
Capriccio: Scalable Threads
for Internet Services

Rob von Behren, Jeremy Condit, Feng Zhou,
George Necula and Eric Brewer

University of California at Berkeley
{jrvb, jcondit, zf, necula, brewer}@cs.berkeley.edu

http://capriccio.cs.berkeley.edu

The Stage

Highly concurrent applications
Internet servers & frameworks

Flash, Ninja, SEDA

Transaction processing databases

Workload
High performance
Unpredictable load spikes
Operate “near the knee”
Avoid thrashing!

Ideal

Peak: some
resource at max

Overload: some
resource thrashing

Load (concurrent tasks)
Pe

rf
or

m
an

ce

The Price of Concurrency

What makes concurrency hard?
Race conditions
Code complexity
Scalability (no O(n) operations)
Scheduling & resource sensitivity
Inevitable overload

Performance vs. Programmability
No current system solves
Must be a better way!

Performance
Ea

se
 o

f
Pr

og
ra

m
m

in
g

Threads

Threads

Events

Ideal

The Answer: Better Threads
Goals

Simple programming model
Good tools & infrastructure

Languages, compilers, debuggers, etc.

Good performance

Claims
Threads are preferable to events
User-Level threads are key

“But Events Are Better!”
Recent arguments for events

Lower runtime overhead
Better live state management
Inexpensive synchronization
More flexible control flow
Better scheduling and locality

All true but…
Lauer & Needham duality argument
Criticisms of specific threads packages
No inherent problem with threads!

Thread implementations can be improved

Threading Criticism:
Runtime Overhead

Criticism: Threads don’t perform
well for high concurrency
Response

Avoid O(n) operations
Minimize context switch overhead

Simple scalability test
Slightly modified GNU Pth
Thread-per-task vs.
single thread
Same performance!

Re
qu

es
ts

/ S
ec

on
d

Concurrent Tasks

Event-Based Server

Threaded Server

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 1 10 100 1000 10000 100000 1e+06

Threading Criticism:
Synchronization

Criticism: Thread synchronization is heavyweight
Response

Cooperative multitasking works for threads, too!
Also presents same problems

Starvation & fairness
Multiprocessors
Unexpected blocking (page faults, etc.)

Both regimes need help
Compiler / language support for concurrency
Better OS primitives

Threading Criticism:
Scheduling

Task

Pr
og

ra
m

 L
oc

at
io

n

Criticism: Thread schedulers are too generic
Can’t use application-specific information

Response
2D scheduling: task & program location

Threads schedule based on task only
Events schedule by location (e.g. SEDA)

Allows batching
Allows prediction for SRCT

Threads can use 2D, too!
Runtime system tracks current location
Call graph allows prediction

Threading Criticism:
Scheduling

Task

Pr
og

ra
m

 L
oc

at
io

n
Threads

Criticism: Thread schedulers are too generic
Can’t use application-specific information

Response
2D scheduling: task & program location

Threads schedule based on task only
Events schedule by location (e.g. SEDA)

Allows batching
Allows prediction for SRCT

Threads can use 2D, too!
Runtime system tracks current location
Call graph allows prediction

Threading Criticism:
Scheduling

Criticism: Thread schedulers are too generic
Can’t use application-specific information

Response
2D scheduling: task & program location

Threads schedule based on task only
Events schedule by location (e.g. SEDA)

Allows batching
Allows prediction for SRCT

Threads can use 2D, too!
Runtime system tracks current location
Call graph allows prediction

Task

Pr
og

ra
m

 L
oc

at
io

n
Threads

Events

The Proof’s in the Pudding
User-level threads package

Subset of pthreads
Intercept blocking system calls
No O(n) operations
Support > 100K threads
5000 lines of C code

Simple web server: Knot
700 lines of C code

Similar performance
Linear increase, then steady
Drop-off due to poll() overhead

0

100

200

300

400

500

600

700

800

900

1 4 16 64 256 1024 4096 16384

KnotC (Favor Connections)

KnotA (Favor Accept)

Haboob

Concurrent Clients

M
bi

ts
 /

 s
ec

on
d

Arguments For Threads
More natural programming model

Control flow is more apparent
Exception handling is easier
State management is automatic

Better fit with current tools & hardware
Better existing infrastructure

Arguments for Threads:
Control Flow

Events obscure control flow
For programmers and tools

AcceptHandler(event e) {
struct session *s = new_session(e);
RequestHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; CacheHandler.enqueue(s);
}
CacheHandler(struct session *s) {

pin(s);
if(!in_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
. . .
ExitHandler(struct session *s) {

…; unpin(&s); free_session(s); }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
read_request(&s);
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if(!in_cache(&s))

read_file(&s);
}

EventsThreads
Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

Arguments for Threads:
Control Flow

CacheHandler(struct session *s) {
pin(s);
if(!in_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; CacheHandler.enqueue(s);
}
. . .
ExitHandler(struct session *s) {

…; unpin(&s); free_session(s);
}
AcceptHandler(event e) {

struct session *s = new_session(e);
RequestHandler.enqueue(s); }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
read_request(&s);
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if(!in_cache(&s))

read_file(&s);
}

EventsThreads

Events obscure control flow
For programmers and tools

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

Arguments for Threads:
Exceptions

Exceptions complicate control flow
Harder to understand program flow
Cause bugs in cleanup code

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

CacheHandler(struct session *s) {
pin(s);
if(!in_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; if(error) return; CacheHandler.enqueue(s);
}
. . .
ExitHandler(struct session *s) {

…; unpin(&s); free_session(s);
}
AcceptHandler(event e) {

struct session *s = new_session(e);
RequestHandler.enqueue(s); }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
if(!read_request(&s))

return;
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if(!in_cache(&s))

read_file(&s);
}

EventsThreads

Arguments for Threads:
State Management

CacheHandler(struct session *s) {
pin(s);
if(!in_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; if(error) return; CacheHandler.enqueue(s);
}
. . .
ExitHandler(struct session *s) {

…; unpin(&s); free_session(s);
}
AcceptHandler(event e) {

struct session *s = new_session(e);
RequestHandler.enqueue(s); }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
if(!read_request(&s))

return;
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if(!in_cache(&s))

read_file(&s);
}

EventsThreads
Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

Events require manual state management
Hard to know when to free

Use GC or risk bugs

Arguments for Threads:
Existing Infrastructure

Lots of infrastructure for threads
Debuggers
Languages & compilers

Consequences
More amenable to analysis
Less effort to get working systems

Building Better Threads
Goals

Simplify the programming model
Thread per concurrent activity
Scalability (100K+ threads)

Support existing APIs and tools
Automate application-specific customization

Mechanisms
User-level threads
Plumbing: avoid O(n) operations
Compile-time analysis
Run-time analysis

The Case for
User-Level Threads

Decouple programming model and OS
Kernel threads

Abstract hardware
Expose device concurrency

User-level threads
Provide clean programming model
Expose logical concurrency

Benefits of user-level threads
Control over concurrency model!
Independent innovation
Enables static analysis
Enables application-specific tuning

Threads

App

OS

User

The Case for
User-Level Threads

Threads

OS

User

App

Decouple programming model and OS
Kernel threads

Abstract hardware
Expose device concurrency

User-level threads
Provide clean programming model
Expose logical concurrency

Benefits of user-level threads
Control over concurrency model!
Independent innovation
Enables static analysis
Enables application-specific tuning

Capriccio Internals
Cooperative user-level threads

Fast context switches
Lightweight synchronization

Kernel Mechanisms
Asynchronous I/O (Linux)

Efficiency
Avoid O(n) operations
Fast, flexible scheduling

Safety: Linked Stacks
The problem: fixed stacks

Overflow vs. wasted space
Limits thread numbers

The solution: linked stacks
Allocate space as needed
Compiler analysis

Add runtime checkpoints
Guarantee enough space until
next check

Fixed Stacks

Linked Stack

waste

overflow

Linked Stacks: Algorithm

5

4

2

6

3

3

2

3

Parameters
MaxPath
MinChunk

Steps
Break cycles
Trace back

Special Cases
Function pointers
External calls
Use large stack

MaxPath = 8

Linked Stacks: Algorithm

5

4

2

6

3

3

2

3

MaxPath = 8

Parameters
MaxPath
MinChunk

Steps
Break cycles
Trace back

Special Cases
Function pointers
External calls
Use large stack

Linked Stacks: Algorithm

5

4

2

6

3

3

2

3

MaxPath = 8

Parameters
MaxPath
MinChunk

Steps
Break cycles
Trace back

Special Cases
Function pointers
External calls
Use large stack

Linked Stacks: Algorithm

5

4

2

6

3

3

2

3

MaxPath = 8

Parameters
MaxPath
MinChunk

Steps
Break cycles
Trace back

Special Cases
Function pointers
External calls
Use large stack

Linked Stacks: Algorithm

5

4

2

6

3

3

2

3

MaxPath = 8

Parameters
MaxPath
MinChunk

Steps
Break cycles
Trace back

Special Cases
Function pointers
External calls
Use large stack

Linked Stacks: Algorithm

5

4

2

6

3

3

2

3

MaxPath = 8

Parameters
MaxPath
MinChunk

Steps
Break cycles
Trace back

Special Cases
Function pointers
External calls
Use large stack

Scheduling:
The Blocking Graph

Lessons from event systems
Break app into stages
Schedule based on stage priorities
Allows SRCT scheduling, finding
bottlenecks, etc.

Capriccio does this for threads
Deduce stage with stack traces at
blocking points
Prioritize based on runtime information

Accept

Write

Read

Read

Open

Web Server

Close

Close

Resource-Aware Scheduling
Track resources used along BG edges

Memory, file descriptors, CPU
Predict future from the past
Algorithm

Increase use when underutilized
Decrease use near saturation

Advantages
Operate near the knee w/o thrashing
Automatic admission control

Accept

Write

Read

Read

Open

Web Server

Close

Close

Thread Performance

0.150.140.040.04Uncontested mutex lock

0.650.710.240.56Context Switch

17.737.521.521.5Thread Creation

NPTLLinuxThreadsCapriccio-notraceCapriccio

Slightly slower thread creation
Faster context switches

Even with stack traces!
Much faster mutexes

Time of thread operations (microseconds)

Runtime Overhead
Tested Apache 2.0.44
Stack linking

78% slowdown for null call
3-4% overall

Resource statistics
2% (on all the time)
0.1% (with sampling)

Stack traces
8% overhead

Web Server Performance

The Future:
Compiler-Runtime Integration

Insight
Automate things event programmers do by hand
Additional analysis for other things

Specific targets
Live state management
Synchronization
Static blocking graph

Improve performance and
decrease complexity

Conclusions
Threads > Events

Equivalent performance
Reduced complexity

Capriccio simplifies concurrency
Scalable & high performance
Control over concurrency model

Stack safety
Resource-aware scheduling
Enables compiler support, invariants

Themes
User-level threads are key
Compiler-runtime integration very promising

Performance
Ea

se
 o

f
Pr

og
ra

m
m

in
g

Threads

Threads

Events

Capriccio

Apache Blocking Graph

Microbenchmark: Buffer Cache

Microbenchmark: Disk I/O

Microbenchmark:
Producer / Consumer

Microbenchmark: Pipe Test

Threads v.s. Events:
The Duality Argument

General assumption: follow “good practices”
Observations

Major concepts are analogous
Program structure is similar
Performance should be similar

Given good implementations!

Event handler & queue
Events accepted
Send message / await reply
Wait for new messages

Monitors
Exported functions
Call/return and fork/join
Wait on condition variable

EventsThreads

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

Threads v.s. Events:
The Duality Argument

Event handler & queue
Events accepted
Send message / await reply
Wait for new messages

Monitors
Exported functions
Call/return and fork/join
Wait on condition variable

EventsThreads

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

General assumption: follow “good practices”
Observations

Major concepts are analogous
Program structure is similar
Performance should be similar

Given good implementations!

Threads v.s. Events:
The Duality Argument

Event handler & queue
Events accepted
Send message / await reply
Wait for new messages

Monitors
Exported functions
Call/return and fork/join
Wait on condition variable

EventsThreads

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

General assumption: follow “good practices”
Observations

Major concepts are analogous
Program structure is similar
Performance should be similar

Given good implementations!

Threads v.s. Events:
Can Threads Outperform Events?

Function pointers & dynamic dispatch
Limit compiler optimizations
Hurt branch prediction & I-cache locality

More context switches with events?
Example: Haboob does 6x more than Knot
Natural result of queues

More investigation needed!

Threading Criticism:
Live State Management

Criticism: Stacks are bad for live state
Response

Fix with compiler help
Stack overflow vs. wasted space

Dynamically link stack frames

Retain dead state
Static lifetime analysis
Plan arrangement of stack
Put some data on heap
Pop stack before tail calls

Encourage inefficiency
Warn about inefficiency

Live

Live

Dead

Unused

Thread State (stack)

Event State (heap)

Threading Criticism:
Control Flow

Criticism: Threads have
restricted control flow
Response

Programmers use simple patterns
Call / return
Parallel calls
Pipelines

Complicated patterns are unnatural
Hard to understand
Likely to cause bugs

