
Eraser: A Dynamic Data Race Detector
for Multithreaded Programs
STEFAN SAVAGE, MICHAEL BURROWS, GREG NELSON,
PATRICK SOBALVARRO, and THOMAS ANDERSON

Ethan Holder 2014

Presentation Outline

• About the Authors

• What is Eraser?

• Why is Eraser Important?

• Background & Related Work

• Happens-Before

• Eraser Algorithm

• Eraser Implementation

• Experiences

• Evaluation
2

About the Authors

• Savage and Anderson (UCB) were at U.

Washington. Burrows, Nelson, and

Sobalvarro were at Digital Equipment

Corporation.

• Cited by 387 (according to ACM DL)

including RaceMob and PARROT.

• Each averages over 35 cites per article.

• Eraser their most or second most cited

article.
3

What is Eraser?

• Detects data races in a

multithreaded program dynamically.

• Allows developers to easily find and

correct concurrency bugs.

• Works by monitoring data accesses

at a very low level and observing

locking patterns.

4

Why is Eraser Important?

• Basically the first to use lock set idea

instead of Happens-Before.

• Lock set is relatively low overhead

compared to Happens-Before, albeit

less accurate.

• Leads to future work combining the two

approaches for both speed and

reliability (FastTrack by Flanagan and

Freund in PLDI 2009).
5

Background

• What’s a data race?

• One (or more) thread(s) writes as

another thread tries to read or write at

the same time.

• No synchronization mechanism (lock).

• Unclear who executes first and what

final value is read/written.

• Very hard to debug!

6

Related Work

• Largely compared to Happens-

Before relationships by Lamport in

1978.

• Monitors by Hoare in 1974.

• Lock covers by Dinning and

Schonberg in 1991.

• NOT Eraser by Mellon and

Crummey in 1993.
7

Happens-Before

• Within a thread, execution order

generates event order.

• Between threads, synchronization

events generate a partial order

based on shared resource access.

8

Happens-Before

9

Thread X Thread Y Thread Z

Time 0

…

Time n

Lock(a)

Modify

Unlock(a)

Lock(a)

Modify

Unlock(a)

Lock(a)

Modify

Unlock(a)

Lock(a)

Modify

Unlock(a)

Lock(b)

Modify

Unlock(b)

Lock(b)

Modify

Unlock(b)

Eraser Algorithm

• Initialize set of candidate locks to

all locks for each shared variable

and held locks to empty set.

• On an access, change the set of

candidate locks to be the former

set’s intersection with the currently

held locks.

10

Example

11

Thread X Thread Y Held Locks | Candidates

Time 0

…

Time n

Lock(a)

Modify(var1)

Unlock(a)

Lock(b)

Modify(var1)

Unlock(b)

{} | U

a | U^a = a

b | a^b = {}

Improvement

12

• Ignore initialization.

• Allow read sharing.

• Only remove read

locks on the

second thread

write.

Failure

13

Thread X Thread Y Held Locks | Candidates

Time 0

…

Time n

Allocate(var1)

Set thread Y

to modify var1

Start thread Y

Modify(var1) Modify(var1)

{} | U

If this mod is

1st, no race

detected.

If this mod is

1st, race

detected and

output.

Potential for

race regardless.

Eraser Implementation

• Instruments loads and stores for

checking the set of candidate locks.

• Instruments lock acquire and

release and thread initialization and

finalization for checking locks held.

• Instruments storage allocator calls

for dynamic data.

14

Output

• On a race detection (no locks held

during access) the following is

reported:
• File and line number.

• Backtrace of stack frames.

• Thread ID

• Memory Address and Access Type

• Program Counter and Stack Pointer

15

Shadow Words

• Correspond to real data words in

stack and heap.

• Contain lockset index (30-bit) or

thread ID and state condition (2-

bit).

• Lockset index points to hash table

entry for the distinct set of locks

held.
16

False Alarm Annotations

• EraserIgnoreOn/Off for disabling benign

race output.

• EraserReuse for resetting shadow

memory when using internal memory

allocators.

• EraserReadLock/Unlock and

EraserWriteLock/Unlock for

communicating private lock usage.

17

AltaVista Experience

• Programs Tested

• Ni2 (9) and ft (5)

• Mhttpd (10)

• False Positives

• Avoid locking overhead

• Finalization checks

• Global Statistics

18

Vesta Cache Server Experience

• Valid Fingerprint Boolean

• False Positives (10)

• CacheS Free List Flush

• TCP_sock and SRPC Objects

19

Petal Experience

• Server Running State Checks

• False Positives (several)

• Private Reader-Writer Locks

• Global Statistics

• Stack Memory Reuse on Forking

20

Undergraduate Assignments Experience

• 10% data races detected across

runnable assignments.

• False Positives (1)

• Locked Head and Tail in Queue

21

Experiences

• Dependent on test runs versus

absolute relationships.

• “Easy to use”

• Promising results with deadlock-

checking.

22

Evaluation

• Novelty

• Lock sets instead of Happens-Before.

• Importance

• Much faster.

• Handles dynamic data.

• Works on large and small scale code

bases.

23

Evaluation

• Negatives

• Still not that fast.

• Doesn’t specify how to fix the problem

(later papers actually tell how or do it

themselves).

• Measurements aren’t similar and are

arbitrarily ran.

• LOTS of false positives.

24

Questions

25

