Capriccio: Scalable Threads

!'_ for Internet Services

Rob von Behren, Jeremy Condit, Feng Zhou,
George Necula and Eric Brewer

University of California at Berkeley
{jrvb, jcondit, zf, necula, brewer}@cs.berkeley.edu
http://capriccio.cs.berkeley.edu

i The Stage

= Highly concurrent applications
= Internet servers & frameworks

= Flash, Ninja, SEDA Ideal

= Transaction processing databases Peak: some \
resource at max
= Workload
= High performance
Overload: some
resource thrashing

= Unpredictable load spikes
= Operate “near the knee”

Performance

Load (concurrent tasks)

= Avoid thrashing!

i The Price of Concurrency

= What makes concurrency hard?
= Race conditions
= Code complexity
= Scalability (no O(n) operations)
= Scheduling & resource sensitivity
= Inevitable overload

= Performance vs. Programmability
= No current system solves
= Must be a better way!

Ease of Programming

Performance

i The Answer: Better Threads

= Goals
= Simple programming model

= Good tools & infrastructure
= Languages, compilers, debuggers, etc.

= Good performance

= Claims
= Threads are preferable to events
= User-Level threads are key

i “"But Events Are Better!”

= Recent arguments for events
= Lower runtime overhead
= Better live state management
= Inexpensive synchronization
= More flexible control flow
= Better scheduling and locality

= All true but...
= Lauer & Needham duality argument
= Criticisms of specific threads packages

= No /nherent problem with threads!
= Thread implementations can be improved

Threading Criticism:
i Runtime Overhead

s Criticism. Threads dont perform
WE// for h/.gh Concurrency 110000 [y —— ey Y Ty

[| Response 100000: v ‘K :
= Avoid O(n) operations]

= Minimize context switch overhead

= Simple scalability test _
= Slightly modified GNU Pth

20000 2 aal o aal

] Thread-per-taSk VS. 1 10 o ;(;oo. .1.0.000. .1(.)(3000. ers
Slngle threa d Concurrent Tasks

= Same performance!

80000 =

70000 =

60000 =

50000 Event-Based Server

Requests / Second

Threading Criticism:
i Synchronization

n Criticism. Thread synchronization is heavyweight

= Response
= Cooperative multitasking works for threads, too!

= Also presents same problems
= Starvation & fairness
= Multiprocessors
= Unexpected blocking (page faults, etc.)

= Both regimes need help
= Compiler / language support for concurrency
= Better OS primitives

Threading Criticism:
i Scheduling

s Criticism.: Thread schedulers are too generic
= Can't use application-specific information

= Response

= 2D scheduling: task & program location
= Threads schedule based on task only

= Events schedule by location (e.g. SEDA)
Allows batching
Allows prediction for SRCT

= Threads can use 2D, too!
= Runtime system tracks current location
= Call graph allows prediction

Program Location

Task

Threading Criticism:
i Scheduling

s Criticism.: Thread schedulers are too generic
= Can't use application-specific information Task

= Response

= 2D scheduling: task & program location
= Threads schedule based on task only

= Events schedule by location (e.g. SEDA)
Allows batching
Allows prediction for SRCT

= Threads can use 2D, too!
= Runtime system tracks current location
= Call graph allows prediction

Program Location

Threads

Threading Criticism:
i Scheduling

s Criticism.: Thread schedulers are too generic
= Can't use application-specific information Task

= Response

= 2D scheduling: task & program location
= Threads schedule based on task only

= Events schedule by location (e.g. SEDA)
Allows batching
Allows prediction for SRCT

= Threads can use 2D, too!
= Runtime system tracks current location
= Call graph allows prediction

———————————————————————————

Events

Program Location

Threads

i The Proof’s in the Pudding

= User-level threads package
= Subset of pthreads
= Intercept blocking system calls ™[™ orimmnem
= No O(n) operations o
= Support > 100K threads

= 5000 lines of C code

= Simple web server: Knot
= 700 lines of C code |

u Similar performance ‘ 1 4 16 64 256 1024 4096 16384

« Linear increase, then steady Concurrent Clients
= Drop-off due to pol1() overhead

Haboob

600 =

500 =

400 =

Mbits / second

300

200

i Arguments For Threads

= More natural programming model
= Control flow is more apparent
= Exception handling is easier
= State management is automatic

s Better fit with current tools & hardware
= Better existing infrastructure

Arguments for Threads:
i Control Flow

s Events obscure control flow
= For programmers and tools

Web Server

Threads Events
thread_main(int sock) { AcceptHandler(event e) {
struct session s; struct session *s = new_session(e);
accept_conn(sock, &s); RequestHandler.enqueue(s);
read_request(&s);)2
pin_cache(&s); RequestHandler(struct session *s) {
write_response(&s); ..., CacheHandler.enqueue(s);
unpin(&s); }
} CacheHandler(struct session *s) {
pin(s);
pin_cache(struct session *s) { if(lin_cache(s)) ReadFileHandler.enqueue(s);
pin(&s); else ResponseHandler.enqueue(s);
if(lin_cache(&s)) }
read_file(&s); C
} ExitHandler(struct session *s) {
..., unpin(&s); free_session(s); }

Arguments for Threads:
i Control Flow

s Events obscure control flow
= For programmers and tools

Web Server

Threads Events
thread_main(int sock) { CacheHandler(struct session *s) {
struct session s; pin(s);
accept_conn(sock, &s); if(lin_cache(s)) ReadFileHandler.enqueue(s);
read_request(&s); else ResponseHandler.enqueue(s);
pin_cache(&s); }
write_response(&s); RequestHandler(struct session *s) {
unpin(&s); ..., CacheHandler.enqueue(s);
by by
pin_cache(struct session *s) { ExitHandler(struct session *s) {
pin(&s); ..., unpin(&s); free_session(s);
if(lin_cache(&s)) }
read_file(&s); AcceptHandler(event e) {
} struct session *s = new_session(e);

RequestHandler.enqueue(s); }

Arguments for Threads:
Exceptions

= Exceptions complicate control flow
= Harder to understand program flow
= Cause bugs in cleanup code

Threads

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
if(read_request(&s))

return;

pin_cache(&s);
write_response(&s);
unpin(&s);

by

pin_cache(struct session *s) {
pin(&s);
if(lin_cache(&s))
read_file(&s);

Events

CacheHandler(struct session *s) {
pin(s);
if(lin_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}

RequestHandler(struct session *s) {
...; if(error) return; CacheHandler.enqueue(s);

}

ExitHandler(struct session *s) {
...; unpin(&s); free_session(s);

by

AcceptHandler(event e) {
struct session *s = new_session(e);
RequestHandler.enqueue(s); }

Web Server

Accept
Conn.

it

A
Read
Request

4

Pin
Cache

Write
espons

Ty Y
i

Exit

0

Arguments for Threads:
State Management

= Events require manual state management

= Hard to know when to free
= Use GC or risk bugs

Threads

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
if(read_request(&s))

return;

pin_cache(&s);
write_response(&s);
unpin(&s);

by

pin_cache(struct session *s) {
pin(&s);
if(lin_cache(&s))
read_file(&s);

Events

CacheHandler(struct session *s) {
pin(s);
if(lin_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);
b
RequestHandler(struct session *s) {
...; if(error) return; CacheHandler.enqueue(s);

}

ExitHandler(struct session *s) {
...; unpin(&s); free_session(s);

by

AcceptHandler(event e) {
struct session *s = new_session(e);
RequestHandler.enqueue(s); }

Web Server

Accept
Conn.

it

A
Read
Request

4

Pin
Cache

Write
espons

Ty Y
i

Exit

0

Arguments for Threads:
i Existing Infrastructure

= Lots of infrastructure for threads
= Debuggers
=« Languages & compilers

= Consequences

= More amenable to analysis
= Less effort to get working systems

i Building Better Threads

= Goals
= Simplify the programming model
= Thread per concurrent activity
= Scalability (100K+ threads)

= Support existing APIs and tools
= Automate application-specific customization

= Mechanisms
= User-level threads
= Plumbing: avoid O(n) operations
= Compile-time analysis
= Run-time analysis

The Case for
i User-Level Threads

= Decouple programming model and OS
= Kernel threads
= Abstract hardware App User
= EXxpose device concurrency /
= User-level threads
= Provide clean programming model
= EXpose logical concurrency

= Benefits of user-level threads 8 8
= Control over concurrency model!
= Independent innovation
= Enables static analysis
= Enables application-specific tuning

Threads (ON)

The Case for
i User-Level Threads

= Decouple programming model and OS
= Kernel threads

= Abstract hardware @

= EXpose device concurrency

= User-level threads
= Provide clean programming model
= EXpose logical concurrency

= Benefits of user-level threads ¢) 0s

= Control over concurrency model!

= Independent innovation

= Enables static analysis

= Enables application-specific tuning

Threads User

i Capriccio Internals

= Cooperative user-level threads
« Fast context switches
=« Lightweight synchronization
= Kernel Mechanisms
= Asynchronous I/O (Linux)
= Efficiency
= Avoid O(n) operations
= Fast, flexible scheduling

‘L Safety: Linked Stacks

Fixed Stacks

= The problem: fixed stacks
= Overflow vs. wasted space . .
= Limits thread numbers overflow
= The solution: linked stacks waste
= Allocate space as needed
= Compiler analysis Linked Stack

= Add runtime checkpoints

= Guarantee enough space until
next check

i Linked Stacks: Algorithm

s Parameters
s MaxPath
s MinChunk

= Steps
= Break cycles
= Trace back

= Special Cases
= Function pointers
« External calls
= Use large stack

MaxPath = 8

i Linked Stacks: Algorithm

s Parameters
s MaxPath
s MinChunk

= Steps
= Break cycles
= Trace back

= Special Cases
= Function pointers
« External calls
= Use large stack

MaxPath = 8

i Linked Stacks: Algorithm

s Parameters
s MaxPath
s MinChunk

= Steps
= Break cycles
= Trace back

= Special Cases
= Function pointers
« External calls
= Use large stack

MaxPath = 8

i Linked Stacks: Algorithm

s Parameters
s MaxPath
s MinChunk

= Steps
= Break cycles
= Trace back

= Special Cases
= Function pointers
« External calls
= Use large stack

MaxPath = 8

i Linked Stacks: Algorithm

s Parameters
s MaxPath
s MinChunk

= Steps
= Break cycles
= Trace back

= Special Cases
= Function pointers
« External calls
= Use large stack

MaxPath = 8

i Linked Stacks: Algorithm

s Parameters
s MaxPath
s MinChunk

= Steps
= Break cycles
= Trace back

= Special Cases
= Function pointers
« External calls
= Use large stack

MaxPath = 8

Scheduling:
i The Blocking Graph

= Lessons from event systems
= Break app into stages
= Schedule based on stage priorities
= Allows SRCT scheduling, finding
bottlenecks, etc.
= Capriccio does this for threads

= Deduce stage with stack traces at
blocking points

= Prioritize based on runtime information

Web Server

i Resource-Aware Scheduling

= Track resources used along BG edges web Server
= Memory, file descriptors, CPU
» Predict future from the past
= Algorithm

« Increase use when underutilized
= Decrease use near saturation

= Advantages

= Operate near the knee w/o thrashing
= Automatic admission control

i Thread Performance

Capriccio | Capriccio-notrace | LinuxThreads | NPTL
Thread Creation 21.5 21.5 37.5 17.7
Context Switch 0.56 0.24 0.71 0.65
Uncontested mutex lock 0.04 0.04 0.14 0.15

Time of thread operations (microseconds)

= Slightly slower thread creation

s Faster context switches
= Even with stack traces!

= Much faster mutexes

i Runtime Overhead

= [ested Apache 2.0.44
= Stack linking

= /8% slowdown for null call
= 3-4% overall

s Resource statistics
= 2% (on all the time)
= 0.1% (with sampling)

s Stack traces
= 8% overhead

‘L Web Server Performance

50
X
300 A Rea
7 ALY
v e %
250 il -8\g. g
w
r
= 200
=
-—
o
2 150
S —e— Apnache
o =- Apache with Capriccio
100 a - Habooh
= %= Knot
50
0
1 10 100 1000 10000 100000

Number of Clients

The Future:
i Compiler-Runtime Integration

= Insight
= Automate things event programmers do by hand
= Additional analysis for other things

= Specific targets
= Live state management
= Synchronization
» Static blocking graph

= Improve performance and
decrease complexity

i Conclusions

= Threads > Events
= Equivalent performance

= Reduced complexity

= Capriccio simplifies concurrency
= Scalable & high performance
= Contro/ over concurrency model

= Stack safety

= Resource-aware scheduling
= Enables compiler support, invariants

Ease of Programming

u Themes Performance
= User-level threads are key
= Compiler-runtime integration very promising

i Apache Blocking Graph

0

b
hapt
=i
k0

s 06

o LMD

e

hepd

=bt

il

naa 305
qu kL
il
=
w0
oo 195 ko

p 10
3% _theead_nniter_lock

s 10N

N

wkib

hapd 3

w0

Wnthreed gigwait - 1000
s 118 30
Y M
-0 11
bl hpt
ki) i
0 0
e, Himad
qu D
Lithmad exit-1 e
hepll
mo | :Lo
oY
D e Zne s L mu‘ I
hp LN T qu I
3! sl o L

= R s 133
kit o
heapdil? k0

hoph
il
1:threed sigweit -1 k0

nuw 381

T 1 threadcond signal

i Microbenchmark: Buffer Cache

1aEEE ¢ —— —— —
1E6H = 3
W
-,
fu'a]
=
.|_'\-
= 186 | -
o - 1
=
™
=
o
o
=
|_
16 | 3
Capriccio ——
L LinuxThreads ———
HPTL —8—
1 | R | Lol
B.B8E81 B.HdA81 B.@1 B.1 1

Cache mis=s rate

‘L Microbenchmark: Disk I/O

2.2 ' L ' L ' L

Throuwghput CMEBE<=2

B.8 ¥ Capriccio —e— 7]

LinuxThreads ——
HFTL —8—

d. 6 L e L T — L e ——

1 1A 168A 16680A

Humber of threads

Microbenchmark:
Producer / Consumer

256006 . — — — —
Capriccino
LinuxThreads
MPTL
3
~ 2HanEd —
i
i
n
.
n
n
v 158688 - * e, -
=] 1
m
e
.|_'\'
3 1686888 g -
o
=
™
>
a
e
=
H SEEaa -
E L L | 1 | L | , X ,
1 1@ 188 1868 1860688 188EEa

Mumber of producerssconsumers

‘L Microbenchmark: Pipe Test

IBABRE ——————————]

S0EE0E - -
FHEEEE -
EHEEEE -
SOBEnE -
408808

I08E08 -

Throughput Ctokens<sec?

cHaBEaE . .
Capriccio

Linu=Threads ———

16888 |- NFTL —8—
Poll —s—

a . N B N s N s L
1 18 1646 1088 188684

Mumber of pipesCthreads>

168808

Threads v.s. Events:
The Duality Argument

= General assumption: follow “good practices”

_ Web Server
= Observations
= Major concepts are analogous @
= Program structure is similar !
= Performance should be similar 6@
= Given good implementations! Request
Threads Events Cin
_ Cache ‘
= Monitors = Event handler & queue
= Exported functions = Events accepted @‘r@
= Call/return and fork/join = Send message / await reply €spons
= Wait on condition variable |« Wait for new messages v

(o

Threads v.s. Events:
The Duality Argument

= General assumption: follow “good practices”

= Observations
= Major concepts are analogous
= Program structure is similar

= Performance should be similar
= Given good implementations!

Web Server

Threads Events
= Monitors = Event handler & queue
= Exported functions = Events accepted

= Call/return and fork/join = Send message / await reply
= Wait on condition variable |« Wait for new messages

Threads v.s. Events:
The Duality Argument

(4

= General assumption: follow “good practices’

= Observations
= Major concepts are analogous
= Program structure is similar

= Performance should be similar
= Given good implementations!

Web Server

Threads Events
= Monitors = Event handler & queue
= Exported functions = Events accepted

= Call/return and fork/join = Send message / await reply
= Wait on condition variable |« Wait for new messages

Threads v.s. Events:
i Can Threads Outperform Events?

= Function pointers & dynamic dispatch
= Limit compiler optimizations
=« Hurt branch prediction & I-cache locality
= More context switches with events?

=« Example: Haboob does 6x more than Knot
= Natural result of queues

= More investigation needed!

Threading Criticism:
i Live State Management

Event State (heap)

s Criticism: Stacks are bad for live state

= Response
= Fix with compiler help

= Stack overflow vs. wasted space
= Dynamically link stack frames

Thread State (stack)

= Retain dead state Hve
= Static lifetime analysis Dead
= Plan arrangement of stack
= Put some data on heap v Live
= Pop stack before tail calls

= Encourage inefficiency Unused
= Warn about inefficiency

Threading Criticism:
i Control Flow

a Criticism: Threads have
restricted control flow

= Response

= Programmers use simple patterns
« Call / return
= Parallel calls
= Pipelines
= Complicated patterns are unnatural
= Hard to understand
= Likely to cause bugs

