

Computer Security module
October 2009

Mark D. Ryan
University of Birmingham

Trusted Platform Module (TPM)
introduction

The Trusted Computing Group

● An industry consortium including
– Microsoft, HP, Dell, Sony, Lenovo,

Toshiba, Vodafone, Seagate, . . .

– (about 160 organisations in total)

● Main output is Trusted Platform Module spec
– The specification is publicly available

– The TPM is a passive device (it does not monitor
or prohibit anything; just performs actions if asked)

– It is mandated to be opt-in, not opt-out

– It includes privacy-enabling functionality

The Trusted Platform Module

• A hardware chip currently included in 100M laptops
– HP, Dell, Sony, Lenovo, Toshiba . . .
– Soldered onto the motherboard, on the LPC bus
– HP alone ships 1M TPM-enabled laptops each month

• Specified by the Trusted Computing Group
– An industry consortium that includes Intel, HP, Microsoft, AMD,

IBM, Sun, Lenovo. . . . and 130 other members

• Manufactured by many companies
– Atmel, Broadcom, Infineon, Sinosun, STMicroelectronics, and

Winbond

• Supporting software to be rolled out over the next few years
– MS BitLocker is the only mainstream application so far

TPM functionality

Platform integrity
reporting

– “Measurement” and
reporting of integrity
of platform; may
include
measurement of
BIOS, disk MBR,
boot sector,
operating system
and application
software

Platform
authentication

– Creation of
attestation identity
keys (AIK), with
anonymity
guarantees (DAA)

Secure storage

– Creation of RSA
keys (with
private part
known only to
the TPM)

– Encryption and
decryption of
user data with
those keys

TPM architecture

Hash engine

Processor

RSA key generation

RSA signing and encryption

Random number generator

Endorsement Key

Storage Root Key

Loaded keys

Platform configuration
 registers

Volatile memory

Non-volatile memory

Secure storage

Secure storage

– Keys are created with TPM_CreateWrapKey
● Passwords (known as “authdata”) are specified for each

key
● Keys are arranged in a tree hierarchy
● The TPM returns the created key as a blob; the secret

parts are encrypted with the parent key

– The function TPM_Seal encrypts data
● It also “seals” it to specified PCR values
● The command returns the sealed blob
● The sealed blob is protected by another piece of authdata,

specified at the seal time

TPM command message flow
(abstract view)

TPMUser process

TPM_CreateWrapKey(keyinfo)

keyblob

TPM_LoadKey2(keyblob)

handle

TPM_Seal(handle, data)

sealedblob

“Sealing” means
encrypting and

binding to PCRs

TPM authData

• To each TPM object or resource is associated an authData
value
– A 160-bit shared secret between user process and TPM
– Think of it as a password that has to be cited to use the

object or resource

• authData may be a weak (guessable)
secret
– May be based on a user-chosen

password; e.g. in Microsoft
Bitlocker.

• The TPM resists online guessing
attacks of weak authdata by locking
out a user that repeatedly tries wrong
guesses

– Details are left to manufacturer

OIAP and OSAP
TPMUser process

TPM_OIAP()

authHandle

keyAuth keyAuth

TPMUser process

TPM_OSAP(keyHandle, No')

authHandle, Ne, Ne'

K = hmac(keyAuth ; Ne', No') ;

keyAuth keyAuth

● Long-lived session

● Allows different objects in
same session

● Authdata must be cited
each command

● Session may be shortlived

● Just one object

● Because K is cached,
authdata need not be cited
for each command

TPM_CreateWrapKey in more detail
TPMUser process

Ne', keyBlob

hmac(K; keyBlob, Ne', No)

TPM_OSAP(parentKeyHandle, NoOSAP)

authHandle, Ne, NeOSAP

K = hmac(parentKeyAuth ; NeOSAP, NoOSAP) ;

hmac(K ; encAuth, keyInfo, Ne, No)

TPM_CreateWrapKey(parentKeyHandle, encAuth, keyInfo, authHandle, No)

parentKeyAuth parentKeyAuth

TPM_LoadKey2 in more detail
TPMUser process

Ne', handle

hmac(parentKeyAuth ; Ne', No)

TPM_OIAP()

authHandle, Ne

hmac(parentKeyAuth ; keyBlob, Ne, No)

TPM_LoadKey2(parentKeyHandle, keyBlob, authHandle, No)

parentKeyAuth parentKeyAuth

Platform measurement

● The TPM has 24 Platform Configuration
Registers (PCRs)
– Used to record platform configuration

– x is a “measurement” of some part of the platform

– TPM_Extend(p,x) “stores” the value x
on the PCR p

– TPM_Extend(p,x) means:
 p := SHA1(p || x)

– p contains a proof of the record of the values that
have been extended into it.

Core root of trust for measurement

Platform integrity reporting

● TPM_Quote returns a signature (using a TPM
key) on the PCR p.

● A remote party can use that to be convinced of
the integrity of the platform

● The key used is an attestation identity key
(AIK), that has a certificate demonstrating that it
is a real TPM key.

Attestation using a Privacy CA
PCAUser process

{ Cert
PCA

(AIK) }
K
 { K, AIK }

EK

TPM_MakeIdentity()

AIK

EK AIK

TPM

TPM_ActivateIdentity({ K, AIK }
EK

)

K

TPM architecture

Hash engine

Processor

RSA key generation

RSA signing and encryption

Random number generator

Endorsement Key

Storage Root Key

Loaded keys

Platform configuration
 registers

Volatile memory

Non-volatile memory

TPM: summary

● Commands
– Authdata

● Storage
● Platform integrity measurement
● Platform integrity reporting

– Attestation

– Privacy preserving

MS BitLocker and TPM

How to ensure only MSBL has access to volume
decryption key? [Simplified story]
● On boot, control passes to pre-bios.

● Pre-bios measures bios, extends PCR, passes control.

● Bios measures other hardware and MBR, extends PCR, passes
control.

● MBR measures MSBL, extends PCR, passes control. Begin
window.

● MBSL retrieves vol id key and extends PCR with “stop value”.
End window.

● MBSL starts decrypting disk and launches OS.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

