (2010).

Linux still has hope

Discussion (Cont.)

37

Yoo, Richard M., Anthony Romano, and Christos Kozyrakis. "Phoenix
rebirth: Scalable MapReduce on a large-scale shared-memory

system." Workload Characterization, 2009. IISWC 2009. IEEE
International Symposium on. IEEE, 2009

Soares, Livio, and Michael Stumm. "FlexSC: Flexible system call
scheduling with exception-less system calls." Proceedings of the 9th
USENIX conference on Operating systems design and implementation.

USENIX Association, 2010.

THE END

38

SUPPLEMENT SLIDE

39

source: http://upload.wikimedia.org/wikipedia/commons/thumb/3/32/Virtual_address_space_and_physical_address_space_relationship.svg/773px-
Virtual_address_space_and_physical_address_space_relationship.svg.png

http://upload.wikimedia.org/wikipedia/commons/thumb/3/32/Virtual_address_space_and_physical_address_space_relationship.svg/773px-Virtual_address_space_and_physical_address_space_relationship.svg.png

http://upload.wikimedia.org/wikipedia/commons/thumb/d/d6/AMD_K10_Arch.svg/2000px-AMD_K10_Arch.svg.png

http://upload.wikimedia.org/wikipedia/commons/thumb/d/d6/AMD_K10_Arch.svg/2000px-AMD_K10_Arch.svg.png

“The cache-management logic for the L3 cache is
unique. When an item is loaded from L3 cache
into a core’s L1 cache (the L2 cache is always by-
passed), the item is sometimes removed from
the L3 cache and sometimes not. The
determining factor is whether other cores are still
accessing the item. If so, it’s not removed from L3
and a copy of the data is loaded into L1. If no
other cores are accessing the data item, then it is
removed from the L3 cache”

http://upload.wikimedia.org/wikipedia/commons/thumb/d/d6/AMD_K10_Arch.svg/2000px-AMD_K10_Arch.svg.png

http://upload.wikimedia.org/wikipedia/commons/thumb/d/d6/AMD_K10_Arch.svg/2000px-AMD_K10_Arch.svg.png

SYS_CLOSE
CLOSE FILE POINTED BY FD

asmlinkage long sys_close(unsigned int fd)
{
 //... initialize

 spin_lock(&files->file_lock);
 fdt = files_fdtable(files);

 //magic that releases the file descriptor
spin_unlock(&files->file_lock);
retval = filp_close(filp, files); // more locks in flip_close()

 //magic that checks error, in case of error, go to out_unlock
 return retval;
out_unlock:

 spin_unlock(&files->file_
 return -EBADF;
}
#define files_fdtable(files)

(rcu_dereference((files)->fdt))

43

mm_struct
How Processes Use Page Table

struct mm_struct {
 int count;
 pgd_t * pgd; //page global directory
 unsigned long context;
 unsigned long start_code, end_code, start_data, end_data;
 unsigned long start_brk, brk, start_stack, start_mmap;
 unsigned long arg_start, arg_end, env_start, env_end;
 unsigned long rss, total_vm, locked_vm;
 unsigned long def_flags;
 struct vm_area_struct * mmap;
 struct vm_area_struct * mmap_avl;
 struct semaphore mmap_sem;
};

44

mm_struct (cont.)

45

Page Global Directory

Page Middle Directory

Page Table Entry

user data in physical memory

source: http://pdos.csail.mit.edu/~sbw/corey/osdi-12-08-2008.pdf

http://pdos.csail.mit.edu/~sbw/corey/osdi-12-08-2008.pdf

source: http://pdos.csail.mit.edu/~sbw/corey/osdi-12-08-2008.pdf

http://pdos.csail.mit.edu/~sbw/corey/osdi-12-08-2008.pdf

source: http://pdos.csail.mit.edu/~sbw/corey/osdi-12-08-2008.pdf

http://pdos.csail.mit.edu/~sbw/corey/osdi-12-08-2008.pdf

source: http://pdos.csail.mit.edu/~sbw/corey/osdi-12-08-2008.pdf

http://pdos.csail.mit.edu/~sbw/corey/osdi-12-08-2008.pdf

NOTES
• the presentation is for Boyd-Wickizer, Silas, et al. "Corey: An

Operating System for Many Cores." OSDI. Vol. 8. 2008.

• graphs used in slide 4, 5, 11, 16, 18, 20, 25, 26, 28, 29, 32, 33, 35 are from
original paper

• source code used in slide 7,8,9,10, 43, 44 are from Linux kernel 2.6.25
source code on http://www.cs.fsu.edu/~baker/devices/lxr/http/search?
v=2.6.25

• this slide is created and presented by Jin, Yilong for CS5204 Fall 2014 on
Oct. 16th 2014

http://www.cs.fsu.edu/~baker/devices/lxr/http/search?v=2.6.25

