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i The Stage

= Highly concurrent applications
= Internet servers & frameworks

= Flash, Ninja, SEDA Ideal

= Transaction processing databases Peak: some \
resource at max
= Workload
= High performance
Overload: some
resource thrashing

= Unpredictable load spikes
= Operate “near the knee”

Performance

Load (concurrent tasks)

= Avoid thrashing!



i The Price of Concurrency

= What makes concurrency hard?
= Race conditions
= Code complexity
= Scalability (no O(n) operations)
= Scheduling & resource sensitivity
= Inevitable overload

= Performance vs. Programmability
= No current system solves
= Must be a better way!

Ease of Programming

Performance




i The Answer: Better Threads

= Goals
= Simple programming model

= Good tools & infrastructure
= Languages, compilers, debuggers, etc.

= Good performance

= Claims
= Threads are preferable to events
= User-Level threads are key



i “"But Events Are Better!”

= Recent arguments for events
= Lower runtime overhead
= Better live state management
= Inexpensive synchronization
= More flexible control flow
= Better scheduling and locality

= All true but...
= Lauer & Needham duality argument
= Criticisms of specific threads packages

= No /nherent problem with threads!
= Thread implementations can be improved




Threading Criticism:
i Runtime Overhead

s Criticism. Threads dont perform
WE// for h/.gh Concurrency 110000 [y —— ey Y Ty
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= Avoid O(n) operations ]

= Minimize context switch overhead

= Simple scalability test _
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Threading Criticism:
i Synchronization

n Criticism. Thread synchronization is heavyweight

= Response
= Cooperative multitasking works for threads, too!

= Also presents same problems
= Starvation & fairness
= Multiprocessors
= Unexpected blocking (page faults, etc.)

= Both regimes need help
= Compiler / language support for concurrency
= Better OS primitives



Threading Criticism:
i Scheduling

s Criticism.: Thread schedulers are too generic
= Can't use application-specific information

= Response

= 2D scheduling: task & program location
= Threads schedule based on task only

= Events schedule by location (e.g. SEDA)
Allows batching
Allows prediction for SRCT

= Threads can use 2D, too!
= Runtime system tracks current location
= Call graph allows prediction

Program Location

Task
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i The Proof’s in the Pudding

= User-level threads package
= Subset of pthreads
= Intercept blocking system calls ™[ ™ orimmnem
= No O(n) operations o
= Support > 100K threads

= 5000 lines of C code

= Simple web server: Knot
= 700 lines of C code |

u Similar performance ‘ 1 4 16 64 256 1024 4096 16384

« Linear increase, then steady Concurrent Clients
= Drop-off due to pol1() overhead
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i Arguments For Threads

= More natural programming model
= Control flow is more apparent
= Exception handling is easier
= State management is automatic

s Better fit with current tools & hardware
= Better existing infrastructure



Arguments for Threads:
i Control Flow

s Events obscure control flow
= For programmers and tools

Web Server

Threads Events
thread_main(int sock) { AcceptHandler(event e) {
struct session s; struct session *s = new_session(e);
accept_conn(sock, &s); RequestHandler.enqueue(s);
read_request(&s); )2
pin_cache(&s); RequestHandler(struct session *s) {
write_response(&s); ..., CacheHandler.enqueue(s);
unpin(&s); }
} CacheHandler(struct session *s) {
pin(s);
pin_cache(struct session *s) { if( lin_cache(s) ) ReadFileHandler.enqueue(s);
pin(&s); else ResponseHandler.enqueue(s);
if( lin_cache(&s) ) }
read_file(&s); C
} ExitHandler(struct session *s) {
..., unpin(&s); free_session(s); }




Arguments for Threads:
i Control Flow

s Events obscure control flow
= For programmers and tools

Web Server

Threads Events
thread_main(int sock) { CacheHandler(struct session *s) {
struct session s; pin(s);
accept_conn(sock, &s); if( lin_cache(s) ) ReadFileHandler.enqueue(s);
read_request(&s); else ResponseHandler.enqueue(s);
pin_cache(&s); }
write_response(&s); RequestHandler(struct session *s) {
unpin(&s); ..., CacheHandler.enqueue(s);
by by
pin_cache(struct session *s) { ExitHandler(struct session *s) {
pin(&s); ..., unpin(&s); free_session(s);
if( lin_cache(&s) ) }
read_file(&s); AcceptHandler(event e) {
} struct session *s = new_session(e);

RequestHandler.enqueue(s); }




Arguments for Threads:
Exceptions

= Exceptions complicate control flow
= Harder to understand program flow
= Cause bugs in cleanup code

Threads

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
if( read_request(&s) )

return;

pin_cache(&s);
write_response(&s);
unpin(&s);

by

pin_cache(struct session *s) {
pin(&s);
if( lin_cache(&s) )
read_file(&s);

Events

CacheHandler(struct session *s) {
pin(s);
if( lin_cache(s) ) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}

RequestHandler(struct session *s) {
...; if( error ) return; CacheHandler.enqueue(s);

}

ExitHandler(struct session *s) {
...; unpin(&s); free_session(s);

by

AcceptHandler(event e) {
struct session *s = new_session(e);
RequestHandler.enqueue(s); }

Web Server
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Arguments for Threads:
State Management

= Events require manual state management

= Hard to know when to free
= Use GC or risk bugs

Threads

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
if( read_request(&s) )

return;

pin_cache(&s);
write_response(&s);
unpin(&s);

by

pin_cache(struct session *s) {
pin(&s);
if( lin_cache(&s) )
read_file(&s);

Events

CacheHandler(struct session *s) {
pin(s);
if( lin_cache(s) ) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);
b
RequestHandler(struct session *s) {
...; if( error ) return; CacheHandler.enqueue(s);

}

ExitHandler(struct session *s) {
...; unpin(&s); free_session(s);

by

AcceptHandler(event e) {
struct session *s = new_session(e);
RequestHandler.enqueue(s); }
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Arguments for Threads:
i Existing Infrastructure

= Lots of infrastructure for threads
= Debuggers
=« Languages & compilers

= Consequences

= More amenable to analysis
= Less effort to get working systems




i Building Better Threads

= Goals
= Simplify the programming model
= Thread per concurrent activity
= Scalability (100K+ threads)

= Support existing APIs and tools
= Automate application-specific customization

= Mechanisms
= User-level threads
= Plumbing: avoid O(n) operations
= Compile-time analysis
= Run-time analysis



The Case for
i User-Level Threads

= Decouple programming model and OS
= Kernel threads
= Abstract hardware App User
= EXxpose device concurrency /
= User-level threads
= Provide clean programming model
= EXpose logical concurrency

= Benefits of user-level threads 8 8
= Control over concurrency model!
= Independent innovation
= Enables static analysis
= Enables application-specific tuning

Threads (ON)
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i Capriccio Internals

= Cooperative user-level threads
« Fast context switches
=« Lightweight synchronization
= Kernel Mechanisms
= Asynchronous I/O (Linux)
= Efficiency
= Avoid O(n) operations
= Fast, flexible scheduling



‘L Safety: Linked Stacks

Fixed Stacks

= The problem: fixed stacks
= Overflow vs. wasted space . .
= Limits thread numbers overflow
= The solution: linked stacks waste
= Allocate space as needed
= Compiler analysis Linked Stack

= Add runtime checkpoints

= Guarantee enough space until
next check




i Linked Stacks: Algorithm

s Parameters
s MaxPath
s MinChunk

= Steps
= Break cycles
= Trace back

= Special Cases
= Function pointers
« External calls
= Use large stack

MaxPath = 8
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Scheduling:
i The Blocking Graph

= Lessons from event systems
= Break app into stages
= Schedule based on stage priorities
= Allows SRCT scheduling, finding
bottlenecks, etc.
= Capriccio does this for threads

= Deduce stage with stack traces at
blocking points

= Prioritize based on runtime information

Web Server




i Resource-Aware Scheduling

= Track resources used along BG edges  web Server
= Memory, file descriptors, CPU
» Predict future from the past
= Algorithm

« Increase use when underutilized
= Decrease use near saturation

= Advantages

= Operate near the knee w/o thrashing
= Automatic admission control




i Thread Performance

Capriccio | Capriccio-notrace | LinuxThreads | NPTL
Thread Creation 21.5 21.5 37.5 17.7
Context Switch 0.56 0.24 0.71 0.65
Uncontested mutex lock 0.04 0.04 0.14 0.15

Time of thread operations (microseconds)

= Slightly slower thread creation

s Faster context switches
= Even with stack traces!

= Much faster mutexes




i Runtime Overhead

= [ested Apache 2.0.44
= Stack linking

= /8% slowdown for null call
= 3-4% overall

s Resource statistics
= 2% (on all the time)
= 0.1% (with sampling)

s Stack traces
= 8% overhead



‘L Web Server Performance
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The Future:
i Compiler-Runtime Integration

= Insight
= Automate things event programmers do by hand
= Additional analysis for other things

= Specific targets
= Live state management
= Synchronization
» Static blocking graph

= Improve performance and
decrease complexity



i Conclusions

= Threads > Events
= Equivalent performance

= Reduced complexity

= Capriccio simplifies concurrency
= Scalable & high performance
= Contro/ over concurrency model

= Stack safety

= Resource-aware scheduling
= Enables compiler support, invariants

Ease of Programming

u Themes Performance
= User-level threads are key
= Compiler-runtime integration very promising












i Apache Blocking Graph
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i Microbenchmark: Buffer Cache

1aEEE ¢ —— —— —
1E6H = 3
W
-,
fu'a]
=
.|_'\-
= 186 | -
o - 1
=
™
=
o
o
=
|_
16 | 3
Capriccio ——
L LinuxThreads ———
HPTL —8—
1 | R | Lol
B.B8E81 B.HdA81 B.@1 B.1 1

Cache mis=s rate



‘L Microbenchmark: Disk I/O
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Microbenchmark:
Producer / Consumer
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‘L Microbenchmark: Pipe Test
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Threads v.s. Events:
The Duality Argument

= General assumption: follow “good practices”

_ Web Server
= Observations
= Major concepts are analogous @
= Program structure is similar !
= Performance should be similar 6@
= Given good implementations! Request
Threads Events Cin
_ Cache ‘
= Monitors = Event handler & queue
= Exported functions = Events accepted @‘r@
= Call/return and fork/join = Send message / await reply €spons
= Wait on condition variable |« Wait for new messages v

(o
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Threads v.s. Events:
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= General assumption: follow “good practices’

= Observations
= Major concepts are analogous
= Program structure is similar

= Performance should be similar
= Given good implementations!

Web Server

Threads Events
= Monitors = Event handler & queue
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Threads v.s. Events:
i Can Threads Outperform Events?

= Function pointers & dynamic dispatch
= Limit compiler optimizations
=« Hurt branch prediction & I-cache locality
= More context switches with events?

=« Example: Haboob does 6x more than Knot
= Natural result of queues

= More investigation needed!







Threading Criticism:
i Live State Management

Event State (heap)

s Criticism: Stacks are bad for live state

= Response
= Fix with compiler help

= Stack overflow vs. wasted space
= Dynamically link stack frames

Thread State (stack)

= Retain dead state Hve
= Static lifetime analysis Dead
= Plan arrangement of stack
= Put some data on heap v Live
= Pop stack before tail calls

= Encourage inefficiency Unused
= Warn about inefficiency




Threading Criticism:
i Control Flow

a Criticism: Threads have
restricted control flow

= Response

= Programmers use simple patterns
« Call / return
= Parallel calls
= Pipelines
= Complicated patterns are unnatural
= Hard to understand
= Likely to cause bugs




