Portable Library of Migratable Sockets

Marian Bubak!?, Dariusz Zbik!, Dick van Albada®, Kamil Iskra®, Peter Sloot®

nstitute of Computer Science, AGH, al. Mickiewicza 30, 30-059 Krakéw, Poland
2 Academic Computer Centre — CYFRONET, Nawojki 11, 30-950 Krakéw, Poland
3Informatics Institute, Universiteit van Amsterdam, The Netherlands
{bubak,zbik}Quci.agh.edu.pl, {dick,kamil,sloot}@science.uva.nl

Abstract

Efficient load balancing is essential for the development of parallel dis-
tributed computing. Many parallel computing environments use TCP or
UDP through the socket interface as a communication mechanism. This
paper presents design and development of a prototype implementation
of a network interface which may keep communication between pro-
cesses during process migration. This new communication library is a
substitution of the well-known socket interface. It is implemented in
the user—space; it is portable, and no modification of user applications
are required. The TCP/IP is applied for internal communication what
guarantees relatively high performance and portability.

Keywords: distributed computing, load balancing, process migration,
Dynamite, sockets.

1 Introduction

In order to use distributed computing power efficiently it is essential to en-
able process migration from one, heavily loaded host to another, idle host, in a
way that also allows the original host to be serviced (i.e. rebooted) without a
need to break computations. As a rule, any parallel computation requires some
communication and synchronization, so advanced distributed computing envi-
ronments should handle the communication between processes in spite of the
migration. The most popular environments like PVM and MPI do not offer this
kind of functionality, and it seems that the communication libraries have to be
rewritten.

One of the systems developed to support a dynamic load balancing is Dyna-
mite [5, 7] which attempts to keep optimal task mapping in dynamically chang-
ing environment. Dynamite balances the system by performing the individual
process migrations. Dynamite is built of monitoring, scheduling, and migration
subsystems [7]. The problem is that migrating processes can not use pipes,
shared memory, kernel supported threads, and sockets. Support for open files is
limited to files which are available through the same pathname before and after
the migration [5].

A lot of parallel computing environments use TCP or UDP through the socket
interface as a communication mechanism. This paper presents the concept
and first implementation of the library which, besides the same functionality

as system socket library for the TCP/IP protocols family, allows migration of
the process during communication with other processes. The new library, called
msocket, should be a substitution of the standard socket library so no changes
in the program will be required. The changes will be done at the library level
so no changes in the kernel will be required, either.

2 Environments Enabling Open Socket Migration

One of the environments for migrating processes is Hijacking [8]. This system
does not require any changes in the process code; changes are done dynamically
after a process starts. The Hijacking system uses the DynlInst [3], an architec-
ture independent API for changing the running program. The mutator process
attaches to the process (application) which is to be migrated. The process is
stopped, and then the child process, named shadow, is created. The shadow
inherits all resources used by the parent. After the migration, processes use re-
sources through the shadow. This solution is transparent but rather expensive.
The important disadvantage of the shadow is that it is using the host where the
process was initiated.

Mosix [1] is a software to support the cluster computing and it is implemented
on the operating system level. Each Unix version requires different implementa-
tion of Mosix, and recent 7" implementation of Mosix was developed for Linux
using the x86 based processors. The Mosix migration mechanism is called Pre-
emptive Process Migration. Almost any process may be migrated at any time
to any available host. Each running process has a Unique Home-Node (UHN),
which is the node where the process was created. After migration the process
uses resources from the new host if it is possible but the interaction with the
environment requires the communication with the UHN. Many system calls re-
quire data exchange between the user space and the kernel. For each remote
call it is required to copy data between the migrated process and its part left on
the UHN; copy_to_user() and copy_from_user() kernel primitive send data
through the network, and this operation is time consuming.

3 Requirements for Socket Migration

The essential requirement for the socket migration is that all modifications
of communication libraries have to be transparent for TCP and UDP protocols.
To easily migrate a process with the socket interface in use, the modifications of
the communication library have to warrant:

1. establishing new connections must be allowed regardless of the number of

process migrations,

2. that all connections that had been established before the migration took

place have to be kept, and data must not be lost.
The first point requires to discuss the following cases:

e migrating processes should be able to connect and keep the connection
between themselves,

e migrating processes should establish and keep connections with processes
which use the original socket library,

e a client using the original socket library should be able to connect to a
migrating process; the location of the migrating process should have no
influence on communication establishment.

The last two cases require to build a kind of a proxy server.

An essential requirement is that a parallel application with processes intended
to migrate during runtime should not need to be developed in any special man-
ner, and a programmer should not need to know in advance that a particular
application will migrate at runtime. All modifications should be done in the
user-space, and no changes are allowed in the kernel source code, neither are
additional kernel modules. The new library should work with both UDP and TCP
protocols.

Requirement not to change the Unix kernel forces us to modify the system
calls and library calls. In the user code the communication through the TCP and
UDP protocols uses sockets which are treated by the process as file descriptors.
For this reason wrappers are used for each call with file descriptors as arguments.
In some cases this is a simple change which only translates the file descriptor
number. The possibility to create a wrapper to a function and a system call is a
feature of the Dynamite dynamic loader [6]. Dynamite also takes care of process
checkpointing and restoring.

4 Daemons or Mirrors?

To enable uninterrupted redirection of packets or stream flow to a migrating
process, it is possible to use one of the following approaches:

e all communication between processes goes through a daemon which for-
wards packets to the current process location (like DPVM when using
indirect routing mode [4, 6]),

e after migration the process leaves a piece of code on the old machine and
this code takes care of forwarding data to the new process location. In this
paper term mirror is used for a process which is used to redirect network
packets. This concept was suggested in [1, 8].

Neither solution is perfect. Global (centralized) data distribution is not fault
tolerant and could be too slow. In the second case, after process migration the
machine is still in use, but in a different way. It means that the machine can not
go down. This solution is not fault tolerant, too.

The msocket library is based on both concepts. After process migration, all
connections have to be redirected to a new process location. The process has
to leave a mirror because some data could be on-the-fly (inside network stack
buffers or inside active network equipment like a router or switch). The mirror
should be removed as soon as possible. In this case, mirror captures and redirects
the packets which were on-the-fly during process migration.

During normal work, processes use the direct connection. Daemon is not used
for passing user data between hosts. Daemons should exist on each machine, and

their role is only to redirect connections. When a process migrates, it has to
inform peers about its new location. While restoring the process, daemons on all
hosts which were involved in communication with the migrating process should
be informed about its new location. Subsequently, the daemons force processes
to redirect connections.

5 Idea of Migratable Sockets

In the approach proposed in this paper the data sent between processes
always goes through an additional layer built of wrappers of the system calls.
Inside the wrappers some control information is changed but the communication
is performed by the original TCP/IP stack (see Fig. 1)

application code

— virtual (IP, port) |—

msocket librar
rea (IP, port)

system TCP/IP stack

Fig. 1: Layers of the library.

This solution requires address servers which allow to find the location of a
socket. The communication with address servers is required only while estab-
lishing the connection, and when the connection is established, all data goes
straight between processes. Our concept requires the daemons which help just
to redirect the connection. As the TCP protocol is reliable it should deliver all
data to the process, without losing or changing a single byte. To protect the
connection while the process migrates, a mirror is kept; it receives data from
peer processes and redirects it to the new process location.

6 Architecture of the msocket System

6.1 Mirror

The main aim of the mirror is to capture and redirect packets which were
on-the-fly during the process migration. A mirror is started while checkpoint-
ing of the process takes place. In our implementationt, it is started from the
ms_usersave () function called by the Dynamite loader. The mirror is a child of
the process, so it inherits all sockets used by the process before the migration.
The mirror works in a loop, it reads all data from inherited sockets and sends

this data to the new process location. After the migration the process connects
to the mirror and informs all the connection peers about its new location.

6.2 Virtual address

Address of a socket is associated with the machine where the process (the
owner of the socket) is running. The msocket library can not work in this
way because the real address of the host is changing with each migration. To
become independent of the changes of real addresses, virtual addresses are used.
The form of these addresses is the same as addresses used for the TCP and UDP
communication, and these addresses may migrate with a process. In the msocket
library address server (msmaster) is a centralized part of the system. This server
takes care of address translation and guarantees uniqueness.

6.3 Daemon

The aim of the daemon is to participate in redirection of connections. After
process migration, while restoring, the process has to inform peers about its new
location. The migrated process communicates with the daemon on its new host
which takes care of propagating this information.

6.4 System Overview

In Fig. 2 a connection scheme between three processes and a mirror is pre-
sented. Two address servers are shown. One of them is responsible for the virtual
network 192.168.5.0/2/, the other one for the network 192.168.1.0/24 works on
the host with number [149.156.99.90].

The real numbers of the hosts are written in the rectangle brackets. Dae-
mons are running on the nodes 1, 2 and 4. On the Node 3 there is only the
mirror of process, the daemon is not necessary now. The daemon working on
Node 1 is connected only to one master address server, the one responsible for
the 192.168.5.0 network. It is enough as the process A running on this node uses
a socket with the virtual IP number 192.168.5.1 and this socket is connected
with process C and the mirror of process C. In both cases the virtual address
192.168.5.2 with port number 2000 is used. Process A does not need informa-
tion about sockets from the 192.168.1.0 network. The daemon on the Node 2 is
connected to both servers because process B uses the address from the network
192.168.1.0 and its socket is connected to the address 192.168.5.2.

Process C has been moved from Node 3 to Node 4, and now process C is
connected to the mirror. Process C also asks the daemon on Node 4 to redirect
connections. This request is propagated to all the daemons on the peer nodes,
in that case to the daemons on Node 1 and Node 2 (dashed lines in Fig. 2).
The processes A and B establish new connections to process C while the old
connections still exist.

The process A has one virtual socket with the local address 192.168.5.1 port
1500. This socket is connected to the virtual socket of process C with number

- Address Server (<. Address Server
1921685024 |~y 192.168.1.0/24
[146.50.13.33]) [149.156.99.90]
/ RS >
’_” Y N4] o .. \".\
H W |
; 192.168.5.1:1500]
; ; 192.168.1.1:1600
: Process A
: Process B
. Daemon C D
Node 1 [146.50.13.34] Daemon
\ Node 2)\ [149.156.99.78]
y
P 14 Y
! 192.168.5.2: 2000 N
: 192.168.5.2:3000 N
; Mirror
: of processC | ‘
: Node 3 [149.156.99.62) '
: 192.168.5.2: 2000 N !
' 192.168.5.2:3000 ;
Process C /
Y,
‘j Daemon
"I "Node 4 [146.50.13.35] ’

Fig. 2: Connections between address servers, daemons, processes and mirror.

192.168.5.2 port 2000. Before the migration, a connection was only between
hosts [149.156.99.62] and [146.50.13.34] and after the migration one vir-
tual socket (socket from user code point of view) has two sockets in the real
communication system. The socket of the process A is connected with mirror

and the new process C.

7 Implementation

7.1 Architecture of msmaster

The main function of the address server (msmaster) is to keep information
about the sockets in use (the pairs of IP and port numbers) and about their
states. Internally, the msmaster keeps two tables. One of them contains the
virtual address and the time stamp of the last verification. This table is used
when an application attempts to use a new address. The second table of msmas-
ter keeps the pairs of addresses: the wirtual address and the real address. This
table contains only addresses which are necesary when an application attempts
to establish the communication with this address.

The address server is decomposed into threads to simplify its structure (see
Fig. 3). At the beginning two threads are started. One of them (cleaner), checks
the database contents from time to time and removes old entries. The second one
(tep_listner) takes care of communication, waits for the incoming connections
from the daemons; for each incoming connection the thread (tcp thread) is
created. Each tcp_thread serves a single peer (an msdaemon).

cleaner tep listner je—

database access functions

with mutual exclusion tcp_thread [>
i |
tcp_thread [>
key: vip,vport,type ‘
data: update_|,update c T -
index: update tcp_thread [~
—_resolve top_thread [=—»-
key: vip,vport,type
data: rip,rport

Fig. 3: The msmaster.

7.2 Architecture of msdaemon

To simplify and speed up the communication of an application process with
master servers the msdaemon is used on each node. On startup this daemon

reads the configuration file which contains the addresses of the subnets with
the address of the master server for each subnet. This structure simplifies the
communication because the communication is centralized inside the daemon and
the msocket stubs do not need to parse the configuration file. The msdaemon
also takes part in the redirection of connections. The msdaemon has the multiple
thread structure construction (Fig. 4).

queue A ‘
1100000000000000000)
msm_pid_test '
il it i iy redirect
E sender receiver E tlrl,?g'j T
P T

database access functions ect
with mutual exclusion

—__connection
key: vip,vport,vtype,vflags,
s t, t
 update T 2
key: Vi %gport,vtype,ﬂ ags B
data: e - >
inde?: ﬂgdaae _body_threed “z
A i=l
body_thread B
key: pid | : é
data: update body_thread I
index: update Lt T 1y 8
body_thread]
key: v_ip,vport l l l t
caaiprport \000C00000000000000)

queue B |

Fig. 4: The msdaemon.

7.3 Communication with an Application Process

The daemon uses message queues to communicate with the processes working
on the same node (Fig. 4). Each message has the field mtype which is used as an
address. The daemon reads all messages with mtype equal to 1. The processes
read the messages with mtype equal to their process id.

The msocket daemon uses two separate message queues. One of them is
used by an application process to ask the daemon to do some activities (i.e. the

address queries) while the second one is used by the daemon to force process to
i.e. redirect sockets, check if the process exists and so on.

8 Limitations

It is impossible to build completely transparent wrapper of the socket library.
The msocket library does not support nonblocking I/O operations. This kind of
access to the socket very often is connected with the user defined signal handler,
and to support this access it is required to create wrapper for the user signal
handler. Urgent data is also unsupported; this feature of the socket stream also
requires dealing with the signal handlers. Application can not use the socket
options calls like setsockopt (), ioct1l (), fecntl (). In the future this limitation
may be partially removed. To do this it is necessary to keep more information
about socket state and restore it after the migration. Unfortunately, some cases
of these system calls are system dependent.

The socket and file descriptors are equivalent so in the Unix systems these
descriptors can be shared between parent and child(ren). This situation is dan-
gerous for the msocket library because it is impossible to migrate process which
shares a socket with another process.

9 Tests of Functionality and Overhead

In order to check the system development two groups of tests have been
prepared. The first group was designed to check if the planned functionality of
the msocket is realized whereas the second group focuses on measuring the level
of overhead induced by the msocket.

To verify the functionality the following tests have been performed: creation
of the virtual socket, establishing connection before the migration, establishing
connection after migration(s), establishing connection during migration, migra-
tion with connection in use. Overhead tests measure the time spent in using this
library. The generic application used in all tests is a typical producer—consumer
program. The main features of this application are establishing the connection
and communication, so it is sufficient to test the msocket library.

10 Concluding Remarks and Future Work

The msocket library was written in C and tested on the Linux systems. It
is possible to port this environment to other system platforms, the number of
system dependent parts is limited.

Current implementation of the msmaster and msdaemon can use only TCP
protocol to communicate between themselves. During design of the msocket
system the possibility to use UDP was considered but it was not implemented.
At this time only parsers for configuration files accept flag udp as specification
of communication mechanism.

We are also working on a prototype implementation of MPI (mpich) above
the msocket library. This research is aimed at the final validating whether the
design presented here has a broader usage area, while a possible success will show
under which conditions this is feasible. Our migrating socket library is low-level,
being usable for any parallel and distributed application where communication
is realized through sockets, so it may be also useful for load balancing under
metacomputing environments [2].

Acknowledgements.
This research was done in the framework of the Polish-Dutch collaboration and
it was supported partially by the KBN grant 8 T11C 006 15.

References

1. A. Barak, O. La’adan, and A. Shiloh. Scalable Cluster Computing with MOSIX
for LINUX. In Proceedings of Linuz FExpo 1999, pages 95-100, May 1999.
http://www.mosix.org/.

2. M. Bubak, W. Funika, D. Zbik, G.D. van Albada, K.A. Iskra, P.M.A. Sloot, R. Wis-
miiller, and K. Sowa-Pieklo. Performance Measurement, Debugging and Load Bal-
ancing for Metacomputing. In ISThmus 2000, Research and Development for the
Information Society, pages 409-418, April 2000. ISBN 83-913639-0-2.

3. JJK. Hollingsworth and B. Buck. DyninstAPI Programmer’s Guide
Release. Computer Science Department University of Maryland.
http://www.cs.umd.edu/projects/dyninst API.

4. K.A. Iskra, Z.W. Hendrikse, G.D. van Albada, B.J. Overeinder, and P.M.A. Sloot.
Experiments with Migration of PVM Tasks. In ISThmus 2000, Research and
Development for the Information Society, pages 295-304, April 2000. ISBN 83-
913639-0-2.

5. K.A. Iskra, F. van der Linden, Z.W. Hendriske, B.J. Ovreinder, G.D. van Al-
bada, and P.M.A. Sloot. The implementation of Dynamite — an environment for
migrating PVM tasks. Operating Systems Review, 34(3):40-55, July 2000.

6. B.J. Overeinder, P.M.A. Sloot, R.N. Heederik, and L.O. Hertzberger. A dynamic
load balancing system for parallel cluster computing. In Future Generation Com-
puter Systems, volume 12, pages 101-115, May 1996.

7. G.D. van Albada, J. Clinckemaillie, A.H.L. Emmen, O. Heinz J. Gehring,
F. van der Linden, B.J. Overeinder, A. Reinefeld, , and P.M.A. Sloot. Dynamite
— blasting obstacles to parallel cluster computing. In Peter Sloot, Marian Bubak,
Alfons Hoekstra, and Bob Hertzberger, editors, Proceedings of High Performance
Computing and Networking Europe, volume 1593 of Lecture Notes in Computer Sci-
ence, pages 300-310, Amsterdam, The Netherlands, April 1999. Springer-Verlag.

8. V.C. Zandy, B.P. Miller, and M. Livny. Process Hijacking. In The
Eighth IEEE International Symposium on High Performance Distributed Com-
puting (HPDC’99), pages 177-184, Redondo Beach, California, August 1999.
http: //www.cs.wisc.edu/paradyn /papers/.

