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The Stage

Highly concurrent applications
Internet servers & frameworks

Flash, Ninja, SEDA

Transaction processing databases

Workload
High performance
Unpredictable load spikes
Operate “near the knee” 
Avoid thrashing!

Ideal

Peak: some 
resource at max

Overload: some
resource thrashing
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The Price of Concurrency

What makes concurrency hard?
Race conditions
Code complexity
Scalability (no O(n) operations)
Scheduling & resource sensitivity
Inevitable overload

Performance vs. Programmability
No current system solves
Must be a better way!
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The Answer: Better Threads
Goals

Simple programming model
Good tools & infrastructure

Languages, compilers, debuggers, etc.

Good performance

Claims
Threads are preferable to events
User-Level threads are key



“But Events Are Better!”
Recent arguments for events

Lower runtime overhead
Better live state management
Inexpensive synchronization
More flexible control flow
Better scheduling and locality

All true but…
Lauer & Needham duality argument
Criticisms of specific threads packages
No inherent  problem with threads!

Thread implementations can be improved



Threading Criticism:
Runtime Overhead

Criticism: Threads don’t perform 
well for high concurrency
Response

Avoid O(n) operations
Minimize context switch overhead

Simple scalability test
Slightly modified GNU Pth
Thread-per-task vs. 
single thread 
Same performance!

Re
qu

es
ts 

/ S
ec

on
d

Concurrent Tasks

Event-Based Server

Threaded Server

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 1  10  100  1000  10000  100000  1e+06



Threading Criticism:
Synchronization

Criticism: Thread synchronization is heavyweight
Response

Cooperative multitasking works for threads, too!
Also presents same problems

Starvation & fairness
Multiprocessors
Unexpected blocking (page faults, etc.)

Both regimes need help
Compiler / language support for concurrency
Better OS primitives



Threading Criticism:
Scheduling
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Criticism: Thread schedulers are too generic
Can’t use application-specific information

Response
2D scheduling: task & program location

Threads schedule based on task only
Events schedule by location (e.g. SEDA)

Allows batching
Allows prediction for SRCT

Threads can use 2D, too!
Runtime system tracks current location
Call graph allows prediction
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The Proof’s in the Pudding
User-level threads package

Subset of pthreads
Intercept blocking system calls
No O(n) operations
Support > 100K threads
5000 lines of C code

Simple web server: Knot
700 lines of C code

Similar performance
Linear increase, then steady
Drop-off due to poll() overhead
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Arguments For Threads
More natural programming model

Control flow is more apparent
Exception handling is easier
State management is automatic

Better fit with current tools & hardware
Better existing infrastructure



Arguments for Threads:
Control Flow

Events obscure control flow
For programmers and  tools

AcceptHandler(event e) {
struct session *s = new_session(e);
RequestHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; CacheHandler.enqueue(s);
}
CacheHandler(struct session *s) {

pin(s);
if( !in_cache(s) ) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
. . . 
ExitHandler(struct session *s) {

…;  unpin(&s);  free_session(s);  }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
read_request(&s);
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if( !in_cache(&s) )

read_file(&s);
}

EventsThreads
Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit



Arguments for Threads:
Control Flow

CacheHandler(struct session *s) {
pin(s);
if( !in_cache(s) ) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; CacheHandler.enqueue(s);
}
. . . 
ExitHandler(struct session *s) {

…;  unpin(&s);  free_session(s);  
}
AcceptHandler(event e) {

struct session *s = new_session(e);
RequestHandler.enqueue(s); }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
read_request(&s);
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
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if( !in_cache(&s) )

read_file(&s);
}
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Arguments for Threads:
Exceptions

Exceptions complicate control flow
Harder to understand program flow
Cause bugs in cleanup code

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

CacheHandler(struct session *s) {
pin(s);
if( !in_cache(s) ) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; if( error ) return; CacheHandler.enqueue(s);
}
. . . 
ExitHandler(struct session *s) {

…;  unpin(&s);  free_session(s);
}
AcceptHandler(event e) {

struct session *s = new_session(e);
RequestHandler.enqueue(s); }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);    
if( !read_request(&s) )

return;
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if( !in_cache(&s) )

read_file(&s);
}

EventsThreads



Arguments for Threads:
State Management

CacheHandler(struct session *s) {
pin(s);
if( !in_cache(s) ) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; if( error ) return;  CacheHandler.enqueue(s);
}
. . . 
ExitHandler(struct session *s) {

…;  unpin(&s); free_session(s);
}
AcceptHandler(event e) {

struct session *s = new_session(e);
RequestHandler.enqueue(s); }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);    
if( !read_request(&s) )

return;
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if( !in_cache(&s) )

read_file(&s);
}

EventsThreads
Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

Events require manual state management
Hard to know when to free

Use GC or risk bugs



Arguments for Threads:
Existing Infrastructure

Lots of infrastructure for threads
Debuggers
Languages & compilers

Consequences
More amenable to analysis
Less effort to get working systems



Building Better Threads
Goals

Simplify the programming model
Thread per concurrent activity
Scalability (100K+ threads)

Support existing APIs and tools
Automate application-specific customization

Mechanisms
User-level threads
Plumbing: avoid O(n) operations
Compile-time analysis
Run-time analysis



The Case for 
User-Level Threads

Decouple programming model and OS
Kernel threads

Abstract hardware
Expose device concurrency

User-level threads
Provide clean programming model
Expose logical concurrency

Benefits of user-level threads
Control over concurrency model!
Independent innovation
Enables static analysis
Enables application-specific tuning

Threads

App

OS

User
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Capriccio Internals
Cooperative user-level threads

Fast context switches
Lightweight synchronization

Kernel Mechanisms
Asynchronous I/O (Linux)

Efficiency
Avoid O(n) operations 
Fast, flexible scheduling



Safety: Linked Stacks
The problem: fixed stacks

Overflow vs. wasted space
Limits thread numbers

The solution: linked stacks
Allocate space as needed
Compiler analysis 

Add runtime checkpoints 
Guarantee enough space until 
next check

Fixed Stacks

Linked Stack

waste

overflow



Linked Stacks: Algorithm
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Scheduling:
The Blocking Graph

Lessons from event systems
Break app into stages
Schedule based on stage priorities
Allows SRCT scheduling, finding 
bottlenecks, etc.

Capriccio does this for threads
Deduce stage with stack traces at 
blocking points
Prioritize based on runtime information

Accept

Write

Read

Read

Open

Web Server

Close

Close



Resource-Aware Scheduling
Track resources used along BG edges

Memory, file descriptors, CPU
Predict future from the past
Algorithm

Increase use when underutilized
Decrease use near saturation

Advantages
Operate near the knee w/o thrashing
Automatic admission control

Accept

Write

Read

Read

Open

Web Server

Close

Close



Thread Performance

0.150.140.040.04Uncontested mutex lock

0.650.710.240.56Context Switch

17.737.521.521.5Thread Creation

NPTLLinuxThreadsCapriccio-notraceCapriccio

Slightly slower thread creation
Faster context switches

Even with stack traces!
Much faster mutexes

Time of thread operations (microseconds)



Runtime Overhead
Tested Apache 2.0.44
Stack linking

78% slowdown for null call
3-4% overall 

Resource statistics
2% (on all the time)
0.1% (with sampling)

Stack traces
8% overhead



Web Server Performance



The Future:
Compiler-Runtime Integration

Insight
Automate things event programmers do by hand
Additional analysis for other things

Specific targets
Live state management
Synchronization
Static blocking graph

Improve performance and
decrease complexity



Conclusions
Threads > Events

Equivalent performance
Reduced complexity

Capriccio simplifies concurrency
Scalable & high performance
Control over concurrency model

Stack safety
Resource-aware scheduling
Enables compiler support, invariants

Themes
User-level threads are key
Compiler-runtime integration very promising
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Apache Blocking Graph





Microbenchmark: Buffer Cache



Microbenchmark: Disk I/O



Microbenchmark: 
Producer / Consumer



Microbenchmark: Pipe Test





Threads v.s. Events:
The Duality Argument

General assumption: follow “good practices”
Observations

Major concepts are analogous
Program structure is similar
Performance should be similar

Given good implementations!

Event handler & queue
Events accepted 
Send message / await reply
Wait for new messages

Monitors
Exported functions
Call/return and fork/join
Wait on condition variable

EventsThreads
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Threads v.s. Events:
Can Threads Outperform Events?

Function pointers & dynamic dispatch 
Limit compiler optimizations
Hurt branch prediction & I-cache locality

More context switches with events?
Example: Haboob does 6x more than Knot
Natural result of queues

More investigation needed!





Threading Criticism:
Live State Management

Criticism: Stacks are bad for live state
Response

Fix with compiler help
Stack overflow vs. wasted space

Dynamically link stack frames

Retain dead state
Static lifetime analysis
Plan arrangement of stack
Put some data on heap
Pop stack before tail calls

Encourage inefficiency
Warn about inefficiency

Live

Live

Dead

Unused

Thread State (stack)

Event State (heap)



Threading Criticism:
Control Flow

Criticism: Threads have 
restricted control flow
Response

Programmers use simple patterns
Call / return
Parallel calls
Pipelines

Complicated patterns are unnatural
Hard to understand
Likely to cause bugs


