Cryptographic Security
Security Considerations

Factors:

• reliance on unknown, vulnerable intermediaries (e.g., Internet routers)
• parties may have no personal or organizational relationship (e.g., e-commerce)
• use of automated surrogates (e.g., agents)

Goals:

• privacy/confidentiality - information not disclosed to unauthorized entities
• integrity - information not altered deliberately or accidentally
• authentication - validation of identity of source of information
• non-repudiation - source of information can be objectively established

Threats:

• replay of messages
• interference (inserting bogus messages)
• corrupting messages
Cryptography

Forms of attack:
ciphertext-only
known-plaintext
chosen-plaintext
Forms of Cryptosystems

- **Private Key (symmetric):**
 A single key is used for both encryption and decryption.

 Key distribution problem - a secure channel is needed to transmit the key before secure communication can take place over an unsecure channel.

- **Public Key (asymmetric):**
 The encryption procedure (key) is public while the decryption procedure (key) is private.

Requirements:

1. For every message M, $D(E(M)) = M$
2. E and D can be efficiently applied to M
3. It is impractical to derive D from E.
Combining Public/Private Key Systems

Public key encryption is more expensive than symmetric key encryption
For efficiency, combine the two approaches

(1) Use public key encryption for authentication; once authenticated, transfer a shared secret symmetric key

(2) Use symmetric key for encrypting subsequent data transmissions
Secure Communication - Public Key System

User X → $E_Y(M)$ → C → $D_Y(C)$ → User Y

User Z

E_Y is the public key for user Y
D_Y is the secret key for user Y
Rivest-Shamir-Adelman (RSA) Method

User X

\[M^e \mod n \]

C

\[C^d \mod n \]

User Y

\((e, n) \)

\((d, n) \)

Encryption Key for user Y
Decryption Key for user Y
RSA Method

1. Choose two large (100 digit) prime numbers, p and q, and set $n = p \times q$
2. Choose any large integer, d, so that: $\text{GCD}(d, ((p-1)\times(q-1))) = 1$
3. Find e so that: $e \times d = 1 \pmod{(p-1)\times(q-1)}$

Example:
1. $p = 5$, $q = 11$ and $n = 55$.
 $(p-1)\times(q-1) = 4 \times 10 = 40$
2. A valid d is 23 since $\text{GCD}(40, 23) = 1$
3. Then $e = 7$ since:
 $23 \times 7 = 161 \pmod{40} = 1$
(Large) Document Integrity

Digest properties:

• fixed-length, condensation of the source
• efficient to compute
• irreversible - computationally infeasible for the original source to be reconstructed from the digest
• unique - difficult to find two different sources that map to the same digest (collision resistance)

Also know as: fingerprint

Examples: MD5 (128 bits), SHA-1 (160 bits)
(Large)Document Integrity

file

hash process

digest
 encrypt with sender’s private key

file

digital envelope
Guaranteeing Integrity

- File
- Hash process
- Decrypt with sender’s public key
- Compare
- Digest
- Digest
Digital Signatures (Public Key)

Requirements:
- unforgable and unique
 - receiver: knows that a message came from the sender (authenticity)
 - sender: cannot deny authorship (non-repudiation)
- message integrity
 - sender & receiver: message contents preserved (integrity)
 - (e.g., cannot cut-and-paste a signature into a message)

Public Key System:

sender, A: (E_A : public, D_A : private)
receiver, B: (E_B : public, D_B : private)

sender(A) ---- C = E_B (D_A (M)) --- receiver(B)
receiver(B) -- M = E_A (D_B (C)) --- M
Secure Communication (Public Key)

Handshaking

\[E_{PKB}(I_A, A) \]
\[E_{PKA}(I_A, I_B) \]
\[E_{PKB}(I_B) \]

\(I_A, I_B\) are “nonces”

nonces can be included in each subsequent message

PKB: public key of B; PKA: public key of A;