

Computation Migration: A Survey

Sushnanth Rai

Department of Computer Science

University of Texas, Arlington

Rai@cse.uta.edu

Abstract

We introduce the concept of computation migration and its advantages over other programming
model. Various granularities of computation migration are presented with case studies. We also
present various formal models required to define the semantic characteristics of a distributed
system based on computation migration.

1 Introduction
Migration as used in this paper is the movement of data and/or code from one location to another
in a distributed environment. Unfortunately, the term-distributed system has been applied to a
wide range of computing systems loosely coupled, closely coupled, tightly coupled, array
processors, dataflow, neural nets, etc. Irrespective of granularity of the distributed systems the
ultimate aim of migration is efficient program execution with optimal use of resources and
tolerable performance.

On a distributed system when a computation attempts to access data from another processor,
communication has to be performed to satisfy the reference. For example one of the important
factors for efficient program execution on a distributed memory parallel system is the locality of
data accesses. If there are many non-local memory accesses it is unlikely that the program would
exhibit good speedup. Two mechanisms for accessing remote data are computation migration
and data migration, which may be viewed as duals. Computation migration takes the advantage
of spatial locality of the objects while data migration takes advantage of the temporal locality of
the data objects.

Data migration[1,2] involves moving remote data to the host/processor where a request is made.
For example in case of Distributed File System when a client requests access to file that is
residing on the server the file is moved to the client’s host where it gets cached. Infact more
number of file blocks are moved than what is requested and hence subsequent requests are
satisfied locally on client’s host. Data migration can perform poorly when the size of the data is
large. In addition it performs poorly for write shared data because of the communication
involved in maintaining consistency: when there are many writes to a replicated datum, it is

expensive to ensure consistency. Some of the advantages are that data migration can improve the
locality of accesses since after the data is fetched subsequent accesses are local and this model is
good when there is high volume of read shared data.

Computation migration involves moving a thread of computation to host/processor where the
data is located. It provides a flexible framework for designing distributed systems where the
desired nonlocal computations need not be known in advance at the execution site. But spatial
locality of data is not the only reason for doing computation migration. Computation migration
can also be used for load balancing and fault recovery. Computation migration is also referred to
as mobile computation or mobile agents where code along with its execution state travels on a
heterogeneous network until it achieves its goal. This does not include cases where the code is
loaded from the shared disk or from the web (e.g. Java applet). Some of the advantages of this
model include:

 - Efficiency. If repeated interactions with the remote site are required, it can be more effective
to send the code to remote site and make it interact locally. This reduces the inter-machine
communication cost thus using the network bandwidth efficiently even with high latency. Also it
is possible to do load balancing in this model by dynamically assessing the system load and
redistributing the work during their lifetime. This helps in achieving better throughput with
efficient use of host resources.

 - Storage. Storage requirements are reduced by not having to store a copy of the program at all
sites. In this model loading is done on demand.

 - Fault Recovery. Unit of execution (which includes code and execution state) can be moved
during gradual degradation of performance of the system. If the state of the program can be
stored persistently it also possible to move the program even after it crashes.

 - Flexibility. With this model it is possible for automatic update of the software, as soon it is
available at the software vendor irrespective of the number of clients. It could also be very well
used in the web push model instead of the traditional pull model.

 - Simplified Programming. Distributed programming can be simplified by implementing the
migration constructs into the programming languages. This provides maximum portability and
high transparency to the programmer since explicit distribution of the application into client and
server pieces is no longer required. It also allows the programmer to write the programs in a
shared-memory style.

The disadvantages of computation migration are that the cost of using it depends on the amount
of computation state that must be moved. If the amount of state is large then migration might be
fairly expensive. Also when computation migration is used satisfying locality of data and if the
data is read shared then data migration might outperform computation migration. Also in
heterogeneous distributed environment the differences in the architectures would make
computation migration a difficult task.

Several other mechanisms for accessing remote data are widely used in distributed systems.
Remote Procedure Call (RPC)[3] is used both in distributed and parallel systems for executing
the procedure call on remote data. RPCs are similar to local procedure calls except the procedure

is now located at the remote location and communication details are taken care by the compiler
generated stubs and is made transparent to the programmer. Message Passing Interface (MPI) a
standard for parallel and distributed programming uses explicit message passing scheme. All of
these mechanisms require the programmer to explicitly split the application into different parts,
depending on the application domain, and place them at different processors/hosts before the
execution. Even though these mechanisms hides communication details it still would expose the
details of distribution.

Figure 1 compares RPC/messaging passing, data migration and computation migration models
with respect to communication cost required to access the data on other hosts. RPC makes n
consecutive accesses to each of m data items on processors. Both data and computation
migration can reduce the communication overhead by making repeated accesses to the local data.
As seen data migration involves communication overhead to maintain cache-coherency, which is
not involved in computation migration. Hence the advantages listed above with the recent trends

 2n 2n 2n 2n 2 2 2 2

 1 1 1

 RPC Data Migration

 1

Computation Migration

Figure 1: Communication cost in different mechanisms

in distributed computing motivates us to delve into computation migration in more detail. The
following sections describe the techniques used in computation migration and also some
mechanisms to overcome some of the disadvantages. Section 2 describes the details of how the
computation migration is achieved. We will use two case studies to describe the details. Section
3 introduces various formal models which aids in implementing computation migration in
programming language which would take care of all the advantages that has been listed above.
Section 4 concludes describing the scope for future work.

2 Computation Migration
There are three questions that needs to be answered regarding computation migration - a) when

P1

P2 P3

P4

P0

P1

P2 P3

P4

P0

P1

P2
P3

P4

p0

should the migration take place b) what needs to be migrated c) how should the migration take
place i.e. what is the mechanism involved in migration. The answer to the first question depends
on the context in which the migration is done. The advantages listed in the previous section
imply some of the circumstances under which migration is done. In this section we will try to
answer the remaining two questions.

The answer to what needs to be migrated depends on the granularity of migration. The migration
can be done at the process level, thread level and environment level. In process level migration
operating system process is migrated from one host to another and the operating system kernel is
directly involved during the migration. In thread level migration threads are migrated from one
node to another. Threads can be at kernel space, in which case the kernel would be involved
during migration, or user space (library or programming language threads). Environment
migration in one in which a group of processes/threads which represents users active
environment at a given instance would be migrated. Hence environment migration subsumes
process and thread migration.

2.1 Process Migration

Process Migration is one in which a process can be moved during its execution, and continue on
another processor with continuos access to all its resources. This requires operating system to be
directly involved in the migration and also provide facilities to aid migration. Process migration
is normally an involuntary operation that may be initiated without the knowledge of the running
process or any process interacting with it. All processes in the system would continue execution
with no apparent changes in their communication or computation. DEMOS/MP[4] is one such
operating system, which supports process migration.

The state of a process in a distributed system consists of computation state and communication
state. As in conventional context switching the computational state involves all the necessary
information required to execute the process when it resumes its activity except in case of
migration the process under consideration is switched to another host and all the computation
state should to transferred to the destination host. The communication state is something unique
to process migration. In a distributed system it is possible that there are other processes
communicating with the process that is to be migrated and these links should not invalid after the
migration. Hence these links needs to be transferred and restored at the destination host. The
difficulty in process migration is that the state of the process as we have defined would be
distributed among a number of tables in the system making it hard to extract the information
from the source processor and creating it in the destination processor. In some systems this might
be impossible if the Communication State of the process is tightly coupled with the machine
identifier.

Communication links of a process required for interprocess communication can be implemented
by using a link table maintained by the kernel. A link table contains pointers to the
communication endpoints of the peer process. To migrate a process, the link tables of those
processes that have a link to the migrating process must be updated so that communication links
remain intact after the migration. Typical process migration strategy executes the following steps

1. Remove the process from execution: The process is marked as "in migration". From this
point onwards all the messages directed to this process would be buffered and forwarded to

destination process after it starts executing.

2. Ask the destination kernel to move process: The source system send a message to the kernel
of the destination system containing information about the size and location of the process’s
resident state, swappable state and code.

3. Allocate a process state on the destination state: An empty process state is created on the
destination processor.

4. Transfer the process state from the source processor into the empty destination processor.

5. Transfer the program: This included code, data and stack.

6. Forward the buffered messages to the destination process.

7. Clean-up the process state: On the source processor all the resources by the now migrated
process would be reclaimed. A small foot-print of the process is left on the source process
which acts as proxy process which would forwards the requests to the destination process

8. Restart the process at the destination processor.

Although all the advantages stated in section-1 cannot be achieved by process migration it helps
in dynamic load balancing and fault recovery. Process migration provides the ability to stop a
process, transport its state to another processor, and restart the process, transparently. If the
information necessary to transport a process is saved in stable storage, it may be possible to
migrate a process from a processor that has crashed, to a working one. Some of disadvantages in
process migration are that it assumes a homogenous environment. Since the migration is done at
the kernel level this strategy requires all the nodes in the distributed system to be running the
same operating system. Also it does not consider the issues related to architectural differences in
various processors participating in a distributed environment.

2.2 Thread Migration

In thread migration the smallest entity that can be migrated is a thread. A thread is a small set of
instructions, which is part of a larger process and does some partial computation. Several threads
within a process may cooperate and execute concurrently to achieve the desired task. A thread
could be controlled by the operating system kernel or managed in the user space in terms of
libraries or programming language constructs. Whatever the implementation may be the concept
remains the same across all spaces i.e. threads provide a programming mechanism to partition
the code into several independent units of execution which can run in parallel thus improving the
efficiency of execution. Also as threads share the global state of the process with other threads
they provide a shared-memory model of programming. A process can be considered as a single
threaded application. Hence threads looks like an attractive and less expensive model for
migration.

A concept normally used in thread migration is continuation. Continuations[6] are programming
language semantics that models rest of the program. Formally a continuation is a function from
whatever the rest of the program expects to be passed as an intermediate result-and this depends
on what the rest of the program follows- to the final answer of the program. In continuation

semantics the denotations of the constructs in a language depend on the rest of the program
following them. The idea here is that each construct decides for itself where to pass its result.
This is useful for handling non-local jumps and state saving. For example consider the following
fragment of LISP code which uses continuation:

(+ (f 1) (g 2))

⇒ (k (+ (f 1) (g 2)))

⇒ (f 1 (λ (v1)

 (g 2 (λ (v2)

 (+ v1 v2)))

While transforming a direct semantics program to the one that uses continuation an extra
parameter is added to every function and this parameter represents the continuation. Thus in
general the continuation denotation of a construct is a function of a continuation and state which
yields the final answer being obtained by passing some intermediate results to some continuation
i.e. to the rest of the program. Hence at any point in time continuation captures the state of the
thread and if the continuation can be captured as a data-structure it is possible to transport this to
another host restart the execution on that host. Continuations are implicitly present in all the
programming languages and some languages like Scheme provides constructs to access the
continuations as data-structures. Also this is very attractive approach since thread is a small set
of instructions and the cost involved in capturing and transporting the continuation is small.
Another advantage of this approach is that migration can be done at the language level without
involving the kernel at all. This provides maximum flexibility and transparency since adding
some extra constructs to the language is all that is necessary to augment the existing language to
have distributed scope.

 It is possible to define the granularity of thread migration depending on the application for
which it is used. When migration has to be done for data referencing it could be useful to have
partial thread migration i.e. migrating one or more activation frames at the top of the stack. The
advantage is that amount of state to be moved is very small and would be more effective than
data migration or RPC. This is done in an augmented version of Prelude[7] to support
computation migration for non-local data referencing. The language is extended using a set of
annotations that allows the programmer to migrate a procedure. The language runtime uses
continuations for migration but this is transparent to the programmer. However the
implementation of Prelude does not support migration for other purposes like load balancing,
service oriented distributed computing etc.

If the migration is done for load balancing or remote processing it may be necessary to move the
entire thread. Cilk[8] is multithreaded language developed on the top of C for handling load
balancing in a parallel environment. A Cilk program consists of a collection of Cilk procedures,
each of which is broken into a sequence of threads, which forms a directed acyclic graph. Each
thread in Clik is a nonblocking C function, which can run into completion without waiting or
suspending once it has been invoked. Cilk supports two types of data-structures called as

closures and continuations. As shown in figure 2 closure consists of a pointer to the C function, a
slot for each of its arguments and a counter indicating the number of missing arguments. A
closure is ready if it has all of its arguments and it is waiting if some arguments are missing.
Continuation is essentially a global reference to an empty argument slot of a closure
implemented as a data structure containing a pointer to the closure and an offset that designates
one of the closure’s argument slots. When some thread fills up this argument it passes the
continuation explicitly to the thread that is on wait closure. The idea here is that closures and
continuations, which represent the state of the thread, are used for communication among
different threads and also for migrating the thread between processors.

Cilk uses an approach called as work-stealing for the migration of the thread. Initially all the
processors start running a scheduler and all the threads would be assigned to a single processor.
The idle processors would then steal the work (work that is in the ready closure state) from the
other processors which has enough work. The stealing process involves transferring the closure
from one processor to another, which is same as transferring the state of the thread.

 Join counters

 Waiting closure

 Waiting closure arguments ready closure

Figure 2. Closure data structure in Cilk

Cilk threads are designed for load balancing in a parallel system with computationally intensive
tasks. The reason we have considered here for our discussion is to understand the
implementation of continuations and its usage in migration. Its explicit continuation passing
semantic model of programming requires extra effort from the programmer. Nevertheless it
provides a programming model for migration which can be extended to many other application
domains.

2.3 Environment Migration

Environment migration is a general idea and is not limited to code migration. The entity that can
be migrated includes threads, processes, objects, devices etc. This concept is aimed at World-
Wide Web. The geographic distribution of the web naturally calls for mobility of computation, as
a way of flexibly managing latency and bandwidth. The main difficulty in migration over the
web is the handling of administrative domains. Firewalls partition the Internet into administrative
domains that are isolated from each other except for rigidly controlled pathways. System

CODE

T1

1

6

T2

0

42

X:2

administrators enforce policies about what can move through firewalls and how. It can be
inferred that the earlier two models of migration did not address this issue and the
implementation of those models assumed a trusted environment.

Migration on the Web requires more than the traditional notion of authorization to run or to
access information in certain domains: it involves authentication and authorization to enter and
exit domains. It would not be realistic to assume that the migrating entity can move from any
point A to any point B on the Internet. It should take permission to exit its administrative domain
and take permission to enter some other domain. Multiple levels of authorization may be
required since there are mutilple levels: local computer, local network, wide-area network etc.
through the information has to pass through and at each level authorization has to be obtained to
move further. Hence environment migration model adopts a strategy where entities of migration
are hierarchically structured and at any instance a part of this hierarchy can be migrated as a
whole instead of individual threads or processes. The goal is to make migration scale-up to
widely distributed, intermittently connected and well-administered computational environments.

Environment migration model is followed by Ambient[9]. An ambient is a bounded place where
the computation happens. One of important characteristic of ambient is notion of boundary,
which determines what should be moved. Boundary determines what is inside and outside the
ambient. Examples of ambients are a web page (bounded by a file), a virtual address space
(bounded by an addressing range) and a laptop (bounded by its physical case and data ports).
Boundaries help is determining some flexible-addressing scheme that can denote entities across
the boundary; examples include symbolic links, Uniform Resource Identifiers etc. Ambient may
be nested and they can be moved as whole. An ambient has a name, which is used to control
access to the ambient i.e. they are associated with capabilities, which determines the
authorization.

Environment migration provides ultimate flexibility in terms of migration and would also be the
ultimate goal of distributed processing. Ambient is just a specification for such a framework. An
implementation of such a model would be able to satisfy all the advantages that we had stated in
section 1. However it is not clear how can one define the granularity of the ambient in a
programming language or whether it requires any additional facilities to achieve migration. The
success of this model largely depends on how well it could be integrated into existing
programming paradigms.

One of the issues related to migration is handling differences in computer architecture. This is
because in migration, live code is moved from one host to another. One extreme is to assume a
homogenous environment. DEMOS/MP and Cilk assume such an environment. Other extreme
would be to convert the data and code to intermediate representation before the migration and
converting it to destination processor representation after the migration. This is done is in [10].

3. Formal Models
Formal Models in general provide precise mathematical descriptions of the systems. There are
three advantages of using formal techniques:

• Providing precise machine independent concepts

• Providing unambiguous specification techniques

• Providing a rigorous theory to support reliable reasoning

As we have seen already seen there are various computation migration models, which has been
developed for specific tasks. These models have also influenced their implementation. However
these models have received informal treatments. To use computation migration in the main
stream distributed computing it is important to develop precise semantic definition for migration,
which would provide important insight and highlight the weak parts of its definition. This would
also help in developing formal statements for the features of such a system and provide proof for
advantages it claims, which we have informally listed in section-1. In this section we shall
examine some of the formal models which have been proposed in this area.

3.1 Pi-Calculus

Pi-Calculus[11] is formal model used to represent concurrent computation. The reason we are
considering it here is that all the other models which defines migration is in someway or the
other related to Pi-Calculus. In pi-calculus every expression denotes a process – a free-standing
computational activity, running in parallel with other processes and possibly containing many
independent subprocesses. Two processes can interact by exchanging a message on a channel.
Indeed communication along channels is the sole means of computation, just as functions in
lambda calculus. The only thing that can be observed about a process’s behavior is its ability to
send and receive messages. Central to pi-calculus is the notion of naming. Naming also provides
independence; one naturally assumes that the namer and the named are co-existing entities
(concurrent) entities. Also if naming is involved in communication (using channel) and in
locating and modifying data then it would be possible to treat data-access and communication as
the same thing which in terms of pi-calculus would make data as a special kind of process.

Syntax and operational semantics of Pi-calculus

Pi-calculus provides a small set of primitives for building concurrent programs:

P,Q,R ::= 0 inert process

X(y).P input prefix

-xy.P output prefix

P|Q parallel composition

(vx) P restriction

!P replication

The simplest pi-calculus expression is the inert process 0 i.e. a process with no behavior at all. If
P is some process then the expression x(y).P denotes a process that waits to read a value y from
channel x and then, having received it, behaves like P. Similarly –xy.P denotes a process that
first waits to send the value y along the channel x and then, after y has been accepted by some

input process, behaves like P. P|Q denotes a process composed of two subprocesses, P and Q
running in parallel. (vx)P indicates the creation of a fresh channel in P, which is unique within
the process P and the messages sent and received, by P on x will never be mixed with messages
sent or received on any other channel created elsewhere. !P indicates replicated process and
stands for infinite number of copies of P, all running in parallel.

As mentioned earlier pi-calculus is used for modeling concurrency via communication over the
channels. Processes can be moved or passed along the channels and channels can be moved over
other channels. In a distributed setting channels can span across a network and atomic interaction
between sender and receiver is difficult to achieve since it is important to take care local and
remote failures. Although there is primitive idea of migration, there is no clear indication of the
granularity of mobility. Nevertheless it provides a framework based on while calculus for
migration can be built. PICT[13] is an experimental language built using this calculus

3.2 CHemical Abstract Machine(CHAM)

Just a Turing machine models theories of recursive functions; CHAM[14] is a semantic model
for concurrent computations. It can be considered a computation model of pi-calculus. The
system in CHAM is modeled like a chemical solution in which floating molecules can interact
with each other according to reaction rules; a magical mechanism stirs the solution, allowing for
possible contacts between molecules. The solution transformation is inherently parallel. CHAM
provides molecule syntax and a set of transformation rules that specify how to produce new
molecules from old ones. Membranes of molecules provide boundaries of computation.
Molecules travel to reaction site as indicated by the rules where they find a matching molecule to
react. Hence the communication site is centralized and as new molecules gets generated as a
result of the reaction the communication site would become a bottleneck.

3.3 Distributed Join Calculus

The limitation presented in CHAM is resolved in Join calculus[15] by allowing dynamic creation
of sites and restricting reaction patterns. As in pi-calculus names are central to Join calculus.
Processes (that return no values) and expression (return values) are basic syntactic classes.
Processes communicate by sending messages on channels or port names. Messages carried by
channels are made of zero or more values and channels are values themselves. In contrast to
other calculi, channels and processes that listen on them are defined by a single language
construct. This feature allows us to consider channels as functions. Join calculus is more closer
to programming language than pi-calculus. The basic primitives of Join calculus are same as that
of pi-calculus. Join pattern defines a set of channels simultaneously sending/receiving messages,
which would trigger a process to execute. Join patterns are used in synchronization.

Distributed Join calculus[16] adds the notion of location names to join calculus to support
migration. Locations are first class values that statically identify a location. Like port names,
they can be created locally, sent and received in messages, and they obey lexical scooping
discipline. In the join-calculus, the execution of a process or an expression does not usually
depend on its localization. Indeed, it is equivalent to run processes P and Q on two different
machines, or to run process P | Q on a single machine. In particular, the scope for defined names
and values is independent of localization: when a port name is known of some process, it can be
used to form messages (either as destination or as content) without knowing whether it is locally-

or remotely-defined. Locality matters in some circumstances: side-effects such as printing values
on the local terminal depend on the current machine; besides, efficiency can be dramatically
affected because message-sending over the network takes much longer than local calls. For all
these reasons, locality is explicitly controlled within the Distributed join-calculus; it can be
adjusted using migration. In contrast, resources such as definitions and processes are never
silently relocated by the system.

While processes and definitions are statically attached to their location, locations can move from
one place to another. A process inside of the location triggers such migrations. As a result of the
migration, the moving location becomes a sublocation of its destination location.

loc mobile

init

let here = ns.lookup("here") in

go(here);

let sqr = ns.lookup("square") in

let sum(s,n) =

reply (if n = 0 then s else sum(s+sqr(n),n-1)) in

let result = sum(0,5) in

print_string("q: sum(5)= "^ml.string_of_int(s)^"n");

end

The go (here) primitive migrates the whole mobile location on machine here, as a sub-location of
location here, then it returns. Afterwards, the whole computation (calls to the name server, to sqr
and to sum) is local to here. There are only three messages exchanged between the two
machines: one for the lookup (here) request, one for the answer, and one for the migration. The
Object-Caml[17] language provides extension supporting Join and Distributed join calculus.

3.4 Mobile Ambient Calculus

The ambient that we introduced in section 2.3 is based on ambient calculus[9]. This is aimed at
the mobile computation over the Internet with security being the primary concern. The basic set
of primitives in the calculus is same as that of pi-calculus that we have discussed. The main
difference with respect to pi-calculus is that names are used to name ambients instead of
channels. As mentioned earlier ambient is a bounded place of computation similar to molecules
of CHAM, which are bounded by membranes. An ambient can be nested within other ambients,
can be hierarchically structured and can be moved as a whole. If we want to move a laptop to a
different network all the address spaces and file systems within it move accordingly. The name
of the ambient is also used to gain control access to the ambient. A name is something that can
be created and passed around and from which access capabilities can be extracted.

In addition to the basic primitives, n[P] is an extra primitive in the syntax of ambient calculus
where n is the name of the ambient, and P is the process running inside the ambient. In n[P], it is
understood that P is actively running, and that P can be parallel composition of several processes.
P can also be running when the surrounding ambient is moving. In contrast to Distributed Join

calculus the notion of location is explicitly built into calculus. Changing the hierarchical
structure of the ambient indicates migration and these operations are restricted by the capabilities
of the ambients.

Figure 3 shows relationship among various calculi that we have discussed so far.

Figure 3: Development of Calculus for concurrent and distributed systems

4 Conclusion
 In this paper we have discussed the current state of art technologies in the area of migration.
Computation migration as such is not a new concept. However the recent trends in computer
architecture, like the use of virtual machines, need for distributed computing and its related
problems and advancements in programming languages has made computation migration a
viable alternative for distributed processing. As we have seen in section 2 there has been variants
of computation migration each for a specific task. However these implementations cannot be
extended towards implementing service oriented distributed computing environment which
requires explicit notion of nodes of computation for accessing distributed resources and also
rules for establishing trust relationships between the sender and receiver of the migrated code.

Current model of distributed programming is based on client-server concept. Computation
migration provides a new model for distributed programming reducing the programming
complexity. For this we require new programming methodologies, programming libraries and
programming languages. The formal model that we presented in section 3 is first step towards
defining constructs and semantics of these languages. The success of this effort depends on how
well it could be integrated into current languages and technologies to so that the existing

Pi - CalculusChemical
Abstract
Model

Join Calculus Ambient
Calculus

Distributed
Join calculus

framework can be reused and would provide a smooth transition towards the new paradigm.

References
[1] Hsieh, W.C., Wang, P., and Weihl, W.E. Computation Migration: Echancing Locality for Distributed-Memory
Paralle Systems. In the proceedings of 4th ACM PPOPP, May 1993:(239-248)

[2] Carlisle, M.C. and Rogers, A. Software Caching and Computation in Olden. In the Journal of Parallel and
Distributed Computing 38, 248-255(1996)

[3] Birrel A.D., and Nelson. Implementing Remote Procedure Calls. ACM Transactions on Computer Systems,
2(1):39-59, February 1984

[4] Powell, M.L. and Miller, B.P. Process Migration in DEMOS/MP. In the proceedings of 9th ACM symposium on
Operating Systems Principles, Oct 1983: (110-119)

[6] Dybvig, R.K. and Heib, R. Engines from Continuations. Computer Languages, 14(2):109-123 (1989)

[7] Weihl. W., Brewer. E., Colbrook. A., Delarocas, C., Hsieh, W., Joseph, A., Waldspurger, C., and Wang, P.
PRELUDE: A System for Portable Parallel Software. Technical Report MIT/LCS/TR-519, MIT LCS, Oct 1991.

[8] Blumofe, R.D., Joerg, C.F., Kuszamaul, B.C., Leiserson, C.E., Randall, K.H., and Zhou, Yuli. Cilk: A Efficient
Multithreaded Runtime System. In the proceedings of 5th ACM PPOPP, May 1995

[9] Cardelli, L., and Gordon, A.D. Mobile Ambients. In M. Nivat, editor, Foundations of Software Science and
Computational Structures, number 1378 in LNCE,140-155. Springer-Verlag, 1998

[10] Steensgaard, B., and Jul, E. Object and Native Code Thread Mobility Among Heterogenous Computers. In the
proceedings of ACM SIGOPS: (68-78), 1995

[11] Milner, R. The Polyadic Pi-Calculus: a tutorial. In Logic and Algebra of Specification. Springer Verlag, 1993

[13] Pierce B. C., Remy, D., and Turner, D. N. A typed higher-order programming language based on the pi-
calculus. In the Workshop on Type Theory and its Application to Computer Systems, Kyoto University, July 1993

[14] Berry, G., and Boudol, G. The chemical abstract machine. Theoretical Computer Science, 96:217-248, 1992.

[15] Fournet, C and Gonthier, G. The reflexive chemical abstract machine and the join calculus. In POPL’96[2],
pages 372-385.

[16] Fournet, C., Gonthier, G., Levy, J.J., Maranget, L., and Remy, D. A calculus of mobile agents. In CONCUR96,
pages 406-421, 1996.

[17] Leroy, X. Objective Caml. Available at http://pauillac.inria.fr/ocaml

