
The following paper by Butler Lampson has been frequently refer- 
enced. Because the original is not widely available, we are re- 
printing it here. If the paper is referenced in published work, 

" " in the citation should read: "Lampson, B. W., Protection, 
Proc. Fifth Princeton Symposium on Information Sciences and 
Systems, Princeton University, March 1971, pp. 437-443, reprinted 
in Operating Systems Review, 8,1, January 1974, pp. 18 - 24. 

PROTECTION 

Butler W. Lampson 
Xerox Corporation 

Palo Alto, California 

Abstract: Abstract models are given which reflect the 
properties of most existing mechanisms for enforcing 
protection or access control, together with some 
possible implementations. The properties of existing 
systems are explicated in terms of the model and 
implementations. 

Introduction 

'Protection' is a general term for all the 
mechanisms which control the access of a program 
to other things in the system. There is an im- 
mense variety of such mechanisms. Indeed, it is 
normal for a single system to have a number of 
different and unrelated ones: for example, a 
supervisor/user mode, memory relocation and 
bounds registers, some kind of file numbers for 
open files, access control by user to file direc- 
tories, and a password scheme for identification 
at logor. It therefore seems desirable to take 
a rather abstract approach to the subject. 

Matters are somewhat confused by the fact 
that a system can be complete from the point of 
view of a communlty of friendly and infallible 
users, without any protection at all. This ob- 
servation should not, however, be taken to imply 
that protection is a minor consideration. On the 
contrary, real users are far from infallible, not 
to mention their programs, and privacy is a cru- 
cial issue in most real systems. As a result, 
protection considerations are pervasive in any 
system design. 

The original motivation for putting protec- 
tion mechanisms into computer systems was to keep 
one user's malice or error from harming other 
users. Harm can be inflicted in several ways: 

a) by destroying or modifying another 
user's data; 

b) by reading or copying another user's 
data without permission; 

c) by degrading the service another user 
gets, e.g. using up all the disk space 
or getting more than a fair share of 
the processing time. An extreme case 
is a malicious act Qr accident which 
crashes the system - this might be 
considered the ultimate degradation. 

More recently it has been realized that all 
of the above reasons for wanting protection are 
just as strong if the word 'user' is replaced by 
'program'. This line of thinking leads in two 
main directions: 

a) towards enforcing the rules of modular 
programming so that it is possible, us- 
ing the protection system, to guarantee 
that errors in one module will not affect 
another one. With this kind of control 
it is much easier to gain confidence in 
the reliability of a large system, since 
the protection provides fire walls which 
prevent the spread of trouble [4,9]; 

b) towards the support of proprietary pro- 
grams, so that a user can buy a service 
in the form of a program which he can 
only call, but not read [9]. A simple 
example might be a proprietary com- 
piler whose service is sold by number of 
statements compiled. A more complex 
case is a program which runs test cases 
against a proprietary data base as well. 

Another example may suggest that some gener- 
ality is really required to handle those problems, 
rather than a few ad hoc mechanisms~ This is the 
construction of a routine to help in the debugging 
of other programs. Such a debugger needs to be 
able to do all the things which the program being 
debugged can do, but must protect itself and its 
data (breakpoints, symbol tables, etc.) from de- 
struction by malfunctions in the program being 
debugged [8,9]. 

The models for protection systems which oc- 
cupy the body of this paper are arranged in order 
of decreasing generality and increasing complexity. 
It is not clear whether to take this correlation 
as a cause for satisfaction or for despair. 

-18- 



Protection Domains 

The foundation of any protection system is 
the idea of different protection environments or 
contexts. Depending on the context in which a 
process finds itself, it has certain powers; 
different contexts have different powers. A sim- 
ple example of a two-context system implemented 
in hardware is any computer with supervisor and 
user or problem states. A program in supervisor 
state can execute I/o instructions, set the mem- 
ory protection registers, halt the machine, etc. 
In user state these powers are denied to it. A 
somewhat more elaborate example is 0S/360 MVT, 
where there is one supervisor context and up to~ 
15 user contexts; the limit of 15 is enforced by 
the use of 4-bit keys in the 360's memory protec- 
tion system. Still another example is individual 
users of a multi-access system -- each one has his 
own protected program and files, so that there are 
at least as many protection contexts as there are 

users [15]. 

The variety of these examples is intended to 
suggest the generality and subtlety of the idea. 
Many words have attempted to capture it: protec- 
tion context, environment, state or sphere [3], 
capability list [I0], ring [4], domain [9]. The 
relatively neutral word 'domain' will be used 
here, since it has fewer misleading associations 
than any alternative. An idealized system called 
the message s_vstem is described below in order to 
clarify the meaning of this term and provide a 
framework for the description of real systems. 

The message system consists of processes 
which share nothing and communicate with each 
other only by means of messages. A message con- 
sists of an identification of the sending process 
followed by an arbitrary amount of data. The 
identification is supplied by the system and 
therefore cannot be forged. Processes are 
assigned integer names by the system in such a 
way that a given integer always refers to the 
same process; aside from this property the names 

have no significance. The data is supplied by 
the sending process. Any process may send mes- 
sages (at its expense) to any other process. 
Messages are received one at a time in the order 
in which they were sent. See [5] for an actual 
system very similar to this one, but described 

from a somewhat different viewpoint. 

Within this system everything belongs to 

some process and cannot be accessed by any pro- 
cess other than its owner. Each process is there- 
fore a single domain. It can also be viewed as a 
separate machine, complete with memory, file sto- 
rage, tape units, etc., and isolated by hardware 
from all other processes except for the message 

transmission system described above. This 
scheme provides a logically complete (though in 
general rather inefficient) protection system 
(except for two points which are discussed be- 
low). Let us examine what can be done with it in 
order to bring out its essential features. 

The first point (which has nothing to do 
with protection) is that we can simulate a sub- 
routine mechanism in'this system, viewing one pro- 
cess (A) as the calling routine and another (B) 
as the routine being called. To call B, A sends 
B a message specifying the parameters and then 
waits for B to reply. To return, B replies with 
another message containing the value, if any, and 
then waits for another call. 

We now observe that unlike an ordinary sub- 
routine call, this works even if B must be pro- 
tected from A, e.g. if B is the supervisor and A 
a user program. It works because B determines 
where he is 'entered', namely at the point where 
he waits for A's message. Random transfers of 
control to an arbitrary point in B are not pos- 
sible. This is not to say that multiple entry 
points are not possible, since B can decode one 
of the parameters to select an entry point. 

Furthermore, the 'return' is also protected. 
Thus, if A mistrusts B, e.g. in the case of a 
command processor calling a user program, the 
same argument shows that B will not be able to 
return to A except in the manner intended by A. 
Spurious additional 'returns' (extra messages) 
from B are equally impossible, since A knows 
when he is expecting a return message from B and 
can ignore messages at other times. The scheme 
clearly works even if each domain mistrusts the 
other, as in the case of calling a proprietary 

program [i0]. 

What if A calls B by this mechanism and B 
never returns, either because B has a bug or be- 
cause he is malicious? If A wishes to guard 
against this possibility, he need only arrange, 
before calling B, to receive a message from some 
reliable system process C after a certain amount 
of time has elapsed which is longer than B is 
expected to run. If the message A receives next 
is from C rather than from B, then A knows some- 
thing has gone wrong and can proceed to take 

corrective action. 

Finally, suppose that some unauthorized do- 
main Y attempts to call B. Recall that as part 
of each message the system supplies the identity 
(name) of the caller. This identification may 
be thought of as a signature, a seal, a badge, 
etc., which B can use to check the validity of 

-19- 



the call. The essential point is that the iden- 
tification is supplied by the system, which 
guarantees that it cannot be forged. This point 
is so simple, and yet so subtle, that we will 
illustrate it with an example. Suppose that A, 
whose name is 6389, sends to B a message consist-. 
ing of three numbers: 31, ~5, 9. What B will 
receive is four numbers: 6389, 31, 45, 9. The 
first number is supplied by the system from its 

knowledge of the identity of the sender. There 
is no way for A to affect the value of the first 
number in the message. From B's point of view 
then, the message starts with a single identify- 
ing integer. If B is expecting a message from A, 
all he needs to do for each message is to check 
that it starts with A's name. How B gets to know 
A's name is an interesting question which will be 
pursued below, but for the moment perhaps the 
following simple scheme will suffice: A's user at 
his terminal asks A for the number and shouts it 
across the room to B's user, who types it into B. 
Remember that this number is not a password. 
Knowing it allows B to give A access, but does 
not help anyone else (including B) to impersonate 
A, as the description of message handling given 
above should make perfectly clear. 

The kind of protection or access control 
which can be enforced with this system is extreme- 
ly flexible and general, since arbitrary programs 

can be written by users to make the protection de- 
cisions. Suggested exercise: show how an instruc- 
tor could implement a grading program which gives 
student programs at most three tries at obtaining 
a correct answer. 

As was mentioned earlier, the system we have 
been describing has two major flaws: 

a) It is impossible to retain control over 
a runaway process, since there is no way 
to force a process to do anything, or to 
destroy it. Although such a process can- 
not do any damage, it can waste resources. 
This makes debugging difficult. 

b) An elaborate system of conventions is 
required to get processes to cooperate. 
Suppose, for example, that process A has 
some data which it wants to share with 
several other processes belonging to 
friends of the user who owns process A. 
It is necessary for A's owner (whom we 
think of as another process communicat- 
ing with A via a terminal) to find out 
the names of his friends' processes and 
to put some program into A which knows 
these names and responds appropriately 
to messages carrying these names as 

identification. In addition, A and its 

correspondents must agree on the inter- 
pretation of messages. 

The message system is as bare of convenience 
as a central processor is for executing programs. 
The processor needs an elaborate system of con- 

ventions in the form of loaders, binary formats, 
assemblers, etc., to make it usable, and these 

appurtenances quickly take on a life of their own. 
The same thing must happen to our primitive pro- 
tection system. Some of the issues raised by 
these two points are discussed in the next sec- 
tion. 

O__bjects and Access Matrices 

In order to provide facilities for control- 
ling processes from outside, it is necessary to 
have a systematic way of controlling access to one 
process from others. In order to provide useful 
conventions for sharing among processes, it is 
necessary to have a systematic way of describing 
what is to be shared and of controlling access to 
shared things from various processes. Access to 
processes can be controlled by a simple tree struc- 
ture [5,8], but it can also be handled more gener- 
ally by the same machinery which we will establish 
to solve the second problem. (It is not at all 

clear that the scheme described below is the only, 
or even the best, set of conventions to impose, 
but it does have the property that almost all the 
schemes used in existing systems are subsets of 
this one.) 

This machinery can be describedin terms of 
another idealized system called the object system. 
It has three major components: a set of ob~cts 
which we will call X, a set of domains which we 
will call D, and an access matrix or access func- 
tion which we will call A. Objects are the things 
in the system which have to be protected. Typical 
objects in existing systems are processes, do- 
mains, files, segments, and terminals. Like 
everything we are describing, the choice of ob- 
jects is a matter of convention, to be determined 
by the protection requirements of each system. 
Objects have names with global validity, which we 
will think of as 64-bit integers. Object names 
are handed out by the protection system on demand, 
and their interpretation is up to the programs 
which operate on the objects. This point is 
supposed to be clarified by the file-handler 
example below. 

Domains were introduced in the previous sec- 
tion. They are the entities which have access to 
objects. The essential property of a domain is 
that it has potentially different access than 
other domains. In the message system, each domain 
was also a process and had exclusive access to its 

-20- 



o~n objects and none to any others. This idea is 
now being generalized so that objects can be 
shared between domains. There are actually two 
ways to look at this generalization. 

a) each domain owning objects in the mes- 
sage system agrees by convention that 
it will do certain things with these 
objects upon demand from some other 
domain, provided the other domain has 
access according to the rules below. 

b) at least for certain 'built-in' objects 
the access rules below will be enforced 
by the underlying machinery which im- 
plements the system (whether this is 
hardware, as in the case of memory pro- 
tection, or software, as in the case of 

file directories, is not important). 
This viewpoint may lead to greater effi- 
ciency (memory protection is an extreme 
example) but it is clearly not as general 
and must be supplemented by a) if the 
system is to be extensible. As far as 
the protection system is concerned, it 
makes no difference which view is taken. 

Note that domains are objects, and that ob- 
jects do not 'live in' or 'belong to' domains. 

The access of domains to objects is deter- 

mined by the access matrix A. Its rows are 
labeled by domain names and its columns by object 
names. Element A [i,j] specifies the access 
which domain i has to object j. Each element 
consists of a set of strings called access attri- 
butes; typical attributes are 'read', 'write', 
'wakeup'. We say that a domain has 'x' access to 

an object if 'x' is one of the attributes in that 
element of A. Attached to each attribute is a 
bit Called the copy flag which controls the trans- 

fer of access in a way described below. With the 
A of figure i, for example, domain 1 has 'owner' 
access to file 1 as well as explicit 'read' and 
'write' access. It has given 'read' access to 

this file to domains 2 and 3. 

Entries in the access matrix are made and 
deleted according to certain rules. A domain d 1 
can modify the list of access attributes for do- 
main d 2 and object x as follows (examples assume 

the access matrix of figure i): 
a) d I can remove access attributes from A 

[d 2, x] if it has 'control' access to d 2. 
Example: domain 1 can remove attributes 

from rows 1 and 2. 
b) d I can copy to A [d 2, x] any access attri- 

butes it has for x which have the copy 
flag set, and can say whether the copied 

attribute shall have the copy flag set 
or not. Example: domain 1 can copy 
'write' to A [2, file i]. 

c) dl can add any access attributes to A 
[~2' x], with or without the copy flag, 
if it has 'owner' access to x. Example: 
domain 2 can add 'write' to A [2, file 
2]. 

The reason for the copy flag is that without 
it a domain cannot prevent an undebugged subordi- 
nate domain from wantonly giving away access to 
objects. 

The rules above do not permit the 'owner' of 
an object to take away access to that object. 
Whether this should be permitted is an unresolved 
issue. It is permitted by most systems; see [13] 
for a contrary view. If it is to be permitted, 
the following rule is appropriate. 

d) d I can remove access attributes from A 
[a2, x] if d I has 'owner' access to x, 
provided d 2 does not have 'protected' 

access to x. 

The 'protected' restriction allows one 
'owner' to defend his access from other 'owners'. 
Its most important application is to prevent a 
program being debugged from taking away the de- 
hugger's access; it may be very inconvenient to 
do this by denying the program being debugged 
"owner' access to itself. 

One peculiarity of rules b) and c) is that a 
domain cannot prevent a subordinate domain from 
cooperating with a third, independent domain, 
e.g. from cheating on a test. This could be re- 
medied by requiring d I to have 'augment' access to 

d 2 in those two rules. 

The system itself attaches no significance to 
any access attributes except 'owner', or to ob- 
ject names. Thus the relationship between, say, 
the file-handling module and the system is some- 
thing like this. A user calls on the file- 
handler to create a file. The file-handler asks 
the system for a new object name n, which the sys- 
tem delivers from its stock of 264 object names 
(e.g. by incrementing a 64-bit counter). The sys- 
tem gives the file-handler 'owner' access to object 
n. The file-handler enters n in its own private 
tables, together with other information about the 
file which may be relevant (e.g. itsdisk address). 
It also gives its caller 'owner' access to n and 
returns n to the caller as the name of the created 
file. Later, when some domain d tries to read 
from file n, the file-handler will examine A [d,n] 
to see if 'read' is one of the attributes, and re- 
fuse to do the read if it is not. 

-21- 



Domain 1 Domain 2 Domain 3 File 1 File 2 Process 1 

Domain 1 

Domain 2 

Domain 3 

*owner 
control 

*owner 
control 

*call 

call 

owner 
control 

*owner 
*read 
*write 

*read 

read 

write 

*owner 

wakeup 

*copy flag set 

Figure l: Portion of an access matrix 

Some Implementation Techniques 

Since A is sparse, it is not practical to 
store it in the obvious way. The most intuitively 
simple alternative would be a global table T of 
triples <d, x, A [d,x]> which is searched whenever 
the value of A [d,x] is required. Unfortunately, 
this is usually impractical for a number of rea- 
sons: 

a) Memory protection is almost certainly 
provided by hardware which does not use 
T. This is the major area in which the 
operating system designer has little con- 
trol; it is discussed in the next section. 

b) It may be inconvenient to keep all of T 
in fast-access memory, since at any given 
time most objects and perhaps most do- 
mains will be inactive. An implementa- 
tion is therefore needed which helps to 
keep the currently relevant parts of A 
readily availabl e . 

c) Objects and/or domains may be grouped in 
such a way that T is very wasteful of 

storage. A simple example is a public 
file, which would require a table entry 
for every domain. 

d) It may be necessary to be able to obtain 
a list of the objects which a given do- 
main d can access, or at least the ob- 
jects for which d is responsible or is 
paying for. 

An implementation which attacks b) and d) 
directly is to attach the d'th column of A to the 
domain d in the form of a table of pairs 
<x:A[d,x]>. One of these pairs is usually called 
a capability [3,7,9,10,15]. 

If the hardware provides for read-only arrays 
which can only be generated by the supervisor, 
then each capability can be implemented as such 
an array, containing 

a) the name of the object (a 64-bit integer), 
b) a suitable representation of the access 

attributes, (perhaps as a bit string). 

-22- 



Most hardware does not provide the kind of 
protected arrays we have been assuming, but they 
can easily be simulated by the supervisor, at 
some cost in convenience, on any machine with 
memory protection of any kind. When this is done, 
it is usually convenient to group capabilities to- 
gether into capability lists or C-lists. A domain 

is then defined by a C-list (and its memory, if 
that requires special handling; see the next sec- 

tion). 

With this kind of implementation it may be 
convenient to allow additional information to be 
stored in a capability, e.g. the disk address in 
the file-handling example above, or a pointer to 
some table entry to save the cost of looking up 
the object name [i0]. It is an interesting exer- 
cise to devise a mechanism for controlling who 
gets to alter this additional information. 

Capabilities can also be used to attack pro- 
blem c) above. All we have to do is observe that 
it is possible to build an arbitrary graph of do- 
mains, each with a set of capabilities or C-list 
[3,7,13]. Everything we know about tree- 
structured naming schemes can then be applied to 
economize on storage for shared capabilities. 

A completely different approach is to attach 
the protection information to the object rather 
than the domain. In its most general form, the 
idea is to provide a procedure A x (d) for each 
object. The procedure is provided by the owner 
of the object and can keep its own data structures 
to decide who should get access. Note that at 
least some of these procedures will have to refrain 
from accessing any other objects in order to pre- 

vent infinite recursion. 

The essential point is that the procedure gets 
the domain's name as argument, and this cannot be 
forged. However, unique names may not be very 
convenient for the procedure to remember -- access 
is more likely to be associated with a person or 
group of people, or perhaps with a program. The 
ideas of the last few paragraphs can be applied 
here -- capabilities can be used as identification, 
since they have the essential property that they 
cannot be forged. We will call a capability used 
for identification an access key; it is a genera- 
lization of a domain name as it was used in the 

message system [9]. 

All the access control procedure needs to 
know is what access keys to recognize. Each user, 
indeed each entity which needs to be identified 
by an access control procedure, gets hold of a 
unique access key by asking the supervisor for 
it, reads the value, and transmits the value to 
the people who wish to grant him access. They 

then program their access control procedures to 
return the desired attributes when that key is 
presented as an argument. 

It is often inconvenient to call arbitrary 
procedures. A less general scheme is to attach 
to each object a list which consists of <key 
value, access attributes> pairs. It seems rea- 
sonable to call this an access lock list for the 
object. It works in the obvious way: if the value 
of the key presented matches the value in one of 
the locks, the corresponding attribute is returned. 

Another way to look at this scheme is as a 
generalization of one of the first protection sys- 
tems, that of CTSS, which instead of the key value 
employed the name of the user as identified at 
login [1,9,15]. 

One access list per object is likely to be 
cumbersome. Most systems group objects into 
directories which in turn are objects so that a 
tree structure can be built up. This adds nothing 
new, except that it introduces another kind of 
tree-structured naming [15]. 

We observe that a directory is not too much 
different from a domain in structure. The access 
key method of obtaining access is, however, quite 
different in spirit from the capability method. 
It is also likely to be more expensive, and many 
systems have a hybrid implementation in which an 
object can be accessed once by access key to ob- 
tain a capability, which is then used for subse- 
quent accesses. This process when applied to files 
is usually called ~ a file [8,9]. 

Memory Protection 

Memory protection hardware is usually closely 
related to mapping or relocation hardware. There 

are two aspects to this: 
a) memory which is not in the range of the 

map cannot be named and is therefore pro- 

tected. 
b) in paged or segmented systems (even 2- 

segment ones like the PDP-10) each page 
or segment in the map has protection in- 
formation associated with it. 

The essential point is that each domain must 
be able to have its own address space, since other- 
wise there can be no protection [9,10]. It is also 
highly desirable for one domain to be able to re- 
ference the memory of another, subject to the con- 

trol of the access function. 

A segmented system in which any segment is 
potentially accessible from any domain fits well in- 
to the framework of the last two sections, usually 
with the C-list implementation [2,4]. It may be a 
slight annoyance that a segment capability has a 
different form than other capabilities, but this 

-23- 



is a minor problem. Some difficulties may arise, 
however, in connection with transfers of control 
from one domain to another, since it is unlikely 
that the hardware will allow path names in a tree 
of C-lists to be used as addresses [4]. 

In the absence of segmentation either pages 
or files may be treated as objects. With paging, 
data can be dynamically shared, and since the con- 
tents of the map can be changed when changing do- 
mains, there is a feasible, though far from ele- 
gant, means of passing memory around when neces-" 
sary while preserving the security of each domain. 

In the absence of paging, each domain will 
have to have private memory in general, memory 
which is not accessible to any other domain, ex- 
cept through some ugly circumlocution. The nam- 
ing problems which result are beyond the scope of 
this paper. 

There is one exception to this observation, 
for the case of nested domains d I , . . . , d n 
(i.e. A [dl, x]~). . . ~ A [dn, x] for all x ) on 
machines with base and bound relocation: simply 
arrange the memory for the domains contiguously, 
with d I nearest to 0, and set the bound for d I to 
the total length of all the memory, for d 2 to the 
total length excluding dl, etc. Now only a simple 
addition is required for d i to interpret addresses 
in dj, i <j [6,10]. 

References 

i. P. A. Crisman, ed., T__he Compatible Time- 
Sharing System: A Programmer's Guide, second edi- 
tion, M.I.T. Press, Cambridge, Mass., 1965. 

2. Dennis, J. B., "Segmentation and the De- 
sign of Multiprogrammed Computer Systems," J. ACM 
12, 4 (Oct. 1965), p. 589. 

3. Dennis, J. B. and van Horn, E., "Program- 
ming Semantics for Multiprogrammed Computation," 
Comm. ACM ~, 3 (March 1966), p. 143. 

4. Graham, R. M., "Protection in an Informa- 
tion Processing Utility," Comm. ACM ll, 5 (May 
1968), p. 365. 

5. Hansen, P. B., "The Nucleus of a Multi- 
programming System," Comm. ACM 13, 4 (April 1970), 
p. 238. 

6. Harrison, M. C., "Implementation of the 
SHARER2 Time-Sharing System," Comm. ACM i_~i, 12 
(Dec. 1968), p. 845. 

7. Iliffe, J. K., Basic Machine Principles, 
American Elsevier, New York, 1968. 

8. Lampson, B. W. et al, "A User Machine in 
a Time-Sharing System," Proc. IEEE 54, 12 (Dec. 
1966), p. 1766. 

9. Lampson, B. W., "Dynamic Protection Struc- 
tures," Proc. AFIPS Conf. 35 (1969 FJCC), p. 27. 

i0, Lampson, B. W~, "On Reliable and Exten- 
dable Operating Systems," Working Material, Second 
NATO Conference on Software Engineering, Rome, 
Oct~ 1969. 

ii. Linde, Ro R~ et al, "The ADEPT-50 Time- 
Sharing System," Proc. AFIPS Conf. 35 (1969 FJCC), 
p. 39. 

12o Molho, L., "Hardware Aspects of Secure 
Computing," Proc. AFIPS Confo 36 (1970 FJCC), 
p. 135. 

13. Vanderbilt, D. H., "Controlled Informa- 
tion Sharing in a Computer Utility,", MAC TR-67, 
M.I.T., Cambridge, Mass., Oct. 1969. 

14. Weissman, C., "Security Controls in the 
ADEPT-50 Time-Sharing System," Proc. AFIPS Conf. 
35 (1969 FJCC), p. 39. 

15. Wilkes, M. V., Time-Sharing Computer Sys q 
tems, American Elsevier, New York, 1968. 

-24- 


