
Journaling versus Softupdates
Asynchronous Meta-Data Protection in File System

Authors - Margo Seltzer, Gregory Ganger et all

Presenter – Abhishek Abhyankar
MS Computer Science
Virginia Tech

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

1

Overview of the Problem

Metadata operations

Create, Delete, Rename.

Meta Data operations Modify the structure of the File System.

File System Integrity

After a system crash, File System should be recoverable to a

consistent state where it can continue to operate.

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

2

How is Integrity Compromised ?

•

I-Node Block Directory Block

Suppose File A is Deleted.

And First Node A is Deleted and Persisted to Disk.

System Crash.

Inode For A

Inode For B

Inode For C

Inode For D

A RefNo

B RefNo

C RefNo

D RefNo

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

3

How is Integrity Compromised ?

•

I-Node Block Directory Block

Garbage Data is present in the File A location.

Directory reference is still pointing to the Garbage data,

Integrity is compromised as there is no way to recover.

Garbage Data

Inode For B

Inode For C

Inode For D

A RefNo

B RefNo

C RefNo

D RefNo

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

4

How Integrity can be Preserved?

•

I-Node Block Directory Block

Directory reference is first deleted.

System Crash.

Orphan is created but Integrity is preserved.

Inode For A

Inode For B

Inode For C

Inode For D

B RefNo

C RefNo

D RefNo

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

5

What makes it difficult to handle?
Multiple blocks are involved in a single logical operation

Most update operations are asynchronous/delayed

Actual IO ordering is done by Disk scheduler

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

6

Ordering Constraints

Deleting a file

Delete the Directory entry

Delete the I-node

Delete Data Blocks

Creating a file

Allocate the data blocks

Allocate I-node

 Create Directory Entry

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

7

Solution:
Enforce the ordering constraints, synchronously.

Before the system call returns; the related metadata blocks are written
synchronously in a correct order

Unix Fast File System with Synchronous Meta Data Updates.

BSD "synchronous" filesystem updates are braindamaged.

BSD people touting it as a feature are WRONG. It's a bug.

Synchronous meta-data updates are STUPID.

… Linus Tovalds, 1995

- Chief Architect and Project Coordinator
Linux Kernel C

S
 5

2
0

4
 O

p
e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

8

Asynchronous Updates
Disk access takes much more amount of time than the processor
takes.

So why wait for the disk ?

Store the updates and return the system call and let the process
continue.

Perform Delayed writes to the disk.

Just maintain the ordering constraints which were mentioned
earlier.

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

9

Soft Updates
Enforce the ordering constraints, in an asynchronously

way.

Maintain dirty blocks and dependencies to each other.

Let Disk Scheduler sync any disk blocks.

When a block is written by Disk Scheduler, Soft Update
code can take care of the dependencies.

Maintains the Dependency information on Pointer basis
not Block basis.

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

10

Cyclic Dependencies

•

I-Node Block Directory Block

File A is Created.

File B is Deleted.

Node A needs to be created before Dir A is created.

Dir B needs to be removed before Node is removed.

Inode For A

Inode For B

Inode For C

Inode For D

A RefNo

B RefNo

C RefNo

D RefNo

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

11

How is Dependency Resolved ?

•

I-Node Block Directory Block

File A is Created. (1) Depends On (2)

File B is Deleted. (3) Depends On (4)

Disk Scheduler selects Directory Block and notifies

Soft Update.

Inode For A (2)

Inode For B (3)

Inode For C

Inode For D

A RefNo (1)

B RefNo (4)

C RefNo

D RefNo

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

12

•

I-Node Block Directory Block

As (1) Depends On (2). (1) is rolled back to original state.

As (4) does not depend on anyone, it is executed i.e
removed.

Dependency (3) Depends on (4) is removed.

Inode For A (2)

Inode For B (3)

Inode For C

Inode For D

Rolled Back

B RefNo (4)

C RefNo

D RefNo

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

13

•

I-Node Block Directory Block

Now after Directory block is persisted. Inode Block is
selected. (Dir A is Rolled forwarded again).

(2) and (3) are executed. i.e (2) is created and (3) is
removed.

Then Dir block is selected again and executes (1).

Inode For A (2)

Inode For B (3)

Inode For C

Inode For D

A RefNo (1)

C RefNo

D RefNo

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

14

Returned to Stable State

•

I-Node Block Directory Block

After a sequence of instructions all dependencies are
resolved and the system returns to stable state.

Even if system crashed anywhere in the middle File
system integrity will always be maintained.

Inode For A (2)

Inode For C

Inode For D

A RefNo (1)

C RefNo

D RefNo

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

15

Soft Updates Conclusion

Advantages:

No recovery required. Directly mount and play.

 Still enjoys delayed writes.

Disadvantages:

Orphan nodes might get created.

 Integrity guaranteed, but still background fsck is required.

 Implementation code is very complex.

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

16

Journaling

Write ahead logging.

Write changes to metadata in the journal.

Blocks are written to disk only after associated journal
data has been committed.

On recovery, just replay for committed journal records.

Guarantees Atomic Metadata operations.

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

17

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

18

Different Implementations of
Journaling

LFFS-file

Writes log records to a file

Writes log records asynchronously

64KB cluster

Each buffered cached block has relevant Log
entry as Header and Footer

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

19

Different Implementations of
Journaling

LFFS-wafs

Writes log records to a separate filesystem

Provides Flexibility.

WAFS is minimal operations filesystem specially
designed for Logging purpose.

Uses LSN’s (Low and High LSN).

Complex than LFFS-File implementation

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

20

Recovery After a Crash

First Log is recovered from the disk.

The last log entry to disk is stored in the Superblock.

That entry acts like a starting point. Any entries after
that point will be validated and then either persisted or
aborted.

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

21

Journaling Concluding Remarks

Advantages

Quick recovery (fsck)

Disadvantages

Extra IO generated

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

22

Parameters for Evaluation ?

FFS, FFS-async, LFFS-File, LFFS-WAFS, Softupdates are
evaluated on these parameters.

Durability of the Meta data Operations.

Status of the file system after reboot.

Guarantees provided of the data files after recovery.

Atomicity.

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

23

Feature Comparison

Feature File Systems

Meta-data updates are synchronous FFS,

LFFS-wafs-[12]sync

Meta-data updates are asynchronous Soft Updates , LFFS-file,

LFFS-wafs-[12]async

Meta-data updates are atomic. LFFS-wafs-[12]* , LFFS-file

File data blocks are freed in

background

Soft Updates

New data blocks are written before

inode

Soft Updates

Recovery requires full file system

scan

FFS

Recovery requires log replay LFFS-*

Recovery is non-deterministic and

may be impossible

FFS-async

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

24

Performance Measurement
Benchmarks

Microbenchmark - only metadata operations (create/delete)

Softupdates performs better in deletes but increased load, Journaling is better.

Macrobenchmarks - real workloads

System Configurations:

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

25

Micro benchmark Results

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

26

Macro benchmarks workloads

SSH. -> Unpack Compile and Build

Netnews. -> Unbatch and Expire

SDET.

Post-Mark. -> Random Operations

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

27

Result Evaluation

CPU intensive activities are almost identical across all
filesystems.

NetNews has heavy loads where Softupdates pays
heavy penalty.

SSH is Meta-data intensive so Softupdates performs
better than all other filesystems.

Postmarks demonstrates identical performance with
Softupdates performing slighhtly better.

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

28

Macro benchmarks

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

29

Concluding Remarks
Displayed that Journaling and Soft Updates are both

comparable at High Level.

At lower level both provide a different set of useful
semantics.

Soft Updates performs better for Delete intensive workloads
and small data sets.

Assuming that Data sets are metadata intensive is unrealistic

Journaling works fine with larger data sets and is still most
widely used Filesystem Metadata recovery system. C

S
 5

2
0

4
 O

p
e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

30

Discussion ???

Thank You.

C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

31

References
“Non-Volatile Memory for Fast, Reliable File Systems”

“Heuristic Cleaning Algorithms in Log-Structured File Systems”

“Journaling and Softupdates: Presentation Hyogi”

“The Rio File Cache: Surviving Operating System Crashes,”

“A Scalable News Architecture on a Single Spool,”

“The Episode File System,”

“Soft Updates: A Solution to the Metadata Update Problem in File Systems”

“Soft Updates: A Technique for Eliminating Most Synchronous Writes in the Fast Filesystem”

“The Write-Ahead File System: Integrating Kernel and Application Logging” C
S

 5
2

0
4

 O
p

e
ra

ti
n

g
 S

y
st

e
m

s
2

0
1

4

32

