
The CRISIS Wide Area Security Architecture�

Eshwar Belaniy Amin Vahdaty Thomas Andersonz Michael Dahlinx

Abstract

This paper presents the design and implementation of
a new authentication and access control system, called
CRISIS. A goal of CRISIS is to explore the systematic
application of a number of design principles to building
highly secure systems, including: redundancy to elim-
inate single points of attack, caching to improve per-
formance and availability over slow and unreliable wide
area networks, fine-grained capabilities and roles to en-
able lightweight control of privilege, and complete local
logging of all evidence used to make each access control
decision. Measurements of a prototype CRISIS-enabled
wide area file system show that in the common case CRI-
SIS adds only marginal overhead relative to unprotected
wide area accesses.

1 Introduction

One of the promises of the Internet is to enable a
new class of distributed applications that benefit from a
seamless interface to global data and computational re-
sources. A major obstacle to enabling such applications
is the lack of a general, coherent, scalable, wide area
security architecture. In this paper, we describe the ar-
chitecture and implementation status of CRISIS, a wide
area authentication and access control system. CRI-
SIS forms the security subsystem of WebOS, a system
that extends operating system abstractions such as se-
curity, remote process execution, resource management,
and named persistent storage, to support wide area dis-
tributed applications.

�This work was supported in part by the Defense Advanced Re-
search Projects Agency (N00600-93-C-2481, F30602-95-C-0014), the
National Science Foundation (CDA 9401156), Sun Microsystems,
California MICRO, Novell, Hewlett Packard, Intel, Microsoft, and
Mitsubishi. Anderson was supported by a National Science Founda-
tion Presidential Faculty Fellowship. For more information, please
seehttp://now.cs.berkeley.edu/WebOS , or send email to
vahdat@cs.berkeley.edu .

yComputer Science Division, University of California, Berkeley
zDepartment of Computer Science and Engineering, University of

Washington, Seattle
xComputer Science Department, University of Texas, Austin

Today, many wide area applications are limited by the
lack of a general wide area security system. As one ex-
ample, one of the goals of the WebOS project is to build
a scalable SchoolNet service, to provide a safe place
for the tens of millions of K-12 students in our states
(California, Washington, and Texas) to learn and play.
One challenge to making SchoolNet a reality is build-
ing scalable network services, for example, to provide
a highly available email account to every student, with-
out requiring a system administrator at every location.
This paper focuses on an equally difficult challenge –
maintaining the confidentiality and integrity of data and
resources, for example, so that unauthorized people can-
not obtain information about school children. As an-
other example, we (as a geographically distributed de-
velopment team) would like to use WebOS to allow us
to seamlessly access any file or computational resource
at any of our sites; once CRISIS is fully operational, we
plan to rely on it to protect our development environ-
ment from external attacks. As a final example, we have
built Rent-A-Server [Vahdat et al. 1997], a system to
dynamically replicate and migrate Internet services, to
gracefully handle bursty request patterns, and to exploit
geographic locality to reduce latency and congestion. To
be practical, however, RentAServer requires the ability
to securely access and control remote data and computa-
tional resources (e.g., CPUs and disks).

An initial approach for supporting secure access to re-
mote resources is to simply employ an authenticated lo-
gin protocol. Unfortunately, this approach is inadequate
because many wide area applications require more fine-
grained control over access to remote resources. Further,
the administrative overhead of creating and maintaining
separate accounts in all domains where users wish to run
jobs can be prohibitive. For example, it would be diffi-
cult to use authenticated login to support a user job run-
ning on an anonymous compute server in a remote ad-
ministrative domain that needs access to a single file on
the user's home file system.

Another approach for supporting secure wide area ap-
plications is to add fine-grained rights transfer to an ex-
isting authentication system, such as Kerberos [Steiner
et al. 1988]. However, while Kerberos has proven quite
successful for local area networks in a single adminis-

trative domain, it faces a number of challenges when
extended to the wide area. First, Kerberos has no re-
dundancy; security is undermined if even a single au-
thentication server or ticket granting server is compro-
mised, allowing an adversary to impersonate any princi-
pal that shares a secret with the compromised authenti-
cation server. In the wide area, the number of such sin-
gle points of failure scales with the size of the Internet.
Further, Kerberos requires synchronous communication
with the ticket granting server in order to set up commu-
nication between a client and server; in the wide area,
synchronous communication with a hierarchy of ticket
granting servers is required. Given that the Internet to-
day is both slow and unreliable, this can have a signifi-
cant effect on availability and performance as perceived
by the end-user. Although Kerberos servers could con-
ceivably be replicated to improve availability, the servers
would need to be geographically distributed to hide In-
ternet partitions, providing an intruder even more points
of attack.

Public key cryptography seems to hold out the promise
of improving availability and security in the wide area,
by eliminating the need for synchronous communication
with a trusted third party. The public key of every prin-
cipal (user or machine) can be freely distributed; pro-
vided the public keys are known, two principals can al-
ways communicate if they are connected, regardless of
the state of the rest of the Internet. Unfortunately, this
also comes at a cost; any compromise of a private key
requires that every entity on the Internet be informed of
the compromise. This is analogous to Kerberos, in that
the number of single points of failure (in this case, the
number of private keys) scales with the size of the Inter-
net.

In this paper, we present the design and implementa-
tion of CRISIS, a system for secure, authenticated ac-
cess to wide area resources. To avoid an ad hoc design
where features are thrown together in an attempt to pre-
vent all known types of security attacks, our approach
is the systematic application of a set of design princi-
ples. These principles are inspired by analogy with other
areas of distributed systems, where scalability, perfor-
mance and availability can be achieved through redun-
dancy, caching, lightweight flexibility, and localized op-
erations. A goal of the CRISIS architecture is to demon-
strate that these principles can also be applied to increas-
ing the security of wide area distributed systems.

Specifically, the principles underlying the design of
CRISIS include:

� Redundancy: There should be no single point of
failure in the security system; any attack must
compromise two different systems in two differ-
ent ways. For example, every certificate (such as
that identifying a user's public key) is revocable
within a few minutes; thus, an attacker must not
only steal a private key, but must do so without de-
tection or must also corrupt the revocation author-
ity. The notion of using redundancy to improve se-
curity is an old one, but it has not been systemat-
ically applied. For example, Internet firewalls are
used to protect organizations from security attacks
from the outside world, to hide the fact that most
local operating systems are notoriously insecure.
Unfortunately, this has reduced the pressure on lo-
cal operating systems to improve their security, so
that once inside a firewall, an attacker usually has
nearly free reign. Similarly, Internet browsers pur-
port to be able to safely execute Java applets, sup-
posedly rendering traditional operating system se-
curity irrelevant. The ongoing discovery of security
holes in Java verifier implementations [Dean et al.
1996, Sirer et al. 1997], however, has led us to run
remotely executing programs in a restricted envi-
ronment [Goldberg et al. 1996],in addition tous-
ing a verifier.

� Caching: CRISIS caches certificates to improve
both performance and availability in the presence
of wide area communication failures; while all cer-
tificates are revocable, they are given a revalidation
timeout to hide short-term unavailability of the re-
vocation authority due to reboots or Internet parti-
tions. This principle was inspired by research in
mobile file systems which argued that caching can
improve availability, e.g., for disconnected opera-
tion [Kistler & Satyanarayanan 1992].

� Least Privilege: Users should have fine-grained
control over the rights they delegate to programs
running on their behalf, whether local or remote; to
be useful, this control must be easy to specify. CRI-
SIS provides two mechanisms to support least priv-
ilege: transfer certificates, limited unforgeable ca-
pabilities which allow for confinement and can be
immediately revoked, and lightweight roles that can
created by users without the intervention of a sys-
tem administrator and without requiring changes to
access control lists.

� Complete accountability: CRISIS logs all evi-
dence used to determine if a request satisfies ac-
cess control restrictions, locally at the machine
guarding access. Most existing systems log only
coarse-grained authentication information, making

accountability in the face of rights transfer difficult
(e.g., some systems may want to grant a request
only if every member along a chain of delegation
is trusted). Our design differs from previous efforts
to add capability-like certificates to Kerberos [Neu-
man 1993], which require distributed logging by all
ticket granting servers involved in propagating a re-
quest in the wide area.

� Local Autonomy: Each user identity is associated
with a single administrative domain, and that do-
main is solely responsible for determining how and
when user privileges are distributed beyond the lo-
cal administrative domain. Each local domain is
also responsible for determining the level of trust
placed in any given remote domain. A design rely-
ing on deference to a global, centralized authority
is not only less flexible, but less likely to be widely
adopted [Birrell et al. 1986].

� Simplicity: Simple designs are easier to understand
and implement. In the context of security, simplic-
ity is especially important to minimize the probabil-
ity of an security hole resulting from an implemen-
tation error. A provably secure but highly complex
system architecture is unlikely to be either properly
implemented by system designers or properly un-
derstood by end users (for example, leading to er-
rors in setting up access control lists).

CRISIS is loosely based on the DEC SRC security
model [Lampson et al. 1991]. Relative to their work,
one of our contributions is to simplify the model by
using transfer certificatesas the basis of fine-grained
rights transfer across the wide area. Transfer certifi-
cates provide an intuitive model for both rights trans-
fer and accountability, as they allow a complete descrip-
tion of the chain of reasoning associated with a transfer
of rights. In addition,revocationis a first class CRI-
SIS operation; even privileges described by transfer cer-
tificates (which are typically valid only for a limited
period of time) can be revoked immediately. CRISIS
also provides for explicit reasoning about the state of
loosely synchronized clocks, an important consideration
for wide area applications. Further, CRISIS supports
user-defined lightweight roles, to capture persistent col-
lections of transferred rights (e.g., “Tom running a job on
remote supercomputer”). Finally, in contrast to the DEC
SRC work which was implemented in the kernel of a
platform that is no longer available, CRISIS is designed
to run portably across multiple platforms, a requirement
for a wide area security system to be useful in practice.

The rest of this paper describes CRISIS in more detail.

We first provide some motivating examples for CRISIS
along with a quick review of relevant technology in Sec-
tions 2 and 3. We then outline the CRISIS architecture in
Section 4, followed by a detailed example of how CRI-
SIS is used in Section 5. We evaluate the performance
of our implementation in Section 6, and discuss related
work in Section 7. We summarize our results in Section
8.

2 Motivation

CRISIS is the security subsystem for WebOS [Vahdat
et al. 1997]. The goal of WebOS is to provide oper-
ating system primitives for wide area applications now
available only for a single machine or on a local area
network. Such abstractions include authentication, au-
thorization, a global file system, naming, resource al-
location, and an architecture for remote process execu-
tion. To date, wide area network applications have been
forced to re-implement these services on a case by case
basis. WebOS aims to ease and support network appli-
cation development by providing a substrate of common
OS services.

The focus of this paper is the architecture of the WebOS
security subsystem which cuts across all other aspects
of the system. Below, we briefly describe a number of
scenarios we have used to drive the CRISIS design:

� SchoolNet: One motivating example is to provide
Internet services such as email, Web page hosting,
and chat rooms for very large numbers of school
children. One desirable feature of such a system
is to allow geographically distributed children to
be able to interact with one another, while keep-
ing both the interactions and the identities of those
involved private. Further, to be useful to school
children, the security system must work with only
limited direction from end users (e.g., you cannot
trust a fifth grader to correctly set up access control
lists).

� Wide Area Collaboration: Users in separate admin-
istrative domains should be able to collaborate on
a common project. For example, a project's source
code repository should be globally accessible to au-
thorized principals for check in/check out; in ad-
dition, unique hardware (such as supercomputers)
should be seamlessly accessible independent of ge-
ographic location.

� Geographically Distributed Internet Services: If it
were easy to geographically replicate and migrate
Internet services, end-users would see better avail-
ability, reduced network congestion, and better per-
formance. Today, only the most popular sites can
afford to be geographically distributed; for exam-
ple, Alta Vista [Dig 1995] has mirror sites on ev-
ery major continent, but these mirrors are physi-
cally administered by DEC, manually kept up to
date, and visible to the end user. One of our goals
is to make all this transparent, to make it feasible
for third party system administrators to offer com-
putational resources strategically located on the In-
ternet for rent to content providers; in the limit,
content providers could become completely virtual,
with the degree and location of replicas dynami-
cally scaled based on access patterns.

� Mobile Login: Users should be able to login and to
access resources from any machine that they trust.
Secure login requires mutual authentication. Thus,
users will only log into machines certified to have
been booted properly by a trusted system admin-
istrator. Likewise, local system administrators en-
force which users are allowed login access (e.g. lo-
gin to Berkeley by Stanford users would be disal-
lowed outright). Finally, users should be allowed
to adopt restricted roles representing the amount of
trust they have for the machine being logged into.

� Encrypted Intermediate Caches: To improve appli-
cation performance, untrusted third party servers
may be utilized to cache encrypted private data. A
special key would be created to encrypt the data
rather than using the key of a particular princi-
pal; this key would then only be distributed to au-
thorized users. One path to implementing such
an application would be the use of Active Net-
works [Tennenhouse & Wetherall 1996] where in-
telligent routers can be utilized to perform the
caching.

� Large Scale Remote Execution: Principals should
be able to exploit global resources to run large
scale computations. For example, NASA is plac-
ing petabytes of satellite image data on-line for use
by earth scientists in predicting global warming. It
is impractical to access this information using the
current Internet “pull” model; scientists need to be
able to run filters remotely at the data storage site
to determine which data is useful for download.
These filters should have access to necessary input
(e.g., the filter executables) and output files (e.g.,
files into which the results are to be stored) on the
scientist's machine, but to no other potentially sen-

sitive data. Further, the remote computation envi-
ronment should be protected from any bugs in the
filters written by the scientists.

3 Background

One of the first steps in providing a secure Internet infor-
mation system is to allow for encrypted, authenticated
communication between arbitrary endpoints over an in-
herently insecure wide area network. Traditionally, the
two choices for encryption and authentication are using
secret key or public key cryptography. Encryption en-
sures an eavesdropping third party cannot alter the in-
tegrity or determine the content of the communication.
Authentication allows for the identity of the principal at
the opposite end of a communication link to be securely
identified.

We choose public key over secret key (though one can
be simulated with the other [Lampson et al. 1991])
because of the synchronous communication usually re-
quired by secret key systems. Secret key systems require
a trusted third party that shares a secret with every poten-
tial communication endpoint. Although this requirement
impacts system performance and availability by impos-
ing an extra step in initiating communication, it is rea-
sonable in the local area because the number of commu-
nication endpoints are limited and the network is more
reliable. In the wide area, such a requirement strains
system scalability because synchronous communication
with a hierarchy of trusted third parties is required. Pub-
lic key systems also require trusted third parties to pro-
duce certificates identifying principals with their public
keys. However, these certificates can be cached (with a
timeout), removing the need for synchronous communi-
cation with a third party to set up a communication chan-
nel. Allowing for direct communication in this fashion
offers two advantages. First system availability is im-
proved because an unavailable third party does not nec-
essarily prevent communication. Second, system perfor-
mance is improved by removing a communication step
to a third party behind a potentially slow link.

In addition to public key encryption, we employ a num-
ber of other technologies to assist in development and to
reduce the chance of introducing security flaws. We use
Janus [Goldberg et al. 1996] to “sandbox” locally run-
ning applications that are not fully trusted. Janus runs
at user-level, employing the UNIX System Vproc file
system to intercept potentially dangerous system calls
and to disallow accesses outside of each process's de-

fined sandbox. The implementation has negligible per-
formance overhead and can sandbox unmodified appli-
cations. CRISIS also employs the SSL [Hickman & El-
gamal 1995] protocol to provide transport network layer
privacy and integrity of data, using encryption and mes-
sage authentication codes. SSL supports a wide variety
of cryptographic algorithms and is being deployed into
wide area applications. Finally, as will be described in
the next section, we use the X.509 syntax [Con 1989]
to encode all certificates in CRISIS. The ITU-T Recom-
mendation X.509 specifies the authentication service for
X.500 directories, as well as the X.509 certificate syntax.
The X.509 certificate syntax is supported by a number of
protocols including PEM, S-HTTP, and SSL.

4 System Architecture

The goals of the CRISIS architecture can be described
in two parts. First, users should be allowed secure ac-
cess to global resources such as files, CPU cycles, or
storage from anywhere in the world. Next, resource
providers need mechanisms for authenticating those re-
questing their services and for authorizing those with the
proper credentials. In this section, we provide a high-
level view of the system architecture before detailing ex-
ample usage in the next section.

In the following discussion, we assume the presence of
three basic entities, adapted from the SRC logic [Lamp-
son et al. 1991]:

� Principals: Principals are sources for requests. Ex-
amples of principals include users and machines.
Principals make statements (requests, assertions
etc.), have names, and can be associated with priv-
ileges.

� Objects: Objects are global system resources such
as files, processors, printers, memory, etc.

� Reference Monitors: Once an access request from
a principal to an object is authenticated, the refer-
ence monitor determines whether or not to grant the
principal access to the object.

Consider the scenario where a user in California wishes
to run a job at Texas which requires access to two input
files. In turn, the job at Texas decides to subcontract a
portion of its work to a machine in Washington. This
sub-contracted work only needs access to the second in-
put file. More formally,P1 is a user in California, while

O1 RM1

O2 RM2

P1

Job1

P2

Job2

P3

1

2

Texas

3

4

5

6

Washington

California

Figure 1: This figure describes a sample scenario where
a user,P1 requests a machineP2 to run a job on its be-
half. In turnP2 sub-contracts a portion of the job to an-
other machineP3 in a separate administrative domain.

P2 andP3 are machines willing to run jobs located at
Texas and Washington respectively.O1 andO2 are ob-
jects (e.g. input files) located in California, withRM1

andRM2 their associated reference monitors. Assum-
ing thatP1 (and onlyP1) possesses access privileges to
O1 andO2, consider the following sequence of events
(summarized in Figure 1):

P1 states that P2 can access O1

and O2 until time T1.
P1 requests that P2 execute a
job on its behalf (steps 1 and
2).
P2 requests access to O1 from
RM1 (step 3).
P2 states that P3 can access O2

until time T2.
P2 requests that P3 execute a
job on its behalf (steps 4 and
5).
P3 requests access to O2 from
RM2 (step 6).

To carry out the above scenario in WebOS, the security
system must support:

� Statements: Statements may be requests, declara-
tions of privileges, or transfer of privileges. The
identity of the principal making a statement must
be verified, and all statements must be revocable.

� Associating privileges with processes: While a par-
ticular machine may possess a large set of privi-
leges, individual processes only have access to a
subset of these privileges. Similarly, users may
only wish to grant a subset of their available privi-
leges to each of their programs.

� Distributing statements across the wide area: A
protocol for trust between different administrative
domains must be established to allow for valida-
tion of privileges and identities across administra-
tive boundaries.

� Time: The transfer of privileges can only be valid
for a limited period of time. CRISIS requires a clear
protocol for reasoning about time, and a method-
ology for isolating failures in cases where clock
skews lead to a security breach.

� Authorization: When a reference monitor receives
a request to access an object, it must determine the
identity of the requester, ascertain the principal's
privileges, and finally decide whether the request is
authorized.

Our solutions to each of the above are described in the
following subsections.

4.1 Validating and Revoking Statements

All statements in CRISIS, including statements of iden-
tity, statements of privilege, and transfer of privilege, are
encoded incertificates. CRISIS certificates are signed
by the principal making the statement and then counter-
signed by a principal of the signer's choosing. Each
signature uses a separate timeout: the principal's signa-
ture is issued with a long timeout, while the counter-
signature is issued with a short timeout. The counter-
signer (i) checks if the statement has been revoked
and (ii) refreshes itsendorsement(by applying a new
counter-signature with a new timeout to an expired cer-
tificate) of certificates, indicating that the rights are are
still valid. Since we are building a public key system, the
certificate's author need not be aware of the certificate's
destination when it is created. Any principal with access
to the certificate can determine the statement's author.
Our certificates use the X.509 [Con 1989] standard for-
mat. CRISIS employs two basic types of certificates:

� Identity Certificates: An identity certificate asso-
ciates a public key with a principal for a certain pe-
riod of time. Depending on the type of principal
(person, machine, process, etc.), an identity certifi-
cate can also specify a number of the principal's
properties, such as name or organization.

� Transfer Certificates: Transfer certificates transfer
a subset of a principal's privileges to another prin-
cipal. A principalP1 can use a transfer certifi-
cate to transfer toP2 access rights to any objects
it owns (e.g.O1 andO2). These transfers are ex-
pressed as a list of capabilities, resulting in arbitrary
length certificates. Individual transfer certificates
can be chained or they can disallow further trans-
fers. Each successive link in a chain (e.g., fromP2
toP3) can only refine, and never expand, the rights
transferred. Transfer certificates are presented to
reference monitors as proof of access rights. The
reference monitor is able to verify the sequence of
statements and the identity of each principal in the
chain, ensuring complete accountability.

Of course, identity certificates must be signed by an au-
thority trusted by both endpoints of a communication
channel (see section 4.3 for the case where no single au-
thority is so trusted by both parties). This trusted third
party, called the Certification Authority (CA), maps pub-
lic keys to principals and maintains a Certificate Revoca-
tion List enumerating all public keys that have changed
or that have been knowingly compromised. In CRI-
SIS, CA's sign all identity certificates with a long time-
out (usually weeks) and identify a locally trusted on-line
agent (OLA) responsible for counter-signing the identity
certificate with a relatively short timeout (usually hours).

The redundancy of a split CA/OLA approach offers a
number of advantages. First, to successfully steal keys,
either both the OLA and CA must be subverted or the
CA must be subverted undetected. By making key revo-
cation a simple operation (as described below), we are
able to pro-actively revoke keys when a CA comes under
attack. Further, the CA is usually left off-line since cer-
tificates are signed with long timeouts, increasing sys-
tem security since an off-line entity is more difficult
to attack. Another advantage of the split CA/OLA ap-
proach is that a malicious CA is unable to revoke a user's
key, issue a new identity certificate, and masquerade as
the user without colluding with the OLA [Crispo & Lo-
mas 1996]. Also, while a malicious OLA can mount
a denial of service attack, the CA is still able to re-
issue new certificates employing a different OLA. Fi-
nally, this approach improves system performance be-
cause certificates can be cached for the timeout of the

counter-signature, removing the need for synchronous
three-way communication in the common case.

We generalize the OLA to make revocation a first class
operation in CRISIS. All certificates are revocable mod-
ulo a timeout. To revoke a particular privilege, the OLA
which endorses the certificate must be informed that the
certificate should no longer be endorsed. Once the time-
out period for the endorsed certificate expires, the rights
described by the certificate are effectively revoked be-
cause the OLA will refuse re-endorsement for that cer-
tificate. Revocation is used not only for exceptional
events such as stolen keys. For example, the rights of
a remote job are revoked upon its completion or when a
user decides to kill the job. As another example, privi-
leges associated with a login session are revoked on user
logout.

The use of transfer certificates in CRISIS also simplifies
both the implementation of and reasoning about dele-
gation, which allows one principal to act on behalf of
a second principal. Such delegation is useful in many
contexts. For example, a database server will receive re-
quests from many users, with individual operations ex-
ecuted in the context of the rights of a single user. It
is important that a user's privileges are not amplified by
employing the rights of the server. Such delegation is
difficult to properly design. For example, early versions
of UNIX sendmail weresetuid rootto allow the pro-
gram to write to any user's mailspool. However, a bug
allowed users to write any system file to a mail message
addressed to themselves.

In CRISIS, users sign transfer certificates allowing
servers to act on their behalf for accessing files, running
jobs, etc. Servers provide these certificates to reference
monitors when making requests on behalf of a user (as
opposed to certificates describing their own rights), re-
ducing the chance of the server being granted access on
its own behalf when acting on a user's behalf. Relative
to the SRC system [Lampson et al. 1991], where refer-
ence monitors use a pull model to search for proof that a
principal should be granted access, CRISIS transfer cer-
tificates reduce complexity and hence the chance that an
implementation error will lead to unauthorized accesses.

4.2 Processes and Roles

4.2.1 Security Domains

Given the abilities to authenticate principals, CRISIS
also requires a mechanism for associating privileges

with running processes. Each CRISIS node runs a se-
curity manager responsible for mediating access to all
local resources and for mapping credentials tosecurity
domains. In CRISIS, all programs execute in the con-
text of a security domain. For example, a login session
creates a new security domain possessing the privileges
of the principal who successfully requested login. As
will be described in Section 5.1, a security domain, at
minimum, is associated with a transfer certificate from
a principal to the local node allowing the node to act on
the principal's behalf for some subset of the principal's
privileges.

Processes are able to access wide area resources through
resource providers responsible for managing each re-
mote resource, such as processor cycles or disk space. In
conjunction with security managers, resource providers
determine the access privileges of processes requesting
resources. CRISIS nodes currently run the following re-
source providers, each with their own set of reference
monitors:

� Process Managers- A Process Manager is respon-
sible for executing jobs on requested nodes. The
Process Manager identifies the security domain as-
sociated with a request, obtains the credentials as-
sociated with the domain from the security man-
ager, and then attempts to satisfy the request.

� WebFS- A WebFS server implements a cache co-
herent global file system. Similar to the Pro-
cess Manager, upon receiving a file access request,
the WebFS server determines the security domain
from the security manager. Using this information,
the WebFS server determines whether the access
should be granted or denied.

� Certification Authorities- As described above,
CA's take requests for creating identity certificates.
The CA maintains a reference monitor with the list
of principals authorized to create, modify, or inval-
idate identity certificates.

The interaction between resource providers, security do-
mains, and security managers are described through the
CRISIS protocols for login, file access, and remote pro-
cess execution in Section 5.

4.2.2 Roles

In the wide area, it is vital for principals to restrict the
rights they cede to their jobs. For example, when log-

Consultant

Bob as

Professor

Bob as

Remote Jobs

Bob running Bob at

Home

Web Surfer

Bob as

Game Player

Bob as

ACL (A): Bob as Web Surfer

Professor Professor

Bob as 162 Bob as 262

Professor Bob

Figure 2: This figure describes how users may arrange
their roles in a hierarchical fashion where each node in
the tree possesses all the privileges of all of its direct
descendants.

ging into a machine, a principal implicitly authorizes
the machine and the local OS to speak for the princi-
pal for the duration of the login session. Whereas with
private workstations, users generally have faith that the
local operating system has not been compromised, confi-
dence is more limited when using anonymous machines
across the wide area, for example, to run large scale sim-
ulations. Roles associate a subset of a user's privileges
with a name, allowing users a convenient mechanism for
choosing the privileges transferred to particular jobs.

A principal (user) creates a new role by generating an
identity certificate containing a new public/private key
pair and a transfer certificate that describes a subset of
the principal's rights that are transferred to that role; an
OLA chosen by the principal is responsible for endors-
ing the certificates. Thus, in creating new roles, princi-
pals act as their own certification authority. The prin-
cipal stores the role identity certificate and role trans-
fer certificate in apurseof certificates that contains all
roles associated with the principal. The purse is stored
in the principal's home domain. While it is protected
from unauthorized access by standard OS mechanisms,
the contents of the purse are not highly sensitive since
each entry in the purse simply contains a transfer certifi-
cate naming a role and potentially describing the rights
associated with that role. The principal also stores each
role's private key —encrypted by a password unique to
the role —in the file system.

CRISIS roles are more lightweight than the roles de-
scribed in other security systems (e.g., [Lampson et al.
1991]). First, they can be created by the user without re-
quiring intervention from a centralized authority, allow-
ing the CA to remain off-line. Next, while ACLs can be
modified to describe a particular role's privileges, roles
can also act as persistent lightweight capabilities. The
transfer certificate used to create the role can describe

the exact access rights possessed by the role (e.g., read
access to files A, B, and C).

Further, transfer certificates can be used to arrange roles
in a hierarchy, with the principal's most privileged role
serving as the hierarchy's root. Such a hierarchy can be
used in two ways. In asingle inheritancemodel, each
role possesses a strict subset of its parent's privileges.
Thus, ACLs can be used to describe the “minimum”
privilege level required to access a given object (a role is
given access to an object only if it is a direct ancestor of
a role in the object's ACL). With amultiple inheritance
model, roles can draw upon the privileges of multiple
ancestors. Figure 2 presents an example of such a hier-
archy and applications of the two models. The object,A,
can only be accessed byBob as Web Surferor one of its
direct ancestors (Bob at Homeor Bob). The Figure also
illustrates thatBob as Professor(and its descendants)
inherits privileges from bothBoband the generic,Pro-
fessor. This may be useful, for example, to express that
professors are able to read student accounts but to allow
such access to Bob only when he is acting as a professor.

In CRISIS, creating a new group is similar to creating
a new role. A principal creates a new group by acting
as a CA to create an identity certificate naming the new
group. The creating principal then signs transfer certifi-
cates to all group members, specifying both membership
and any update privileges associated with the group, for
example, whether the member has the ability to add or
remove other group members. The newly created group
name can then appear on ACLs like any other principal
name.

4.3 Hierarchical Trust

We assume the presence of multiple, autonomous ad-
ministrative domains, and that each domain has at least
one trusted CA/OLA pair. CA's in different admin-
istrative domains are not equally trusted. Thus, CA's
are arranged hierarchically, with individual CA's deter-
mining which parents, siblings, or children are trusted
(and to what extent). The hierarchical arrangement of
CA's builds on our model of implementing roles, where
principals act as CA's in creating roles with the locally
trusted CA acting as the principal's parent in a global
hierarchy.

The manner in which the hierarchy is traversed is based
on the theory presented in [Birrell et al. 1986]. In this
model, a CA cannot speak for a principal who belongs to
a descendant's domain, allowing separate administrative

CA
NOW

CA CAL CA UW
CA

Texas

rootCA

P P

P

1 2

4
P

3

Figure 3: This figure describes how principals in differ-
ent administrative domains can mutually authenticate. A
path of trust is established through the principals' least
common ancestor.

domains to maintain local autonomy. Thus, a principal
receiving a certificate endorsed by a CA in a foreign ad-
ministrative domain believes the certificate valid only if
apath of trustis present from the local domain to the re-
mote domain. The presence of such a path is determined
by traversing the least common ancestor of the two do-
mains in the CA hierarchy. Principals trust their local
CA more than any of the CA's ancestors in the CA hi-
erarchy. Thus, if an ancestor of a CA is compromised,
transactions among local principals are not affected, in-
creasing system availability and keeping trust as local as
possible.

Figure 3 depicts an example of the arrangement of prin-
cipals in multiple administrative domains. In this exam-
ple, PrincipalsP3 andP4 must establish a path of trust
through the root CA to successfully authenticate one an-
other. Demonstrating the principle of locality of trust,
PrincipalsP1 andP2 need only establish a path of trust
through their common ancestor one level up to mutually
authenticate.

4.4 Time

Since all CRISIS certificates contain timeouts and since
these certificates are distributed across the wide area,
the system must make assumptions about clock synchro-
nization. Further, CRISIS must protect against security
attacks exploiting a node's notion of time. If time on
a machine is corrupted, statements can be used beyond
their period of validity.

Today, most workstations possess fairly accurate clocks
that are periodically synchronized with any of a num-
ber of external sources. However, time-sensitive ap-
plications (and hence, reference monitors) may require

guarantees above and beyond such loose synchroniza-
tion, for example, that the local clock is periodically syn-
chronized with a trusted external source. Other appli-
cations will require an invoice of all assumptions made
during a computation in the case where data is corrupted
or leaked to determine the exact cause of the corruption,
assuring complete accountability.

For CRISIS, we assume the presence of replicated,
trusted time servers. Principals producing certificates
with timeouts (e.g., CA's and OLA's) contact these
servers periodically to obtain signed certificates con-
taining the current time to validate the principal's no-
tion of time. If the principal's time differs by more
than a few seconds (i.e., within network delay bounds)
from the time supplied by the server, the principal as-
sumes that either the time server or the local operating
system/hardware has been compromised (to determine
which, a second server might be contacted). Such com-
munication with time servers need not be synchronous,
since the time certificates can be cached to prove recent
synchronization.

In CRISIS, time certificates are provided to resource
managers to prove that a node's notion of time closely
matches the value reported by a trusted time server at
some recent point in the past. CRISIS identity and
transfer certificates report time values (such as expira-
tion time) relative to the value contained in a chained
time certificate. While use of time certificates does not
guarantee that time-based attacks can be avoided or pre-
vented, it can aid in determining the cause of certain se-
curity violationspost-mortem. Thus, if a security breach
is detected, analysis of certificates used to gain unautho-
rized access can be used to determine the cause of the
attack. For example, examination of the certificates may
show that a node attempted to use an expired time certifi-
cate or that a time server was compromised and reported
faulty values of time.

4.5 Authorization

Once a request has been securely transmitted across the
wide area, and properly authenticated, the remaining
task isauthorization, determining whether the principal
making the request should be granted access. Tradition-
ally, both Access Control Lists (ACLs) and capabilities
have been used to describe the set of principals autho-
rized to access a particular object. Since both ACLs and
capabilities have advantages in different situations, we
use a hybrid model similar to that proposed in [Neuman
1993].

The targets of CRISIS ACLs are service-specific. Cur-
rently, file ACLs contain lists of principal's authorized
for read, write, or execute access to a particular file. Pro-
cess execution ACLs are a simple list describing all prin-
cipals permitted to run jobs on a given node. CA ACLs
contains the list of principals authorized to update, mod-
ify, or revoke identity certificates.

A process requests access to an object by contacting the
object's reference monitor. In CRISIS, reference mon-
itors are implemented on a service-by-service (e.g., file
service) basis and form separate modules in the security
manager. For example, the WebFS reference monitor is
a separate module in the CRISIS security manager.

CRISIS takes a push-based approach to providing cre-
dentials for authorization: requesters are responsible for
proving they are authorized to access to an object. Thus,
principals transmit to reference monitors their request
in conjunction with a list of certificates describing their
credentials. This list of certificates may simply contain
the requester's identity certificate or may contain a more
elaborate set of transfer certificates. The alternative to
push, a pull-based mechanism where the reference mon-
itor requests necessary credentials from principals, can
provide more flexibility; however, it also complicates
system design and can reduce performance.

To determine whether a request for a particular operation
should be authorized, the reference monitor first verifies
that all certificates are signed by a public key with a cur-
rent endorsement from a trusted CA and OLA. In doing
so, the reference monitor checks for a path of trust be-
tween its home domain and the domains of all signing
principals (as described in Section 4.3). In the common
case, the existence of such paths is cached. The refer-
ence monitor then checks that none of the timeouts have
expired and that time is reported relative to a value stated
by a trusted time server (again by checking for a path of
trust to the time server).

Once the above steps are taken, the reference monitor is
ensured that all certificates are well-formed and valid.
Given this knowledge, the reference monitor then re-
duces all certificates to the identity of single principals.
For transfer certificates, this is accomplished by working
back through a chain of transfers to the original grant-
ing principal. The requesting principal is able to act on
the behalf of the reduced list of principals. Finally, the
reference monitor checks the reduced list of principals
against the contents of the object's ACL, granting au-
thorization if a match is found.

Login
Process

Login
Process User

Purse

User
Purse

Security
Manager

Security
Manager

Home Node

Security
Manager

Security
Manager

Login Node

1

2

3

4

5

6

7

8

UserUser

OLAOLA

Login
Process

Login
Process

Figure 4: This figure details the steps used in CRISIS to
authenticate a principal and authorize the principal for
login.

5 CRISIS Protocols

Given the above high level description of the CRISIS ar-
chitecture, we will now describe how the various system
components interact to allow secure execution of rou-
tine tasks, including login, file access, and job execution
(operations that potentially cross machine and/or admin-
istrative boundaries).

5.1 Login

The goal of login is to authenticate a principal to a node
and to create a shell process with the principal's privi-
leges. We achieve this by associating a security domain
on the login node with a transfer certificate granting the
node the privileges of the login role. We assume that
each role is associated with ahome domainand that
users wishing to log in must authenticate their identity
to their home domain. By minimizing the trust placed in
the login node and by choosing a role with an appropri-
ately small set of privileges, we enhance security and re-
duce the danger of key compromise (private keys never
leave the home node). Further, the home domain pos-
sesses autonomy in determining the set of sites where
principals are allowed to log in. The disadvantage of
this approach is that all attempts to authenticate the user
must involve the home domain, potentially decreasing
system availability. In the future, we plan to investigate
using smart cards in place of home domain machines to
address this issue; we outline how this scheme would be
integrated in the CRISIS architecture at the end of this
subsection.

Initially, we consider the following login sce-

nario: a principal accesses a shared workstation
by entering a globally unique role name (e.g.,re-
motetom@cs.washington.edu). This role corresponds
to the level of trust the principal places in the login node,
and to the amount of rights required to successfully
complete the desired tasks, for example, reading mail.
Once the role is chosen, the principal trusts the OS of
the login node with all the privileges associated with
that role, since the OS is free to masquerade as the
role (at least for the duration of the granted transfer
certificate). The login sequence is described in Figure 4
and is summarized below:

1. The principal types in a suitable role name to the
login process and enters the password for that role.

2. The login process sends the role name to the local
security manager.

3. The security manager at the login node determines
the home domain of the specified role (currently ex-
plicitly described in the role name) and contacts
the security manager at the role's home domain.
The two security managers mutually authenticate
using SSL and a trusted hierarchy of CA's and on-
line agents.

As part of this mutual authentication, the login node
transmits a certificate signed by a local system ad-
ministrator stating that the administrator believed
that the login node had not been tampered with at
boot time. The home node uses this information to
aid in the login authorization decision.

4. The home domain uses the password to decrypt
the locally stored private key for the specified role
name. If the key is successfully decrypted, the
home security manager looks up the credentials as-
sociated with the specified role in the principal's
certificate purse.

5. The certificates are presented to the home domain
OLA for endorsement. The OLA sends back the
endorsed certificates. The home domain's security
manager can optionally update the principal's purse
with the endorsements.

6. The home domain signs transfer certificates (on the
principal's behalf), transferring all the privileges
associated with the specified role to the security
manager on the login node.

7. The result of the login request is returned to the lo-
gin process.

8. If the login is successful, the login process creates a
login shell for the user. The security manager cre-
ates a new security domain, associating the login
shell with the set of certificates transmitted by the
home node.

For a successful login, the result of the above sequence
of steps is to allow the login node to act on behalf of
the role for a time period determined by the home do-
main's security manager. Any processes spawned by the
login shell are by default assigned to the same security
domain. The protocols employed to access resources
through this security domain are detailed in the next two
subsections.

One limitation of the above scheme is that the login node
is trusted with the role's password (though not its private
key). A well-behaved machine will erase the password
from memory as soon as it is transmitted to the home do-
main. Similarly, the local file and memory cache should
be flushed upon logout to ensure that private state is not
leaked even if the machine is compromised at a later
time. Another limitation with the protocol is that the
principal's home domain must be available at the time
of login (i.e. no network failures/partitions), or authen-
tication becomes impossible. We believe that both of
these limitations are inherent given the current state of
hardware/software systems. However, our design also
supports the use of specialized, trusted hardware (such
as smart cards or a portable computer) to enhance secu-
rity (keep password from local machine) or higher avail-
ability (no need to contact home domain for login) or
both.

A trusted hardware proxy, such as a smart card or a
portable computer, can also be used to separate the tasks
of authentication (principals proving their identity) and
authorization (determining that the principal is privi-
leged to login to the remote machine with the speci-
fied role)1. The proxy can store both a role's private
key and the associated password to implement a chal-
lenge/response protocol at login as follows2. When the
home domain is notified of a login attempt, it encrypts
a random number in the role's public key and transmits
the result to the login machine's security manager. The
proxy prompts the user for a password needed to de-

1Even if a smart card is used for authentication, it may still be de-
sirable to require joint endorsement of a login session from both the
target login machine and the user's home domain. Thus, if remote lo-
gin is locally authorized, the home domain may disallow the login as
a matter of policy. For example, login to a competitor's machine may
be disallowed to prevent spoofing attacks.

2We present one simple scheme; other zero-knowledge algorithms
such as Fiat-Shamir [Fiat & Shamir 1987] could also be utilized.

User-Level

Kernel

WebFS
Server

WebFS
Server

ACLsACLs

Vnode LayerVnode Layer

Security
Domain

Process

Security
Manager

Security
Manager

Node A

WebFS
Server

WebFS
Server

Security
Manager

Security
Manager

Node B

1 2

3

4
5

6

7

89

Figure 5: This figure describes the sequence of opera-
tions in accessing a remotely stored file through WebFS,
a global file system.

crypt a locally stored (but encrypted) private key file for
the role. The private key is used to decrypt the num-
ber, which is then transmitted back to the home domain.
If the correct number is returned, the process of produc-
ing proper transfer certificates is followed as enumerated
above. As a separate optimization, the task of authoriza-
tion can be co-located with the hardware proxy to im-
prove both the performance and availability of the login
process (while trading off centralized autonomy in au-
thorizing the locations from where particular roles are
allowed login).

5.2 Accessing a Remote File

In this section, we demonstrate how the privileges asso-
ciated with a CRISIS security domain are used to access
a remotely stored file. While our techniques are general,
we restrict our discussion to our specific implementa-
tion environment. We have built a global file system,
WebFS [Vahdat et al. 1997] that allows read/write ac-
cess to files stored across the wide area. WebFS is im-
plemented at the vnode level [Kleiman 1986], similar to
other distributed file systems such as NFS [Walsh et al.
1985] or AFS [Howard et al. 1988].

To illustrate the protocol for secure file access, we con-
sider the scenario where a process running on Node A
attempts access to a file located on Node B. The exam-
ple is described in Figure 5, with the individuals steps
detailed below:

1. A user process performs anopen system call on
a WebFS file stored on node B (currently WebFS
employs a URL-like hierarchy for naming, e.g.,
/http/B/foo specifies a file foo stored on node B).

The kernel translates this call into aNodeAccess
operation in the Vnode layer.

2. The Vnode layer makes an upcall to a user-level
WebFS server to carry out the access request (mode
of WebFS functionality is implemented at user-
level for ease of debugging and implementation).

3. The WebFS server contacts the local security man-
ager with the requestinguid/pid pair to ascer-
tain the privileges associated with the process at-
tempting access to the remote file. For UNIX,
The security manager maintains mappings between
uid/pid pairs and security domains which in turn
map to a set of transfer certificates describing the
process's privileges.

4. The WebFS server on node A establishes an SSL
connection with the WebFS server on node B, trans-
mitting its own credentials and the credentials of
the process requesting file access.

5. The WebFS server on node B contacts its local se-
curity manager to validate the transmitted certifi-
cates and to establish any necessary paths of trust to
the potentially remote administrative domain con-
taining node A.

6. Local file ACLs are consulted to determine if the re-
questing process possesses the request access priv-
ileges (e.g. read, write, or execute).

In steps 7-9, the result of the ACL check is returned
through the WebFS server on node A, the vnode layer,
and finally as the return value to the originalopen sys-
tem call.

One concern with any system that allows file access
from potentially untrusted machines is that local operat-
ing systems must be trusted with the contents of the file.
That is, a corrupted operating system (or the local CRI-
SIS security manager for that matter) could allow access
to unauthorized users on the same host. Worse, if a ma-
chine is compromised after a user logs out, sensitive data
could still be lost by inspecting the file/virtual memory
cache. CRISIS employs two techniques to address these
concerns. First, the CRISIS log out process discards the
cache of any user accessed files through a WebFS sys-
tem call. Next, for remote access to highly sensitive
data, CRISIS allows the use of trusted portable com-
puters running CRISIS software supporting mobile lo-
gin. Using this technique, files are transmitted encrypted
end-to-end until they reach the portable, at which point
they can be decrypted and cached locally with a higher
degree of security.

5.3 Running a Remote Job

Conceptually, the process of authenticating and autho-
rizing execution of jobs on remote machines is similar
to the process of remote file access. Currently, WebOS
uses a UNIX command line program to request remote
execution. This request results in a CRISIS library call,
which contacts the local process manager with the iden-
tity of the principal. The protocol for process execution
then proceeds similarly to the file access example de-
scribed in the previous subsection.

Currently, the ACLs for remote process execution sim-
ply include the names of principals which have access
to execute programs on a remote node. In the future,
we plan to use transfer certificates and ACLs to contain
information which specify the portion of the resources
a certain role can consume. Another avenue for future
work is building an interface to allow principals to rea-
son about the set of privileges required by remote jobs.
Clearly, remote jobs should run with the minimum set
of privileges necessary to complete their task. However,
determining this minimal set can be difficult. We plan
to build an interface that allows users to run jobs locally
to identify the minimal set of privileges that should be
transferred to the job when it is run remotely.

Once a job execution request is authorized, CRISIS uses
Janus [Goldberg et al. 1996] to set up a virtual machine
to execute the process on the target machine, reducing
the risk of violating system integrity. The Janus profile
file describing the level of restriction imposed by the vir-
tual machine is generated on the fly based on the identity
of the requesting principal and the requirements of the
job to be executed. Once set up, the virtual machine is
associated with a CRISIS security domain, associating
the virtual machine with the set of privileges specified
by the principal requesting process execution. By both
restricting jobs to originate from authorized users and
placing running jobs in a sandbox, the local machine
is protected from malicious or buggy programs even if
the program's execution is requested from an authorized
principal.

6 Performance

To quantify the performance impact introduced by CRI-
SIS, we measured our global file system, WebFS, both
with and without CRISIS enhancements. We measure
the time required to read and write both 1 byte and 10

Operation NFS WebFS WebFS
w/CRISIS

Read 1 byte 3 ms 47 ms 55 ms
Write 1 byte 100 ms 289 ms 340 ms
Read 10 MB 9.8 s 11.0 s 12.2 s
Write 10 MB 9.2 s 12.8 s 14.0 s

Table 1: This table describes the overhead introduced by
adding CRISIS security to WebFS, a global file system.
CRISIS file transfers are encrypted through SSL.

MB to a remote file. Measurements were taken between
two Sun Ultrasparc 1's connected by a 10 Mb/s switched
Ethernet.

Table 1 summarizes our results. The first column de-
scribes performance for accessing uncached NFS files.
The second column describes access to uncached files
through a version of WebFS without CRISIS modifica-
tions. The added overhead of WebFS relative to NFS
is caused by kernel to user-level crossings for cache
misses (WebFS network communication code is imple-
mented at the user-level for ease of implementation and
debugging). The third column describes performance of
WebFS with CRISIS security enhancements. We believe
the 10-20% slowdown relative to the baseline WebFS
to be acceptable given the added functionality of access
control checks and encrypted file transfer.

The measurements in the third column reflect the case
where user credentials are cached on the remote node.
An additional 175 ms overhead is introduced to establish
an SSL connection and 230 ms are required to transfer
and cache an identity plus a single transfer certificate if
user credentials are not cached remotely. Once again,
this total 400 ms overhead is a one-time cost incurred
the first time a user makes any access to a remote site
(WebFS maintains a “cache” of active SSL connections
between machines to avoid the cost of re-establishing an
SSL connection for each access). Finally, read access
to a cached 1 byte file through WebFS with CRISIS en-
hancements takes 720�s, and reading a cached 10 MB
file takes 170 ms, values comparable to cached access
through NFS. In summary, our security enhancements
introduce significant overhead for initial and uncached
access because of switching to a user-level process for
communication and the overhead of establishing an SSL
connection for transmission of certificates. However, the
common case read access to a cached file stays entirely
in the kernel and provides performance comparable to a
file system such as NFS.

7 Related Work

The conceptual framework of our security architecture is
largely based on the theory presented in [Lampson et al.
1991]. In the introduction, we discussed the relationship
between the DEC security work and our own. In this
section, we describe a number of other efforts related to
CRISIS.

SDSI [Rivest & Lampson 1996] is a distributed security
infrastructure based on public keys with goals similar
to our own. Their emphasis is on defining a standard
format for certificates, rights transfer, and name spaces
to provide a general security framework for Internet ap-
plications. With minimal extensions, SDSI could sup-
port CRISIS transfer certificates and remote execution
of programs. Our work, however, is the largely orthogo-
nal task of defining how such a framework can be used to
provide redundant, high performance, and available se-
curity mechanisms for applications requiring secure re-
mote control of wide area resources.

Neuman [Neuman 1993] discusses distributed mecha-
nisms for authorization and accounting. Neuman's work
has much the same vision as our own, namely limited
capabilities in addition to ACL's. His work proposes
a more general capability model. However, the capa-
bilities are not auditable because proxies do not carry
a chain of transfers. Further, Neuman's work is secret
key as opposed to public key, meaning that synchronous
communication is required for each transfer of rights.
The trusted third party is responsible for recording trans-
fers and transferring the end result. For example, ifP1
transfers rights toP2, andP2 further transfers rights to
P3, the trusted third party only passes onP1 transferring
rights toP3 to any end reference monitors.

Jaeger and Prakash [Jaeger & Prakash 1995] present a
model for discretionary access control in a wide area en-
vironment. In their work, principals specify the subset
of their privileges that are to be transferred to a script
written by a potentially untrusted third party. The ac-
tual rights transferred are negotiated between the appli-
cation writer and the user. In their system implementa-
tion in Taos [Wobber et al. 1993] (a secure OS based
on [Lampson et al. 1991]), they add dynamic principals
for running programs with some subset of a principal's
privileges, observing the difficulty of creating temporary
principals and updating all necessary ACLs with the new
principal name. Their dynamic principals are similar to
one of the applications of CRISIS transfer certificates.

The goals of the Legion [Wulf et al. 1995] project are

similar to our own in WebOS. In Legion, distributed
computation takes place in the context of a distributed
object system. Their approach to security is orthogo-
nal to our own, with their primary goal being flexibility.
Each legion object is able to implement its own security
policy. Presumably, a number of base policies will be
implemented which will suit the needs of a vast majority
of applications. We believe that flexibility in the secu-
rity system is a desirable feature; our approach in CRI-
SIS can be viewed as one implementation of security for
Legion objects.

8 Conclusions

In this paper, we have described the architecture of CRI-
SIS, a security system for wide area applications. In de-
signing CRISIS, we have endeavored to systematically
apply principles from related fields to increase system
security, availability, and performance across the wide
area. These principles include: redundancy, caching, lo-
cal autonomy, least privilege, and complete accountabil-
ity. This paper describes how these principles have influ-
enced our design and details the specific protocols used
to carry out common operations across the wide area.
Relative to earlier efforts, CRISIS uses transfer certifi-
cates as a simple mechanism for lightweight creation of
roles and capabilities. While the current implementation
runs only on Solaris, we expect to port the system to
other platforms in the near future.

Acknowledgments

We would like to thank Neal Cardwell, Adam Costello,
Terence Spies, and Chad Yoshikawa for participating in
the many discussions which lead to our system architec-
ture. We would also like to thank Brian Bershad, Neal
Cardwell, Brian Dewey, Robert Grimm, and the anony-
mous referees for their valuable feedback and sugges-
tions on earlier drafts of this paper.

References

[Birrell et al. 1986] A. Birrell, B. Lampson, R. Needham, and
M.Schroeder. “Global authentication without
global trust”. InProceedings of the IEEE Sym-
posium on Security and Privacy, Oakland, Cali-
fornia, May 1986.

[Con 1989] Consultation Committee, International Telephone
and Telegraph, International Telecommunica-
tions Union. The Directory–Authentication
Framework, 1989. CCITT Recommendation
X.509.

[Crispo & Lomas 1996] B. Crispo and M. Lomas. “A Certifi-
cation Scheme for Electronic Commerce”. InSe-
curity Protocols International Workshop, pp. 19–
32, Cambridge UK, April 1996. Springer-Verlag
LNCS series vol. 1189.

[Dean et al. 1996] D. Dean, E. Felten, and D. Wallach. “Java
Security: From HotJava to Netscape and Be-
yond”. In Proceedings of the IEEE Symposium
on Security and Privacy, 1996.

[Dig 1995] Digital Equipment Corporation.Alta Vista, 1995.
http://www.altavista.digital.
com/ .

[Fiat & Shamir 1987] A. Fiat and A. Shamir. “How to prove
yourself: Practical solutions to identification and
signature problems”. InAdvances in Cryptology -
Crypto '86, pp. 186–194. Springer-Verlag, 1987.

[Goldberg et al. 1996] I. Goldberg, D. Wagner, R. Thomas,
and E. Brewer. “A Secure Environment for Un-
trusted Helper Applications”. InProceedings
of the Sixth USENIX Security Symposium, July
1996.

[Hickman & Elgamal 1995] K. Hickman and T. Elgamal.
“The SSL Protocol”. InInternet RFC Draft,
1995.

[Howard et al. 1988] J. Howard, M. Kazar, S. Menees, D.
Nichols, M. Satyanarayanan, R. Sidebotham, and
M. West. “Scale and Performance in a Distributed
File System”. ACM Transactions on Computer
Systems, 6(1):51–82, February 1988.

[Jaeger & Prakash 1995] T. Jaeger and A. Prakash. “Im-
plementation of a Discretionary Access Control
Model for Script-based Systems”. InProc. of the
8th IEEE Computer Security Foundations Work-
shop, pp. 70–84, June 1995.

[Kistler & Satyanarayanan 1992] J. J. Kistler and M. Satya-
narayanan. “Disconnected Operation in the Coda
File System”. ACM Transactions on Computer
Systems, 10(1):3–25, February 1992.

[Kleiman 1986] S. R. Kleiman. “Vnodes: An Architecture
For Multiple File System Types in SUN UNIX”.
In Proceedings of the 1986 USENIX Summer
Technical Conference, pp. 238–247, 1986.

[Lampson et al. 1991] B. Lampson, M. Abadi, M. Burrows,
and E. Wobber. “Authentication in Distributed
Systems: Theory and Practice”. InThe 13th ACM
Symposium on Operating Systems Principles, pp.
165–182, October 1991.

[Neuman 1993] B. C. Neuman. “Proxy-Based Authorization
and Accounting for Distributed Systems”. InPro-
ceedings of the 13th International Conference on
Distributed Computing Systems, May 1993.

[Rivest & Lampson 1996] R. L. Rivest and B. Lampson.
“SDSI–A Simple Distributed Security Infras-
tructure”.http://theory.lcs.mit.edu/

cis/sdsi.html , 1996.

[Sirer et al. 1997] E. G. Sirer, S. McDirmid, B. Pandey,
and B. N. Bershad. “Kimera: A Java Sys-
tem Architecture”. http://kimera.cs.
washington.edu/ , 1997.

[Steiner et al. 1988] J. G. Steiner, B. C. Neuman, and J. I.
Schiller. “Kerberos: an authentication service for
open network systems”. InUsenix Conference
Proceedings, Dallas, Texas, February 1988.

[Tennenhouse & Wetherall 1996] D. Tennenhouse and D.
Wetherall. “Towards an Active Network Archi-
tecture”. InACM SIGCOMM Computer Commu-
nication Review, pp. 5–18, April 1996.

[Vahdat et al. 1997] A. Vahdat, P. Eastham, C. Yoshikawa, E.
Belani, T. Anderson, D. Culler, and M. Dahlin.
“WebOS: Operating System Services For Wide
Area Applications”. UCB Technical Report
CSD-97-938, December 1997.

[Walsh et al. 1985] D. Walsh, B. Lyon, G. Sager, J. M. Chang,
D. Goldberg, S. Kleiman, T. Lyon, R. Sandberg,
and P. Weiss. “Overview of the Sun Network File
System”. InProceedings of the 1985 USENIX
Winter Conference, pp. 117–124, January 1985.

[Wobber et al. 1993] E. Wobber, M. Abadi, M. Burrows, and
B. Lampson. “Authentication in the Taos Oper-
ating System”. InProceedings of the Fourteenth
ACM Symposium on Operating Systems Princi-
ples, pp. 256–269, December 1993.

[Wulf et al. 1995] W. A. Wulf, C. Wang, and D. Kienzle. “A
New Model of Security for Distributed Systems”.
University of Virginia CS Technical Report CS-
95-34, August 1995.

