& VirginiaTech

Invent the Future

B Y ,
Eraser: A Dynamic Data Race Detector

for Multithreaded Programs
STEFAN SAVAGE, MICHAEL BURROWS, GREG NELSON,
PATRICK SOBALVARRO, and THOMAS ANDERSON

About the Authors
What I1s Eraser?
Why is Eraser Important?

Background & Related Work
- Happens-Before

Eraser Algorithm
Eraser Implementation
Experiences
Evaluation

mVlrgmlaTech

t the Futur

Savage and Anderson (UCB) were at U.
Washington. Burrows, Nelson, and
Sobalvarro were at Digital Equipment
Corporation.

Cited by 387 (according to ACM DL)
Including RaceMob and PARROT.

Each averages over 35 cites per article.

Eraser thelr most or second most cited
article. § VirginiaTech

» Detects data races in a
multithreaded program dynamically.

» Allows developers to easily find and
correct concurrency bugs.

* Works by monitoring data accesses
at a very low level and observing
locking patterns.

mVlrgmlaTech

the Futur

» Basically the first to use lock set idea
Instead of Happens-Before.

* Lock set Is relatively low overhead
compared to Happens-Before, albelt
less accurate.

 Leads to future work combining the two
approaches for both speed and
reliability (FastTrack by Flanagan and
Freund in PLDI 2009).

& VirginiaTech
Invent the Future

What’s a data race?

One (or more) thread(s) writes as

another thread tries to read or write at

the same time.

No synchronization mechanism (lock).
Unclear who executes first and what

final value Is read/written.
Very hard to debug!

eeeeeeeeeeeeeeee

» Largely compared to Happens-
Before relationships by Lamport in

1978.
* Monitors by Hoare in 1974.

* Lock covers by Dinning and
Schonberg in 1991.

 NOT Eraser by Mellon and
Crummey In 1993. VirginiaTech

eeeeeeeeeeeeeeee

» Within a thread, execution order
generates event order.

» Between threads, synchronization
events generate a partial order
based on shared resource access.

mVlrgmlaTech

the Futur

Time O

Time n

Thread X Thread Y

Lock(a)
Modify
Unlock(a)

Lock(a) /
Modify

Unlock(a)

Lock(a)
Modify
Unlock(a)

Lock(a)
Modify

" Unlock(a)

Thread Z

Lock(b)
Modify
Unlock(b)

Lock(b)
Modify
Unlock(b)

mVlrgmlaTech

nt the Futur

* Initialize set of candidate locks to
all locks for each shared variable
and held locks to empty set.

* On an access, change the set of
candidate locks to be the former
set’s intersection with the currently

held locks.

eeeeeeeeeeeeeeee

Time O

Timen

Thread X Thread Y

Lock(a)
Modify(varl)
Unlock(a)

Lock(b)
Modify(varl)

Unlock(b)

Held Locks | Candidates

{

a

| U
| UMa =a
|a™d = {}

mVlrglmaTech

nt the Futur

L —

—_— F’

-

- T v
5 .
: ‘ -
) . = - . -
- N PRI Ll
B - - ‘
:
‘

* [gnore Initialization.

 Allow read sharing.

* Only remove read
locks on the

second thread
write.

rab/wr, first

mVlrgmlaTech

t the Futur

Time O

Timen v

Thread X

Allocate(varl) {} | U
Set thread Y
to modify varl
Start thread ¥ Potential for
/
Modify(varl) [Modify(varl) race regardiess.
If this mod Is If this mod Is
1st no race 1st race
detected. detected and
output.

Thread Y Held Locks | Candidates

mVlrgmlaTech

nt the Futur

* Instruments loads and stores for
checking the set of candidate locks.

* Instruments lock acquire and
release and thread initialization and
finalization for checking locks held.

* Instruments storage allocator calls

for dynamic data.

mVlrgmlaTech

the Futur

* On a race detection (no locks held
during access) the following is
reported:
 File and line number.

Backtrace of stack frames.
Thread ID
Memory Address and Access Type

Program Counter and Stack Pointer
mVlrgmlaTech

the Futur

» Correspond to real data words In
stack and heap.

» Contain lockset index (30-hit) or
thread ID and state condition (2-
bit).

» Lockset index points to hash table
entry for the distinct set of locks

h € I d - & VirginiaTech

eeeeeeeeeeeeeeee

» EraserlgnoreOn/Off for disabling benign
race output.

» EraserReuse for resetting shadow
memory when using internal memory
allocators.

 EraserReadLock/Unlock and
EraserWriteLock/Unlock for
communicating private lock usage.

mVlrgmlaTech

nt the Futur

* Programs Tested
* NiI2 (9) and ft (5)
« Mhttpd (10)

* False Positives
» Avoid locking overhead
- Finalization checks
 Global Statistics

eeeeeeeeeeeeeee

SRR e — A -
- — — g

RRTTNLL T
VesteeCa 167 ee A

 Valid Fingerprint Boolean

 False Positives (10)
» CacheS Free List Flush
» TCP_sock and SRPC Objects

eeeeeeeeeeeeeee

» Server Running State Checks

 False Positives (several)
 Private Reader-Writer Locks
 Global Statistics
» Stack Memory Reuse on Forking

eeeeeeeeeeeeeee

T
- T — e
- _"‘ '.' ;lf n s _‘:‘ g
UPEIE AL te ASsIgAMe

* 10% data races detected across
runnable assignments.

 False Positives (1)
- Locked Head and Tail in Queue

mVlrgmlaTech

t the Futur

—"_—F— 3 AR—— . -
\ o — .l . . "'-

o —

Y P> 1) o
€ - - '
» . ,«' ’ » -
, < X n %
|

» Dependent on test runs versus
absolute relationships.

» "Easy to use’
* Promising results with deadlock-

checking.

mVlrgmlaTech

t the Futur

* Novelty
- Lock sets instead of Happens-Before.

* Importance
» Much faster.
- Handles dynamic data.
- Works on large and small scale code

bases.

mVlrgmlaTech

t the Futur

* Negatives
- Still not that fast.

» Doesn'’t specify how to fix the problem
(later papers actually tell how or do it
themselves).

« Measurements aren’t similar and are
arbitrarily ran.

* LO

S of false positives.

eeeeeeeeeeeeeeee

[T VirginiaTech

Invent the Future

