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The Trusted Computing Group

● An industry consortium including 
– Microsoft, HP, Dell, Sony, Lenovo, 

Toshiba, Vodafone, Seagate, . . .  

– (about 160 organisations in total)

● Main output is Trusted Platform Module spec
– The specification is publicly available

– The TPM is a passive device (it does not monitor 
or prohibit anything; just performs actions if asked)

– It is mandated to be opt-in, not opt-out

– It includes privacy-enabling functionality



  

The Trusted Platform Module

• A hardware chip currently included in 100M laptops 
– HP, Dell, Sony, Lenovo, Toshiba . . .
– Soldered onto the motherboard, on the LPC bus
– HP alone ships 1M TPM-enabled laptops each month

• Specified by the Trusted Computing Group 
– An industry consortium that includes Intel, HP, Microsoft, AMD, 

IBM, Sun, Lenovo. . . .  and 130 other members

• Manufactured by many companies 
– Atmel, Broadcom, Infineon, Sinosun, STMicroelectronics, and 

Winbond

• Supporting software to be rolled out over the next few years
– MS BitLocker is the only mainstream application so far



  

TPM functionality

Platform integrity 
reporting

– “Measurement” and 
reporting of integrity 
of platform; may 
include 
measurement of 
BIOS, disk MBR, 
boot sector, 
operating system 
and application 
software

Platform 
authentication

– Creation of 
attestation identity 
keys (AIK), with 
anonymity 
guarantees (DAA)

Secure storage

– Creation of RSA 
keys (with 
private part 
known only to 
the TPM)

– Encryption and 
decryption of 
user data with 
those keys



  

TPM architecture
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Secure storage

Secure storage

– Keys are created with TPM_CreateWrapKey
● Passwords (known as “authdata”) are specified for each 

key
● Keys are arranged in a tree hierarchy
● The TPM returns the created key as a blob; the secret 

parts are encrypted with the parent key

– The function TPM_Seal encrypts data
● It also “seals” it to specified PCR values
● The command returns the sealed blob
● The sealed blob is protected by another piece of authdata, 

specified at the seal time



  

TPM command message flow
(abstract view)

TPMUser process

TPM_CreateWrapKey( keyinfo ) 

keyblob

TPM_LoadKey2( keyblob )

handle 

TPM_Seal( handle, data )

sealedblob

“Sealing” means 
encrypting and 

binding to PCRs



  

TPM authData

• To each TPM object or resource is associated an authData 
value 
– A 160-bit shared secret between user process and TPM
– Think of it as a password that has to be cited to use the 

object or resource

• authData may be a weak (guessable) 
secret
– May be based on a user-chosen 

password; e.g. in Microsoft 
Bitlocker.

• The TPM resists online guessing 
attacks of weak authdata by locking 
out a user that repeatedly tries wrong 
guesses

– Details are left to manufacturer



  

OIAP and OSAP
TPMUser process

TPM_OIAP( )

authHandle

keyAuth keyAuth

TPMUser process

TPM_OSAP( keyHandle, No' )

authHandle, Ne, Ne'

K = hmac( keyAuth ;  Ne', No' ) ;

keyAuth keyAuth

● Long-lived session

● Allows different objects in 
same session

● Authdata must be cited 
each command

● Session may be shortlived

● Just one object

● Because K is cached, 
authdata need not be cited 
for each command



  

TPM_CreateWrapKey in more detail
TPMUser process

Ne',  keyBlob

hmac(K; keyBlob, Ne', No)

TPM_OSAP( parentKeyHandle, NoOSAP )

authHandle, Ne, NeOSAP

K = hmac( parentKeyAuth ;  NeOSAP, NoOSAP ) ;

hmac( K ; encAuth, keyInfo, Ne, No )

TPM_CreateWrapKey( parentKeyHandle, encAuth, keyInfo, authHandle, No )

parentKeyAuth parentKeyAuth



  

TPM_LoadKey2 in more detail
TPMUser process

Ne',  handle

hmac( parentKeyAuth ; Ne', No)

TPM_OIAP( )

authHandle, Ne

hmac( parentKeyAuth ; keyBlob, Ne, No )

TPM_LoadKey2( parentKeyHandle, keyBlob, authHandle, No )

parentKeyAuth parentKeyAuth



  

Platform measurement

● The TPM has 24 Platform Configuration 
Registers (PCRs)
– Used to record platform configuration

– x is a “measurement” of some part of the platform

– TPM_Extend(p,x) “stores” the value x
on the PCR p 

– TPM_Extend(p,x) means:
      p :=  SHA1( p || x)

– p contains a proof of the record of the values that 
have been extended into it.



  

Core root of trust for measurement



  

Platform integrity reporting

● TPM_Quote returns a signature (using a TPM 
key) on the PCR p.

● A remote party can use that to be convinced of 
the integrity of the platform

● The key used is an attestation identity key 
(AIK), that has a certificate demonstrating that it 
is a real TPM key.



  

Attestation using a Privacy CA
PCAUser process

{  Cert
PCA

(AIK)  }
K
    {  K, AIK  }

EK
    

TPM_MakeIdentity( )

AIK

EK   AIK

TPM

TPM_ActivateIdentity(  { K, AIK }
EK

  )

K



  

TPM architecture
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TPM: summary

● Commands
– Authdata

● Storage
● Platform integrity measurement
● Platform integrity reporting

– Attestation

– Privacy preserving



  

MS BitLocker and TPM

How to ensure only MSBL has access to volume 
decryption key? [Simplified story]
● On boot, control passes to pre-bios.

● Pre-bios measures bios, extends PCR, passes control.

● Bios measures other hardware and MBR, extends PCR, passes 
control.

● MBR measures MSBL, extends PCR, passes control. Begin 
window.

● MBSL retrieves vol id key and extends PCR with “stop value”. 
End window.

● MBSL starts decrypting disk and launches OS.
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