—_
RaceMob: Crowdsourced Data

Race Detectio
Baris Kasikci, Cristian Zamfir, George
Candea

Presented By:
Islam Harb
2014



Agenda

Motivation
Data Race Detection Classes

RaceMob
mplementation

Evaluation



Motivation
(The Problem?)

* Data races as a problem of the concurrency.

* Data races are represented in

— Atomicity (e.g. access same memory location at same
time).

— Order violation (e.g. bad pointers).

* Difficult to discover. Usually requires
significant overhead.



Few is Many

e Although only 5-24% of data races have harmful
effect(s), their consequences were Catastrophic.

* |f |l am a top coder, why would | worry?

— C/C++ standards allow compilers’ optimization that
might lead to data races.

 Therefore, data race detectors are highly
recommended.



Static Data Race Detection

e Static Detection: Analyze the code without
execution. (Reasoning)

* Pros:
— Offline (No runtime overhead).
— Fast and Scale to large code bases.

e Cons:

— False Positives (unreal data races).



Dynamic Data Race Detection

* Dynamic Detection: Monitor memory access
and synchronization at runtime.

* Pros:
— More accurate (very low FPs rates).

e Cons:

— Test Cases depended. Miss data races that aren’t
seen during execution (False Negative)

— runtime overhead.



RaceMob

* Combines static and dynamic detections to
obtain both accuracy and low runtime
overhead.

 RaceMob is a three-phased detector.

— First, static detection phase (potential races with few false
negatives).

— Dynamic phase.

— Crowdsources the validation phase to users machines.



Static RaceMob [Phase |]

The static phase of the RaceMob is done via the RELAY.
RELAY is a “lock-set” data race detector.

Data race is flagged when:

— At least two accesses to memory locations that are the same or may
alias.

— One of the accesses is write.
— The accesses are not guarded by at least one common lock.

Based on RELAY report, RaceMob instruments all
suspected memory access and synchronization operations.



Dynamic RaceMob [Phase 2]

* The Dynamic phase of the RaceMob.

* The hive instructs and distributes the validation
task through the users sites.

 Dynamic phase itself is consisted of there phases:
1. DCI: Dynamic Context Inference [Always ON].
2. On-Demand Data Race Detection [ON/OFF].
3. Schedule Steering [ON/OFF].



DCl: Dynamic Context Inference

Looks for concrete instances at runtime at the users machines.

The concrete instances should validate the candidate data race and
confirm on whether the racing accesses are made by two different
threads.

DCI, keeps track of addresses of potential racing accesses and the
Thread’s ID.

Negligible runtime overhead (0.01%), there feasible to be always
ON.



On-Demand Data Race Detection

e Starts tracking the happens-before relationships once
first potential racing access is made.

e Stops tracking:

— “happens-before” occur between first accessing thread and all other
threads. [No Race]

— Second racing access occur before such “happens-before”. [True Race]

Thread T, Thread T; Thread T,
Time .
e 1 f1rsthccess
i a ll-___.a-_ .. ‘aa
cop barrier wait(b) kopbarrier wait(b) lowbarrier wait(b)
2 I"x\,___. . .I\H._ _ = I"'-H,__ ‘s

3) secondAccess

Figure 3: Minimal monitoring in DCI: For this exam-
ple, DCI stops tracking synchronization operations as
soon as each thread goes once through the barrier.
10



Schedule Steering

Hive instructs one of the orders (“primary” or “alternative”) to

be validated.

RaceMob may pause the accessing thread with “wait”

operation to enforce the intended order.

lime

Thread T, Thread T,

shared x
x=1
lockil)

;Hlntktllﬂﬁ_e‘?‘__g_gﬂnmu

unlock(l)
x=2

Thread '?:J Thread T,
shared x
x=1
A..« lock(l)
G"-’r&"-,_

®05s-..  unlock(l)
1
|DE+'.|:|] =2

unlock(L)

Execution 1

Execution 2

Figure 1: False negatives in happens-before (HB) dy-
namic race detectors: the race on x is not detected in
Execution 1. but it is detected in Execution 2.

11



Crwodsourcing Overview [Phase 3]

* Crowdsourcing the validation.

i HIVE USER SITE |
1

1
. : Dynamic Race i
lﬁl:t of | | Static Race Validation i

ces i

i betedtion Dynamic Context| | |
True race ! h Inference i
:3 i Binary i
& ! | Instrumentation !
1 1
" 1 1
Likedy FP | .
2 [ |
:': E Command i
& | and . . |
Uirikrown i Control L - _______.i

5 i

) IL ___________________

Figure 2: RaceMob’s crowdsourced architecture: A
static detection phase, run on the hive, is followed by
a dynamic validation phase on users’ machines.

12



RaceMob: Reaching Verdict

True Race is definite.

— Should get a proof from any of the user-sites!

Likely False Positive is probablisitic.

— The more “No Race” & “Timeout” reports, the more probability that it

is False Positive.

Timeout
[6<max]

Timeout
[6=maXx]

Race

NoRace

True Race

F

Race

Likely FP

14



Implementation

4,147 C++ Lines of Code.

2, 850 Python — Hive and user-side daemon.

Used C++11 weak atomic store/load
operations.

Hive is based on LLVM



Empty Loop Optimization

 Empty loop bodies caught and suspected as a
data race candidate: while (notbone) {}

— Not instrumented.
— Reported directly to the developer by the hive.

— Never reach to the user-sites for further
validation.

— Otherwise, excessive overhead encounters.



Evaluation

Does it work on Real Code (Real Applications)?
Efficient?

RaceMob vs. state-of-the-art?

Scale with No. of threads?



Test Environment

Small scale real deployment on Authors laptops.
— Thinkpad Laptops, Intel 2620M Processors, 8 GB RAM, Ubuntu
Linux 12.04.

1, 754 simulated users sites.

Test Machines:

— 48-core AMD Opteron 6176 (2.3 GHZ), 512 GB RAM, OS: Ubuntu
Linux 11.04 [Simulated Users]

— Two 8-core Intel Xeon E5405, 20 GB RAM, OS: Ubuntu 11.10
[Hive + Simulated Users]



Applications

SQLite

Bzip2
Memcached
Ocean

Fmm

Barnes
Apache
Others



Evaluation

 ~13% (106) True Race. [don’t forget: Few is Many!]
 77% are Likely FP
* No False Negative.

Program Apache | SQLite | Memcached| Fmm | Barnes| Ocean | Pbzip2 | Kknot | Aget | Pfscan
Size (LOC) 138456 | 113,326 19397 | 9126 | 7.580 [ 6.551 3521 | 3586 2,053 2,033
Race candidates 118 88 7 176 166 115 65 63 24 17

(Causes hang 0 3 0 0 0 0 0 0 0 (0
2 2 [Causes crash 0 0 0 0 0 0 3 0 0 0
~ 2 [Both orders 0 0 ] 5 10 0 2 0 0 (0

Single order B 0 0 53 b 3 4 2 4 2
z.  |Not aliasing 10 k] 0 33 iN 13 0 18 2 0
-15: Context 61 10 2 61 28 42 21 28 10 4
= Synchronization 1 37 3 10 49 47 3 13 7 11
Unknown 38 7 1 14 ¥ 10 1 4 | 0




Overall Overhead

Evaluation

e |ess runtime overhead.

e Static Stage is Offline ~3 minutes for all programs,
except for Apache and SQLite ~ less than 1 hour.

-

il

=
S5 2l el 2| 8|2 2|« | &
=4 | 3| E| 5| 8| B | g| &|l2
IR E 28|82 |g |2k
1741 1.60] 0.10] 454 | 208 2.05| 2.00 | 1.27 ] 3.00 | 3.03

Table 2: Runtime overhead of race detection as a per-
centage of uninstrumented execution. Average over-
head is 2.32%. and maximum overhead is 4.54%.

21



Instrumentation vs. Validation

Evaluation

e Overhead = Instrumentation + Validation

6 I |

| | | | | | | |
N [ etection-induced overhead

Instrumentation 5 s |nstrumentation-induced overhead

overhead is negligible
with respect to the
Validation overhead

Overhead (%)

-DCl is negligible ~0.1%

- Dynamic Data Race is
the black portion. [Lion
Share]

ppe"® Eﬁuﬁeﬁ'ﬁ‘{mﬂ e o 5ced® ot ot gt prec”

Figure 5: Breakdown of average overhead into
instrumentation-induced overhead and detection-

induced overhead.
22



Comparison State-of-the-Art

Evaluation

e RaceMob, RELAY and TSAN

e RaceMob detected 4 extra True Races than TSAN

| Program | Apache | SQLite | Memcached | Fmm | Barnes | Ocean | Phzip2 | Knot | Aget | Pfscan |
RaceMob 8 3 E 58 6 3 0 2

TSAN 8 3 58 16 3 9 2

RELAY 118 88 7 176 166 115 65 157 256 17

Table 3: Race detection results with RaceMob, ThreadSanitizer (TSAN), and RELAY. Each cell shows the num-
ber of reported races. The data races reported by RaceMob and TSAN are all true data races. The only true
data races among the ones detected by RELAY are the ones in the row *RaceMob™. To the best of our knowledge,
two of the data races that cause a hang in SQLite were not previously reported.



Comparative Overhead

Evaluation
Program Aggregate overhead | TSAN user-
with RaceMob [ # | perceived
of race candidates = | overhead in —_
. e . & 100
# of users | in % e —
= m BD
Apache 339.30 25,207.79 ;E
SQLite 38160 142857 gz @
Memcached 220 3.102.32 5«
Fmm 1.598.08 47 888.07 & g X
Barnes 089.36 30,640.00 d o0 — -
Ocean 360.70 3,060.30 e an
: ic detecti TSAM
Pbzip2 377.00 3,001.00 RaceMob Without DCI g ar e detorrion M
Knot 165.10 751.47 RaceMob -
Aget 144.00 184.22 N . . : .
Plecan 103,30 1340715 Figure 6: Contribution of each technique to lower-

Table 4: RaceMob aggregate overhead vs. TSAN"
average overhead, relative to uninstrumented execu
tion. RaceMob’s aggregate overhead is across all the
executions for all users. For TSAN, we report the aver
age overhead of executing all the available test cases.

ing the agoresate overhead of RaceMob. Dynamic
detection represents detection with TSAN. RaceMob
without DCI and on-demand detection just uses static
data race detection to prune the number of accesses
to monitor.

24



Schedule Steering is Significant

Evaluation

 RaceMob’s Schedule Steering plays very
important role.

 SQLite & Pbzip2:
— When NOT instrumented — 10,000 executions but no “hang”.
— When instrumented (SS is ON) — 3 hangs in 176 executions.

* Pbzip2:
— When NOT instrumented — 10,000 executions but no “crash”.
— When instrumented (SS is ON) — 4 crashes in 130 executions.



Concurrency Testing Tools

Evaluation
Thread T, Thread T, Thread T, Thread T,
x = 0; + +
signal(c)
lock(1l) sleap sleap
HB 3 wait ()
unlock (1) i d
TIME I:E'-i-l::-c]-:{l]
signal (c)
unlock (1)
h
HB ™ yait (o)
bench; x = 1;
Thread T, Thread T, Thread T,|Thread T, Thread T,
x = 0; il x = 0; 4if(inl)
signal (c) 1 ‘e s x = 1;
\..q__ l:::r_:]-:{l] S1eeP y = 0; if(inZ)
HB *wait(c) o v = 1;
wnlectil) v z = 0; 4if(in3)
HB *lock (1) o z = 1:

X = 1;
bench ; unlock (1) bench 4




Concurrency Testing ToolScontinuea)

Evaluation
5 _
E:sj 33 ' ' " -
3 %& 273 M-”ﬂ# Y _
%E 1/3 //./J‘ ” x _
ga - -4 —— | Tool | bench | bhench: | benchs | benchs |
o N Nq,iNz Ny, 1Nz, N3 RaceMob 171 171 171 373
inputs for bench, RaceFuzzer 171 171 1/71] 0-3/3
Portend 071 071 071 373

RaceMob —=— RaceFuzzery &
RaceFuzzer, ---m— RaceFuzzer, &
RaceFuzzer, ------

Figure 8: Data race detection coverage for RaceMob
vs. RaceFuzzer. To do as well as RaceMob, Race-
Fuzzer must have a priori access to all test cases (the
RaceFuzzer; curve).

Table 5: RaceMob vs. concurrency testing tools: Ra-
tio of races detected in each benchmark to the total
number of races in that benchmark.

27



Big Size Problems

Evaluation

 How this affect on scalability?

— 10 MB file — concurrent requests [Apache & Knot]

— Insert, modify & remove 5,000 items from database & object
cache [SQLite, Memcached]

— Similarly, enlarge problem size in Ocean, Pbzip2 and Barnes.



Application Threads Scalability

Evaluation

e Scalability Experiment:

— Varied threads No. from 2-32.
— RaceMob runs on 8-core machine.

Ethrflaads I—
[~ 4 threads s
B threads I

16 threads o
n 32 threads

Overhead
[%: of uninstrumented execution)]

D = M W = W @ = o
I
]

Apache S0lde Memcached Bames (cean Foaps o

Figure 9: RaceMob scalability: Induced overhead as
a function of the number of application threads.

29



Thanks!
Any Questions?




