
The Polyadic �-Calculus: a Tutorial

Robin Milner

Laboratory for Foundations of Computer Science,

Computer Science Department, University of Edinburgh,

The King's Buildings, Edinburgh EH9 3JZ, UK

October 1991

Abstract

The �-calculus is a model of concurrent computation based upon the

notion of naming . It is �rst presented in its simplest and original form,

with the help of several illustrative applications. Then it is generalized from

monadic to polyadic form. Semantics is done in terms of both a reduction

system and a version of labelled transitions called commitment ; the known

algebraic axiomatization of strong bisimilarity is given in the new setting,

and so also is a characterization in modal logic. Some theorems about the

replication operator are proved.

Justi�cation for the polyadic form is provided by the concepts of sort

and sorting which it supports. Several illustrations of di�erent sortings are

given. One example is the presentation of data structures as processes which

respect a particular sorting; another is the sorting for a known translation of

the �-calculus into �-calculus. For this translation, the equational validity of

�-conversion is proved with the help of replication theorems. The paper ends

with an extension of the �-calculus to !-order processes, and a brief account

of the demonstration by Davide Sangiorgi that higher-order processes may be

faithfully encoded at �rst-order. This extends and strengthens the original

result of this kind given by Bent Thomsen for second-order processes.

This work was done with the support of a Senior Fellowship from the Science and
Engineering Research Council, UK.

1 Introduction

The �-calculus is a way of describing and analysing systems consisting of agents
which interact among each other, and whose con�guration or neighbourhood is
continually changing. Since its �rst presentation [19] it has developed, and con-
tinues to do so; but the development has a main stream. In this tutorial paper
I give an introduction to the central ideas of the calculus, which can be read by
people who have never seen it before; I also show some of the current developments
which seem most important { not all of which have been reported elsewhere.

Any model of the world, or of computation (which is part of the world), makes
some ontological commitment; I mean this in the loose sense of a commitment
as to which phenomena it will try to capture, and which mental constructions
are seen to �t these phenomena best. This is obvious for the \denotational"
models of computing; for example, the set-theoretic notion of function is chosen
as the essence or abstract content of the deterministic sequential process by which
a result is computed from arguments. But mathematical operations { adding,
taking square-roots { existed long before set theory; and it seems that Church
in creating the �-calculus had \algorithm" more in mind than \function" in the
abstract sense of the word.

Nevertheless, the �-calculus makes some ontological commitment about com-
putation. It emphasizes the view of computation as taking arguments and yielding
results. By contrast, it gives no direct representation of a heterarchical family of
agents, each with its changing state and an identity which persists from one com-
putation to another. One may say that the �-calculus owes its very success to its
quite special focus upon argument-result computations.

Concurrent computation, and in particular the power of concurrently active
agents to inuence each other's activity on the y, cannot be forced into the \func-
tion" mould (set-theoretic or not) without severe distortion. Of course concurrent
agents can be assumed (or constrained) to interact in all sorts of di�erent ways.
One way would be to treat each other precisely as \function computers"; such
an agent's interaction with its environment would consist of receiving arguments
and giving results and expecting its sub-agents, computing auxiliary functions, to
behave in a similar way. Thus functional computation is a special case of concur-
rent computation, and we should expect to �nd the �-calculus exactly represented
within a general enough model of concurrency.

In looking for basic notions for a model of concurrency it is therefore prob-
ably wrong to extrapolate from �-calculus, except to follow its example in seeking
something small and powerful. (Here is an analogy: Music is an art form, but it
would be wrong to look for an aesthetic theory to cover all art forms by extrapol-
ation from musical theory.) So where else do we look? From one point of view,
there is an embarrassingly wide range of idea-sources to choose from; for concur-
rent computation in the broadest sense is about any co-operative activity among
independent agents { even human organizations as well as distributed computing
systems. One may even hope that a model of concurrency may attain a breadth

1

of application comparable to physics; Petri expressed such hopes in his seminal
work on concurrency [25], and was guided by this analogy.

Because the �eld is indeed so large, we may doubt whether a single uni�ed

theory of concurrency is possible; or, even if possible, whether it is good research
strategy to seek it so early. Another more modest strategy is to seize upon some
single notion which seems to be pervasive, make it the focus of a model, and then
submit that model to various tests: Is its intrinsic theory tractable and appealing?
Does it apply to enough real situations to be useful in building systems, or in
understanding those in existence?

This strategy, at least with a little hindsight, is what led to the �-calculus. The
pervasive notion we seize upon is naming. One reason for doing so is that naming
strongly presupposes independence; one naturally assumes that the namer and
the named are co-existing (concurrent) entities. Another reason is that the act of
using a name, or address, is inextricably confused with the act of communication.
Indeed, thinking about names seems to bring into focus many aspects of comput-
ing: problems, if not solutions. If naming is involved in communicating, and is
also (as all would agree) involved in locating and modifying data, then we look for
a way of treating data-access and communication as the same thing; this leads to
viewing data as a special kind of process, and we shall see that this treatment of
data arises naturally in the �-calculus.

Another topic which we can hope to understand better through naming is
object-oriented programming; one of the cornerstones of this topic (which is still
treated mostly informally) is the way in which objects provide access to one an-
other by naming. In [17] I used the term object paradigm to describe models
such as the �-calculus in which agents (objects) are assumed to persist and retain
independent identity. David Walker [28] has had initial success in giving formal
semantics to simple object-oriented languages in the �-calculus. A challenging
problem is to reconcile the assumption, quite common in the world of object-
oriented programming, that each object should possess a unique name with the
view expressed below (Chapter 1) that naming of channels, but not of agents,
should be primitive in the �-calculus.

By focussing upon naming, we should not give the impression that we expect
every aspect of concurrency to be thereby explained. Other focal notions are likely
to yield a di�erent and complementary view. Yet naming has a strong attraction
(at least for me); it is a notion distilled directly from computing practice. It
remains to be seen which intuitions for understanding concurrency will arise from
practice in this way, and which will arise directly from logic { which in turn is a
distillation of a kind of computational experience, namely inference. Both sources
should be heeded. An example of a logical intuition for concurrency is the light
cast upon resource use by Girard's linear logic [9]. I believe it quite reasonable
to view these two sources of intuition as ultimately the same source; then the
understanding of computation via naming (say) is just as much a logical activity
as is the use of modal logics (say) in computer science.

2

Background and related work The work on �-calculus really began with
a failure, at the time that I wrote about CCS, the Calculus of Communicating
Systems [15]. This was the failure, in discussion with Mogens Nielsen at Aarhus
in 1979, to see how full mobility among processes could be handled algebraically.
The wish to do this was motivated partly by Hewitt's actor systems, which he
introduced much earlier [12]. Several years later Engberg and Nielsen [8] succeeded
in giving an algebraic formulation. The �-calculus [19] is a simpli�cation and
strengthening of their work.

Meanwhile other authors had invented and applied formalisms for processes
without the restriction of a �nite �xed initial connectivity. Two prominent ex-
amples are the DyNe language of Kennaway and Sleep [14], and the work on
parametric channels by Astesiano and Zucca [3]. These works are comparable to
the �-calculus because they achieve mobility by enriching the handling of channels.

By contrast, one can also achieve mobility by the powerful means of transmit-
ting processes as messages; this is the higher-order approach. It is well exempli�ed
by the work Astesiano and Reggio [2] in the context of general algebraic spe-
ci�cation, F. Nielson [22] with emphasis upon type structure, Boudol [6] in the
context of �-calculus, and Thomsen [27]. It has been a deliberate intention in
the �-calculus to avoid higher order initially, since the goal was to demonstrate
that in some sense it is su�ciently powerful to allow only names or channels to
be the content of communications. Indeed Thomsen's work supports this conjec-
ture, and the present work strengthens his results comparing the approaches. See
Milner [17] for a discussion contrasting the approaches.

Outline There are six short chapters following this introduction.
Chapter 2 reviews the formalism of the monadic �-calculus, essentially as it

was presented in [19]; it also de�nes the notion of structural congruence and the
reduction relation as �rst given in [17].

Chapter 3 is entirely devoted to applications; the �rst de�nes a simple mobile
telephone protocol, the second encodes arithmetic in �-calculus, and the third
presents two useful disciplines of name-use (such as may be obeyed in an operating
system) in the form of properties invariant under reduction.

Chapter 4 generalizes �-calculus to polyadic communications, introduces the
notions of abstraction and concretion which enhance the power of expression of
the calculus (illustrated by a simple treatment of truth values), and a�rms that
the reduction relation remains essentially unchanged.

Chapter 5 and Chapter 6 provide the technical basis of the work. In Chapter 5,
�rst reduction congruence is de�ned; this is a natural congruence based upon re-
duction and observability. Next, the standard operational semantics of [19] is
reformulated in terms of a new notion, commitment; this, together with the ex-
ibility which abstractions and concretions provide, yields a very succinct present-
ation. Then the (late) bisimilarity of [19] is restated in the polyadic setting,
with its axiomatization. Its slightly weaker variant early bisimilarity, discussed in

3

Part II of [19], is shown to induce a congruence identical with reduction congru-
ence. Some theorems about replication are given. Finally, the modal logic of [20],
which provides characterizations of both late and early bisimilarity, is formulated
in a new way { again taking advantage of the new setting.

Chapter 6 introduces the notions of sort and sorting, which are somewhat ana-
logous to the simple type hierarchy in �-calculus, but with signi�cant di�erences.
Data structures are shown to be represented as a particularly well-behaved class
of processes, which moreover respect a distinctive sorting discipline. Finally, with
the help of sorts, new light is cast upon the encoding of �-calculus into �-calculus
�rst presented in [17]; a simple proof is given of the validity of �-conversion in this
interpretation of �-calculus, using theorems from Chapter 5.

Chapter 7 explores higher-order processes, extending the work of Thomsen
[27]. It is shown how sorts and sorting extend naturally not only to second-order
(processes-as-data), but even to !-order; a key rôle is played here by abstractions.
A theorem of Sangiorgi [26] is given which asserts that these !-order processes can
be faithfully encoded in the �rst-order �-calculus (i.e. the calculus of Chapter 4).
Some details of this encoding are given.

Acknowledgements I thank Joachim Parrow and DavidWalker for the insights
which came from our original work together on �-calculus, and which have deeply
informed the present development. I also thank Davide Sangiorgi and Bent Thom-
sen for useful discussions, particularly about higher-order processes. I am most
grateful to Dorothy McKie for her help and skill in preparing this manuscript.

The work was carried out under a Senior Fellowship funded by the Science and
Engineering Research Council, UK.

4

2 The Monadic �-calculus

2.1 Basic ideas

The most primitive entity in �-calculus is a name. Names, in�nitely many, are
x; y; : : : 2 X ; they have no structure. In the basic version of �-calculus which
we begin with, there is only one other kind of entity; a process. Processes are
P;Q; : : : 2 P and are built from names by this syntax

P ::= �i2I�i:Pi j P j Q j !P j (�x)P

Here I is a �nite indexing set; in the case I = ; we write the sum as 0. In a
summand �:P the pre�x � represents an atomic action, the �rst action performed
by �:P . There are two basic forms of pre�x:

x(y) , which binds y in the pre�xed process, means
\input some name { call it y { along the link named x",

xy , which does not bind y, means \output the name y
along the link named x".

In each case we call x the subject and y the object of the action; the subject is
positive for input, negative for output.

A name refers to a link or a channel. It can sometimes be thought of as naming
a process at \the other end" of a channel; there is a polarity of names, and x {
the co-name of x { is used for output, while x itself is used for input. But there
are two reasons why \naming a process" is not a good elementary notion. The
�rst is that a process may be referred to by many names; it may satisfy di�erent
demands, along di�erent channels, for many clients. The second is that a name
may access many processes; I may request a resource or a service { e.g. I may cry
for help { from any agent able to supply it. In fact, if we had names for processes
we would have to have (a di�erent kind of) names for channels too! This would
oppose the parsimony which is essential in a basic model.

Of course in human communities it is often convenient, and a convention, that
a certain name is borne uniquely by a certain member (as the name \Robin" is
borne uniquely by me in my family, but not in a larger community). So, in process
communities it will sometimes be a convention that a name x is borne uniquely
by a certain process, in the sense that only this member will use the name x as
a (positive) subject; then those addressing the process will use the co-name x
as a (negative) subject. But conventions are not maintained automatically; they
require discipline! In fact, that a name is uniquely borne is an invariant which is
useful to prove about certain process communities, such as distributed operating
systems.

We dwelt at length on this point about naming, because it illustrates so well
the point made in the introduction about ontological commitment. We now return
to describing the calculus.

5

The summation form ��i:Pi represents a process able to take part in one { but
only one { of several alternatives for communication. The choice is not made by the
process; it can never commit to one alternative until it occurs, and this occurrence
precludes the other alternatives. Processes in this form are called normal processes

(because as we see later, all processes can be converted to this normal form). For
normal processes M;N; : : : 2 N we shall use the following syntax:

N ::= �:P j 0 j M+N

In this version of �-calculus we con�ne summation to normal processes, though
previously we have allowed the form P+Q for arbitrary processes. One reason is
that the reduction rules in Section 2.4 are simpler with this constraint; another is
that forms such as (P jQ)+R have very little signi�cance. However, everything in
this paper can be adjusted to allow for the more general use of summation.

What do the last three forms of process mean? P jQ { \P par Q" { simply
means that P and Q are concurrently active, so they can act independently { but
can also communicate. !P { \bang P" { means P jP j : : : ; as many copies as you
wish. There is no risk of in�nite concurrent activity; our reduction rules will see
to that. The operator \!" is called replication. A common instance of replication
is !�:P { a resource which can only be replicated when a requester communicates
via �.

Finally, (�x)P { \new x in P" { restricts the use of the name x to P . Another
way of describing it is that it declares a new unique name x, distinct from all
external names, for use in P . The behaviour of (�x) is subtle. In fact, the character
of the �-calculus derives from the interplay between its two binding operators: x(y)
which binds y somewhat as �y binds y in the �-calculus, and (�x) which has no
exact correlate in other calculi (but is the restriction operator of CCS promoted
to a more inuential rôle).

Before looking at examples, we introduce a convenient abbreviation. Processes
like x(y):0 and xy:0 are so common that we prefer to omit the trailing \:0" and
write just x(y) and xy.

2.2 Some simple examples

Consider the process
xy:0 j x(u):uv:0 j xz:0

which we now abbreviate to
xy j x(u):uv j xz

Call it P j Q j R. One of two communications (but not both) can occur along the
channel x; P can send y to Q, or R can send z to Q. The two alternatives for the
result are

0 j yv j xz or xy j zv j 0

Note that R has become yv or zv; thus, the communication has determined which
channel R can next use for output, y or z.

6

Now consider a variant

(�x)(xy j x(u):uv) j xz

In this case, the (free) x in R is quite di�erent from the (bound) x in P and Q,
so only one communication can happen, yielding

0 j yv j xz

(The restriction (�x) has vanished; it has no work left to do, since the x which it
restricted has been used up by the communication.)

Third, consider
xy j !x(u):uv j xz

This di�ers from the �rst case, because Q is now replicated. So !Q can �rst spin
o� one copy to communicate with P , and the system becomes

0 j yv j !Q j xz

Then !Q can spin o� another copy to communicate with R, and the system be-
comes

0 j yv j !Q j zv j 0

We have just seen several examples of reduction, i.e. the transformation of a pro-
cess corresponding to a single communication. We now present the �-calculus
reduction rules; the analogy with reduction in the �-calculus is striking but so are
the di�erences.

2.3 Structural Congruence

We have already said that there are two binding operators; the input pre�x x(y)
(which binds y) and the restriction (�x). So we can de�ne the free names fn(P),
and the bound names bn(P) of a process P in the usual way. We extend these to
pre�xes; note

bn(x(y)) = fyg ; fn(x(y)) = fxg

bn(xy) = ; ; fn(xy) = fx; yg

Also, the names of a process P are n(P)
def
= bn(P) [fn(P).

Now, to make our reduction system simple, we wish to identify several expres-
sions. A typical case is that we want + and j to be commutative and associative.
We therefore de�ne structural congruence � to be the smallest congruence relation
over P such that the following laws hold:

1. Agents (processes) are identi�ed if they only di�er by a change of bound
names

7

2. (N=�; +; 0) is a symmetric monoid

3. (P=�; j; 0) is a symmetric monoid

4. !P � P j !P

5. (�x)0 � 0; (�x)(�y)P � (�y)(�x)P

6. If x =2 fn(P) then (�x)(P jQ) � P j (�x)Q

Exercise Use 3, 5 and 6 to show that (�x)P � P when x =2 fn(P).

Note that laws 1, 4 and 6 allow any restriction not inside a normal process to be
pulled into outermost position; for example, if P � (�y)xy then

x(z):yz j !P � x(z):yz j (�y)xy j !P

� x(z):yz j (�y
0
)xy

0
j !P

� (�y
0
)(x(z):yz j xy

0
) j !P

This transformation has brought about the juxtaposition x(z): � � � j xy0: � � �, which
is reducible by the rules which follow below. The use of structural laws such as the
above, to bring communicands into juxtaposition, was suggested by the Chemical
Abstract Machine of Berry and Boudol [5].

2.4 Reduction rules

This section is devoted to de�ning the reduction relation ! over processes; P ! P 0

means that P can be transformed into P 0 by a single computational step. Now
every computation step consists of the interaction between two normal terms. So
our �rst reduction rule is communication:

comm : (� � �+ x(y):P) j (� � �+ xz:Q)! Pfz=yg j Q

There are two ingredients here. The �rst is how communication occurs between
two atomic normal processes �:P which are complementary (i.e. whose subjects
are complementary). The second is the discard of alternatives; either instance
of \� � �" can be 0 of course, but if not then the communication pre-empts other
possible communications.

comm is the only axiom for ! ; otherwise we only have inference rules, and
they are three in number. The �rst two say that reduction can occur under-
neath composition and restriction, while the third simply says that structurally
congruent terms have the same reductions.

par :
P ! P 0

P j Q! P 0 j Q
res :

P ! P 0

(�x)P ! (�x)P 0

struct :
Q � P P ! P 0 P 0 � Q0

Q! Q0

8

Exercise In Section 2.2 and the previous exercise several reductions were given
informally. Check that they have all been inferred from the four rules for !.

It is important to see what the rules do not allow. First, they do not allow
reductions underneath pre�x, or sum; for example we have

u(v):(x(y) j xz) 6!

Thus pre�xing imposes an order upon reduction. This constraint is not necessary.
However, the calculus changes non-trivially if we relax it, and we shall not consider
the possibility further in this paper.

Second, the rules do not allow reduction beneath replication. In some sense,
this does not reduce the computational power; for if we have P ! P 0 then, instead
of inferring !P ! !P 0, which is equivalent to allowing unboundedly many coexisting
copies of P to reduce, we can always infer

!P � P j P j � � � j P| {z }
n times

j !P !
n
P

0
j P

0
j � � � j P

0
j !P

thus (in n reductions) reducing as many copies of P as we require { and for �nite
work we can only require �nitely many !

Third, the rules tell us nothing about potential communication of a process P
with other processes. From the reduction behaviour alone of P and Q separately,
we cannot infer the whole reduction behaviour of, say, P jQ. (This is just as in
the �-calculus, where �xx and �xxx have the same reduction behaviour { they
have no reductions { but applying them to the same term �yy gives us two terms
(�xx)(�yy) and (�xxx)(�yy) with di�erent reduction behaviour.)

If we wish to identify every potential communication of a process, so as to dis-
tinguish say xy from xz, then we would indeed become involved with the familiar
labelled transition systems used in process algebra (and introduced later in this
paper). We do not want to do this yet. But for technical reasons we want to do a
little of it. To be precise, we only want to distinguish processes which can perform
an external communication at some location � { a name or co-name { from those
which cannot. So we give a few simple de�nitions.

First, we say that Q occurs unguarded in P if it occurs in P but not under a
pre�x. Thus, for example, Q is unguarded in QjR and in (�x)Q but not in x(y):Q.
Then we say P is observable at � { and write P #� { if some �:Q occurs unguarded
in P , where � is the subject of � and is unrestricted. Thus x(y) #x and (�z)xz #x,
but (�x)xz 6#x; also (�x)(x(y) j xz) 6#x even though it has a reduction.

It turns out that we get an interesting congruence over P in terms of ! and
#�. This will be set out in Chapter 4; �rst we digress in Chapter 3 to look at
several applications.

9

3 Applications

In this section, we give some simple illustrations of the �-calculus. We begin by
introducing a few convenient derived forms and abbreviations.

3.1 Some derived forms

In applications, we often want forms which are less primitive than the basic con-
structions of monadic �-calculus. One of the �rst things we �nd useful is multiple
inputs and outputs along the same channel. A natural abbreviation could be to
write e.g. x(yz) for x(y):x(z) and xyz for xy:xz. But this would give a misleading
impression about the indivisibility of the pair of actions in each case. Consider

x(yz) j xy1z1 j xy2z2

for example; the intention is that y; z should get bound to either y1; z1 or y2; z2.
But if we adopt the above abbreviations there is a third possibility, which is a
mix-up; y; z can get bound to y1; y2. To avoid this mix-up, a way is needed of
making a single commitment to any multiple communication, and this can be done
using private (i.e. restricted) names. So we introduce abbreviations

x(y1 � � �yn) for x(w):w(y1): � � � :w(yn)

xy1 � � �yn for (�w)xw:wy1: � � � :wyn

{ writing just x for x() when n = 0. You can check that the mix-up in the example
is no longer possible. The abbreviation has introduced an extra communication,
even in the case n = 1, but this will cause no problem.

Next, we often wish to de�ne parametric processes recursively. For example,
we may like to de�ne A and B, of arity 1 and 2 respectively, by

A(x)
def
= x(yz):B(y; z) ; B(y; z)

def
= yz:A(z)

If we wish to allow such parametric process de�nitions of the general formK(~x)
def
=

PK , we add

P ::= � � � j K(~y)

to the syntax of processes, where K ranges over process identi�ers; for each de�n-
ition we also add a new structural congruence law K(~y) � PKf~y=~xg to those given
in Section 2.3.

However, it is easier to develop a theory if \de�nition-making" does not have to
be taken as primitive. In fact, provided the number of such recursive de�nitions is
�nite, we can encode them by replication; then the introduction of new constants,
with de�nitions, is just a matter of convenience. We shall content ourselves with

10

showing how to encode a single recursive de�nition with a single parameter. Thus,
suppose we have

A(x)
def
= P

where we assume that fn(P) � fxg, and that P may contain occurrences of A
(perhaps with di�erent parameters). The idea is, �rst, to replace every recursive
call A(y) within P by a little process ay which excites a new copy of P . (Here a
is a new name.) Let us denote by bP the result of doing these replacements in P .
Then the replication

!a(x): bP
corresponds to the parametric process A(x). We now have to take care of the
outermost calls of A. So let A(z) occur in some system S; then we replace it by

(�a)(az j !a(x): bP)
Note that this places a separate copy of the replication at each call A(z) in S.
Alternatively one can make do with a single copy; transform S to bS by replacing
each call A(z) just by az, and then replace S by

(�a)(bS j !a(x): bP)
Of course, these translations do not behave identically with the original, because
they do one more reduction for each call of A; but they are weakly congruent to
the original (in the sense of [19]), which is all we would require in applications.

From now on, in applications we shall freely use parametric recursive de�ni-
tions; but, knowing that translation is possible, in our theoretical development we
shall ignore them and stick to replication.

3.2 Mobile telephones

Here is a \owgraph" of our �rst application:

'
&

$
%base1

Z
Z
Z
Z
Z
Z

give
1

Z
Z
Z
Z
ZZ

alert1

�
�
�
�
��

talk1

�
�
�
�
�
�

switch1 '
&

$
%idlebase2

�
�

�
�

�
�

give
2

�
�

�
�

��

alert2

�
�
�� @@XXX

BBk k
car(talk1; switch1)

'
&

$
%centre1

11

This is a simpli�ed version of a system used by Orava and Parrow [23] to illustrate
�-calculus. A centre is in permanent contact with two base stations, each in
a di�erent part of the country. A car with a mobile telephone moves about the
country; it should always be in contact with a base. If it gets rather far from
its current base contact, then (in a way which we do not model) a hand-over
procedure is initiated, and as a result the car relinquishes contact with one base
and assumes contact with another.

The owgraph shows the system in the state where the car is in contact with
base1; it may be written

system1

def
= (� talki; switchi; givei; alerti : i = 1; 2)�

car(talk1; switch1) j base1 j idlebase2 j centre1
�

What about the components?
A car is parametric upon a talk channel and a switch channel. On talk it can

talk repeatedly; but at any time along switch it may receive two new channels
which it must then start to use:

car(talk; switch)
def
= talk :car(talk; switch)

+ switch(talk
0
switch

0
) :car(talk

0
; switch

0
)

A base can talk repeatedly with the car; but at any time it can receive along
its give channel two new channels which it should communicate to the car, and
then become idle itself; we de�ne

base(t; s; g; a)
def
= t :base(t; s; g; a)

+ g(t
0
s
0
) : st

0
s
0
: idlebase(t; s; g; a)

An idlebase, on the other hand, may be told on its alert channel to become
active:

idlebase(t; s; g; a)
def
= a :base(t; s; g; a)

We de�ne the abbreviation

basei

def
= base(talki; switchi; givei; alerti) (i = 1; 2)

and a similar abbreviation idlebasei. Thus, for example,

basei � talki :basei + givei(t
0
s
0
) : switchit

0
s
0
: idlebasei

idlebasei � alerti :basei

Finally the centre, which initially knows that the car is in contact with base1,
can decide (according to information which we do not model) to transmit the
channels talk2, switch2 to the car via base1, and alert base2 of this fact. So we
de�ne

centre1

def
= give1talk2switch2 : alert2 :centre2

centre2

def
= give2talk1switch1 : alert1 :centre1

12

Exercise Check carefully that indeed system1 reduces in three steps to system2,
which is precisely system1 with the subscripts 1 and 2 interchanged. The reduc-
tion is (using ~c for the set of eight restricted channels):

system1 � (�~c)
�
car(talk1; switch1) j base1 j idlebase2 j centre1

�

! (�~c)
�
car(talk1; switch1) j switch1talk2switch2 : idlebase1

j idlebase2 j alert2 :centre2
�

! (�~c)
�
car(talk2; switch2) j idlebase1

j idlebase2 j alert2 :centre2
�

! (�~c)
�
car(talk2; switch2) j idlebase1 j base2 j centre2

�
� system2

Of course this example is highly simpli�ed. Consider one possible re�nement.
There is no reason why the number of available (talk, switch) channel-pairs is
equal to the number of bases; nor that each base always uses the same channel-
pair. The reader may like to experiment with having an arbitrary (�xed) number
of bases; at each handover the new base could be chosen at random, and a
channel-pair picked from a store of available channel pairs maintained (say) in a
queue.

3.3 Numerals and arithmetic

For our second application we show that arithmetic can be done in �-calculus
in much the same way as it can in �-calculus. Church represented the natural
number n in �-calculus by

�f�xf
n
(x)

{ i.e. the function which iterates its function argument n times.
As a �rst attempt in �-calculus, we may choose to represent n by the parametric

process

n(x)
def
= x: � � � :x| {z }

n times

which we abbreviate to (x:)n. But this process cannot be tested for zero, and the
arithmetic operators (coded also as processes) will need a test for zero.

So we give n two parameters, one representing successor, and the other rep-
resenting zero:

n(xz)
def
= (x:)

n
z

13

