HARNESS: Heterogeneous Adaptable Reconfigurable
NEtworked SystemS

Jack Dongarra — Oak Ridge National Laboratory and

University of Tennessee, Knoxville
Al Geist — Oak Ridge National Laboratory

James Arthur Kohl — Oak Ridge National Laboratory
Philip M. Papadopoulos — Oak Ridge National Laboratory *
Vaidy Sunderam — Emory University

March 3, 1998

Abstract

This paper describes our vision, goals and plans for HARNESS, a distributed, recon-
figurable and heterogeneous computing environment that supports dynamically adapt-
able parallel applications. HARNESS builds on the core concept of the personal virtual
machine as an abstraction for distributed parallel programming, but fundamentally ex-
tends this idea, greatly enhancing dynamic capabilities. HARNESS is being designed
to embrace dynamics at every level through a pluggable model that allows multiple
distributed virtual machines (DVMs) to merge, split and interact with each other. It
provides mechanisms for new and legacy applications to collaborate with each other
using the HARNESS infrastructure, and defines and implements new plug-in interfaces
and modules so that applications can dynamically customize their virtual environment.

HARNESS fits well within the larger picture of computational grids as a dynamic
mechanism to hide the heterogeneity and complexity of the nationally distributed in-
frastructure. HARNESS DVMs allow programmers and users to construct personal
subsets of an existing computational grid and treat them as unified network comput-
ers, providing a familiar and comfortable environment that provides easy-to-understand
scoping. Similarly, a particular site could use HARNESS to construct a virtual machine
that is presented and utilized as a single resource for scheduling within the grid.

Our research focuses on understanding and developing three key capabilities within
the framework of a heterogeneous computing environment: 1) Techniques and methods
for creating an environment where multiple distributed virtual machines can collabo-
rate, merge or split; 2) Specification and design of plug-in interfaces to allow dynamic
extensions to services and functionality within a distributed virtual machine; and 3)
Methodologies for distinct parallel applications to discover each other, dynamically at-
tach, collaborate, and cleanly detach.

1 Introduction

Current software systems, like PVM and MPI, provide a utilitarian model for personally
managing a collection of computing resources into a single virtual machine (VM). Users

*Corresponding author: Philip M. Papadopoulos, (423) 241-3972, Oak Ridge National Laboratory, 1
Bethel Valley Rd. Oak Ridge, TN 37831-6367, phil@msr.epm.ornl.gov



are comfortable with the virtual machine abstraction and the encapsulation of resources
that it provides. However, current VM implementations have limited degrees of support
for handling faults and failures, utilizing heterogeneous and dynamically changing commu-
nication substrates, and enabling migrating or cooperative applications. Virtual machines
have the benefit of providing information scoping that is independent of an application
and insulates a program from the entire universe. We see the VM approach as a practi-
cal mechanism for a wide variety of, but certainly not all, applications that can utilize an
Internet or computational grid environment. For example, The VM approach is not ap-
propriate for anonymous communication services like web servers, because the VM builds
a wall where none is needed. In the space of dynamically adaptable (migrating, cooperat-
ing, or fault-tolerant) applications, monitoring agents must exist to watch for events that
affect a particular application. VMs are particularly compelling in this application domain
because they allow one to design several types of monitoring agents. These agents are part
of the virtual construction and can be used by all applications as a guaranteed service. The
distributed virtual machine (DVM) scoping of resources allows these agents to narrow their
focus (and thereby reduce complexity) from the “entire” Internet to a manageable subset.

While the encapsulation provided by a virtual machine is very compelling, it becomes
clear that sometimes entities from two different virtual machines would like to communicate
across VM boundaries and share resources. Processes within one virtual machine cannot
communicate using messages to tasks within another virtual machine without some sort
of sharing. While, TCP sockets allow physical machines to inter-communicate, we believe
a more powerful notion is to enable merging of distinct VMs into a single VM (plug to-
gether) and, just as easily, to split a single VM into multiple independent VMs (pull apart).
HARNESS will design and implement mechanisms to accomplish these goals.

Our research agenda is to explore the dynamic needs and capabilities of the extended
virtual machine environment. HARNESS is not about reinventing message passing APIs
(initially, both PVM and MPI semantics will be supported), but rather how to construct
a virtual environment that can dynamically change (almost) anything at runtime. To this
end, our focus is on

e Extension of the present network and cluster computing model to include multiple
distributed virtual machines, each with multiple users, where the virtual machines
can dynamically merge, split and in general collaborate with each other. Today’s
cluster computing frameworks typically involve the static configuration of a single
distributed virtual machine on which a user executes multiple applications.

e Development of a generalized plug-in paradigm for distributed virtual machines that
allows users or applications to dynamically customize, adapt and extend the dis-
tributed computing environment’s features to match their needs. This is analogous to
the plug-in interfaces in use today for serial applications (e.g. web browsers, graphics
editors, multimedia players), but extended to distributed systems.

e Creation of a collaborative computing framework that allows multiple parallel appli-
cations running in a heterogeneous distributed environment to dynamically attach,
interact and detach from one another. One existing example of such capabilities is
the CUMULVS [8] system, which allows collaborative computational steering. We will
provide a framework that supports a wide class of parallel tools and applications that
would benefit from being able to attach and detach from each other. The framework



will integrate discovery services with an API that defines baseline attachment and
detachment protocols between heterogeneous, distributed applications.

This extended abstract will highlight these issues and our plans for building such an
environment.

2 Where HARNESS Fits and Why Pluggability?

Although distributed computing frameworks continue to be expanded and improved, the
growing need in terms of functionality, paradigms, and performance quite simply are in-
creasing faster than the pace of these improvements. By developing a distributed computing
framework that supports plug-ins, it will be possible to extend or modify the capabilities
available to parallel applications without requiring immediate changes in the standards,
or endless iterations of ever-larger software packages. For example, a distributed virtual
machine could plug in modules for distributed shared memory programming support along
with message passing support, allowing two legacy applications, each written in their own
paradigm, to interoperate in the same DVM. This type of plug-in enables efficient adaptation
to many new capabilities, such as new advanced communication protocols or networks, pro-
gramming models, and encryption methods, without the need for extensive re-engineering
of the computing framework. To derive full benefit, HARNESS plug-ins will be dynamic in
nature, or “hot-pluggable.” Certain features or functionality will plug in temporarily, only
while needed by an application, and then unplug to free up system resources. Distributed
applications no longer will need to adjust to fit the capabilities of the distributed computing
environment. Instead, the environment can be dynamically adapted to the changing needs
of the application.

Beyond just plugging small functional components into the distributed environment, this
concept of pluggability can be extended to encompass the merging and splitting of DV Ms,
as well as the attachment of tools and applications in collaborative scenarios. Analysis
tools can plug into applications on-the-fly to collect information or steer computations.
Peer applications will be able to “dock” with each other to exchange intermediate results
or even active objects (e.g., Java bytecode) thereby facilitating collaborative computing at
the software level.

3 Technical Design

The HARNESS virtual machine model is a dynamically adapting configuration of het-
erogeneous machines that presents a unified distributed computing environment to users.
Machines, or sub-clusters, are brought into or taken out of the distributed virtual machine
by cooperating and collaborating users, either via a user interface or under application pro-
gram control. The DVM consists of a “software backplane” and a set of HARNESS plug-in
modules that execute on each machine to coordinate the interaction among machines and
applications. A small bootstrap kernel is initialized whenever a machine actively joins the
DVM. Modules are subsequently plugged into this kernel to set the functional level of the
new machine (or sub-cluster) or bring it up to par with the rest of the DVM. The kernel
itself essentially contains only the facilities necessary to incorporate plug-ins and to ensure
that additions on one machine (sub-cluster) are compatible with the rest of the DVM.
When the DVM first starts up, a set of required plug-ins are automatically loaded
(Figure 2). These are for communication, process control and resource management. Simple



virtual machines Cb //@
N split off
@ O mobile agents

HARNESS /
_ @ merge multiple collaborating sites
provides
multi-level

hot pluggabilit
pluggability ™ Crascigaion)
job scheduling
toolsand

applications [user application ] / debugger
> v

Software backplane kernel
with modulestor:

@ resource management
modules process control

communication
user defined features

Figure 1: HARNESS allows dynamic plug-ins at module, tool, and virtual machine levels

versions of each of these will be developed and supplied with the initial prototype. The user
can exchange any of the system-supplied plug-ins to customize the basic DVM features.
The DVM can also dynamically load additional plug-ins to take on capabilities that are
needed for a particular problem or mission.

HARNESS exhibits pluggability at three levels as illustrated in Figure 1.

3.1 Required kernel plug-ins

At the lowest plug-in level are HARNESS communications modules. The most basic service
provided by a DVM is an abstract communication method among programs, tools, and
virtual machine components. Depending upon the facilities required and the programming
environment to be supported in a given incarnation of HARNESS, different communication
plug-ins might be used. However, reliable, ordered, multi-way communication likely will
be a minimal requisite of all kernel-level communication plug-ins, which will be required to
deliver untyped messages to identifiable end-points within the executing DVM. Interfaces
will be defined that categorize plug-ins so that HARNESS can (simultaneously) utilize
several communication substrates such as TCP, UDP, Nexus, ST, and the Virtual Interface
Architecture (VIA). By rigidly defining inquiry and service interfaces, the HARNESS kernel



Distributed
host B Virtual

E Machine

communication

| HARNESS

E process control
L kenel | resource
management

other plug-ins

Figure 2: Distributed Virtual Machine is composed of kernels running on each computer
and each kernel is composed of 3 required modules (plus possibly others)

can determine if requested plug-ins meet the requirements of modules that already exist in
the protocol stack. The research challenges in this regard will be to evolve a methodology
for the semantic definition of the interfaces that each plug-in will provide, in a manner that
permits interchange and negotiation.

Layered on low level communication (but at a functionally equivalent level in the ap-
plication interface) are the machine configuration and process control plug-in modules. For
machine configuration, module functionality consists primarily of initialization functions
and architecture reconciliation with the rest of the DVM. However, hooks will be provided
to enable security modules for incorporating authentication and access control features.
Our initial HARNESS module for resource management will provide a means to add and
delete hosts, and to detect host failures within a single DVM. Additional functionality will
be developed to add the capability of merging two DVMs based on direct user input, or
based on a configuration file that specifies access restrictions.

Process management plug-ins will constitute the infrastructure for spawning application
task units, and for naming and addressing tasks in the dynamic DVM. Process control
modules are under development that provide functions for spawning and terminating groups
of tasks across the DVM, using a simple algorithm for task placement. Alternative plug-ins,
such as those provided by a computational grid environment, will use more sophisticated
task placement algorithms designed to load balance the work across the DVM, and will also
include support for basic resource usage accounting functions.

3.2 User-defined plug-ins

The real power of HARNESS will be derived from users themselves (or third parties) who
will be able to construct plug-in modules to reconfigure DVMs with different capabilities
(e.g., alternative load balancing schemes and situation-specific protocol stacks), or to create
programming environments of their choice, such as distributed shared memory and tuple-



space models. However, plug-in developers will have to keep in mind that, unlike a simple
sequential plug-in as found in web browsers, a distributed computing plug-in can have wide-
ranging effects on tasks that are scattered across the DVM. Distributed computing plug-ins,
therefore, fall into a taxonomy classified by the type of coordination that must occur across
the DVM while loading the plug-in:

e Module plugs into a single host (local daemon) and supplies features only to processes
running on that host. In this category no coordination is required between the system
of daemons that make up the DVM. An example of this class of plug-in is a local
process startup module.

e Module plugs into a single host, but supplies features that affect a set of hosts or
tasks across the DVM. Coordination for this class of plug-in requires at a minimum
a broadcast and acknowledgment from affected entities. An example is a third party
resource manager that wants to control the placement of tasks across the DVM to
optimize utilization of the resources.

e Module plugs into a set of (possibly all) the hosts in the DVM, and affects tasks across
the DVM. Coordination for this class of plug-ins requires careful synchronization be-
tween the components that make up the DVM. An example is the replacement of a
low-level communications plug-in, perhaps in response to traffic pattern changes.

3.3 Plug-in Administration

One of the research areas is to understand and develop the necessary coordination algo-
rithms for distributed computing plug-ins. Complicating factors are the need to make these
algorithms efficient, fault tolerant, and robust across heterogeneous machines. If one puts
aside the mechanics of how to dynamically load new code into an existing program (which
is done successfully in the Linux kernel, Netscape Plug-ins, and Java applets), then finding,
enabling, and using a plug-in (allowing two applications to plug together), or enabling two
virtual machines to merge, all go through the following steps:

1. Naming/Lookup — finding the plug-in, application, or virtual machine.

2. Inquiry - determine whether the plug-in is compatible, the application supports par-
ticular message semantics, or whether two VMs can merge/split.

3. Instantiation — loading and starting the code, application, or VM operation.

4. Negotiation — provide the basic attachment semantics to enable communication.

5. Communication — move information or messages across the plug-together interface.
6. Shut Down — “unplugging” the connection.

7. Unload - stopping a program, clearing loaded code, stopping part of a virtual machine.

These steps may be elaborate, simple, or non-existent, depending on the particular
plug-in. The critical thing to note is that whether one plugs in a low-level communication
substrate, higher-level tuple-space message semantics, or entire virtual machines, the basic
mechanism of enabling a plug-in is straightforward. What is not quite so simple, is exactly



what it means, for example, for two applications to plug together and how the programs can
benefit from this new capability. Again, the goal is to build a useful, dynamic, heterogeneous
environment to explore fundamental issues of how users and programs can benefit from the
dynamics that HARNESS enables.

3.4 Distributed Control and Arbitration

Unlike their physical counterparts, virtual machines require mechanisms to build, dismantle,
monitor, and modify their current configuration. Static models, like those found in MPI
implementations, have very simple virtual machine semantics: the DVM either exists or does
not exist. However, even in the static model, mechanisms are required to detect faults so
that the current virtual collection can be maintained or destroyed. A dynamic environment
like PVM employs a model where individual hosts are either part of the virtual collection
or they are not. However, the collection may change over time. The dynamic nature of
these environments and of HARNESS means that some mechanism must be employed to
keep track of membership. One difficulty with existing systems is the reliance on a single
ultimate arbitrator for machine reconfiguration. For example, there is the master pvmd
in PVM and the legion class object in Legion [7]. This asymmetric, almost client-server,
configuration and control mechanism has a single point of failure, and can’t address the
issue of multiple DVMs (each with their own control) trying to merge together. HARNESS
is designed around symmetric peer-based control to eliminate this single point of failure.

3.5 Extending Group Semantics to Multiple Virtual Machines

In addition to distributed membership algorithms, group semantics will be extended to
virtual machine collections to add more expressive power for the management and control
of HARNESS DVMs. Peer-based control helps in building a more robust environment but
helps little in abstracting virtual collections to simplify merging and splitting of DV Ms.
HARNESS will use group operations as a unifying abstraction to manage the complexity
of multiple tasks, hosts, and virtual machines. These will be the three fundamental entities
that can be grouped. Current message passing libraries like PVM and MPI provide funda-
mental operations like broadcast, reduction, and synchronization, for groups of tasks. MPI
goes a step further and defines set intersection, union and difference for groups of tasks. We
will extend these ideas to the notion of hosts and virtual machines. Hosts can be grouped
together to form a virtual machine set. Set operations on virtual machines will be defined
so that the user can compose new virtual machines, or use set operations to split or modify
a current configuration. Performing the set union of two DVMs to form a new one will be
analogous to adding a single host to an existing virtual machine.

4 Summary

The HARNESS distributed virtual machine model presents a dynamic heterogeneous adapt-
able computing platform for the user. It can be used as a flexible and general purpose
computing environment that is shared among multiple users, each of whom contributes a
subset of the resources. Each host in the DVM can be dynamically configured using plug-
ins for various communication protocols, resource management policies, and process control
features. The cooperating set of users can coordinate custom features across a given DVM.



Users can reconfigure contributed resources portion as warranted by specific situations. Ap-
plications can “dock” with one another using the HARNESS plug-in infrastructure to enable
cooperation like visualization and steering. HARNESS is focused on providing a framework
where essential building-block components can be dynamically plugged together to form an
application-specific operating environment. The architecture is modular from the low-level
internal functionality to high-level merging and dividing of entire virtual machines.

References

[1]

F. Berman, R. Wolski, S. Figeuria, J. Schopf, and G. Shoa. “Application-level Schedul-
ing on Distributed Heterogeneous Networks.” In Proceedings Supercomputing ’96, Pitts-
burgh, PA, November 1996.

J. Dongarra and E. Grosse. “Distribution of Mathematical Software Via Electronic
Mail.” Comm. ACM, 30(5):403-407, May 1987.

I. Foster and C. Kesselman. “Globus: A metacomputing infrastructure toolkit.” In-
ternat. J. Supercomputing Applic., 11(2):115-128, May 1997.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek, and V. Sunderam. PVM:
Parallel Virtual Machine A User’s Guide and Tutorial for Networked Parallel Com-
puting. MIT Press, Cambridge, MA, 1994.

A. Geist, J. Kohl, R. Manchek, and P. Papadopoulos. “New Features of PVM 3.4 and
Beyond.” In Dongarra, Gengler, Tourancheau, and Vigouroux, editors, EuroPVM’95,
pages 1-10. Hermes Press, Paris, 1995.

P. Gray and V. Sunderam. The IceT Project: An Enwvironment for Cooperative Dis-
tributed Computing, 1997. (http://www.mathcs.emory.edu/ gray/IceT.ps).

A. Grimshaw, W. Wulf, J. French, A. Weaver, and P. Reynolds. “Legion: The Next
Logical Step Toward a Nationwide Virtual Computer.” Technical Report CS-94-21,
University of Virginia, 1994.

J. Kohl, P. Papadopoulos, and A. Geist. “CUMULVS: Collaborative Infrastructure for
Developing Distributed Simulations.” In Proc. Eigth SIAM Conf. on Par. Proc. and
Sci. Comp., Minneapolis, MN, March 1997.

B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, B. Irvin, K. Karavanic,
K. Kunchithapadam, and T. Newhall. “The Paradyn Parallel Performance Measure-
ment Tool.” IEEE Computer, 28(11):37-46, November 1995.

J. Pruyne and M. Livny. “Parallel Processing on Dynamic Resources with Carmi.” In
Proc. Workshop on Job Scheduling Strategies, IPPS’95 , April 1995.

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The Complete
Reference. MIT Press, Cambridge, MA, 1996.

Emory University. Collaborative Computing Frameworks for Natural Sciences Research,
1997. (http://wwwcef.mathes.edu/ccf/overview.ps).



