
The S/Net’s Linda Kernel

NICHOLAS CARRIER0 and DAVID GELERNTER

Yale University

Linda is a parallel programming language that differs from other parallel languages in its simplicity
and in its support for distributed data structures. The S/Net is a multicomputer, designed and built
at AT&T Bell Laboratories, that is based on a fast, word-parallel bus interconnect. We describe the
Linda-supporting communication kernel we have implemented on the S/Net. The implementation
suggests that Linda’s unusual shared-memory-like communication primitives can be made to run
well in the absence of physically shared memory; the simplicity of the language and of our implemen-
tation’s logical structure suggest that similar Linda implementations might readily be constructed on
related architectures. We outline the language, and programming methodologies based on distributed
data structures; we then describe the implementation, and the performance both of the Linda
primitives themselves and of a simple S/Net-Linda matrix-multiplication program designed to
exercise them.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design-network communications; C.2.4 [Computer-Communication Networks]:
Distributed Systems--network operating systems; D.3.3 [Programming Languages]: Language
Constructs-concurrertprogrammingstructures; D.4.4 [Operating Systems]: Communication Man-
agement-message sending.

General Terms: Languages

Additional Key Words and Phrases: Parallel programming languages

1. INTRODUCTION

A parallel programming language is a language that supports process-forking and
interprocess-communication (in one form or another) in addition to the normal
computation and control operations that all programming languages need. Par-
allel languages are tools for parallel programming, and parallel programming in
turn is useful in two ways. In domains where logically-concurrent algorithms are
available (numerical problems, system simulation and AI are three such domains)
it is a technique for making programs run faster. On local area networks, it is a
method for constructing integrated operating systems and distributed utilities.

Linda [13] consists of four simple operators that, when injected into a host
language h, turn h into a parallel programming language. A Linda-based parallel
language is in fact a new language, not an old one with added system calls, to the
extent that the Linda compiler or preprocessor recognizes the Linda operations,

This work was supported by the National Science Foundation, Grant No. MCS-8303905.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1986 ACM 0734-2071/86/0500-0110 $00.75

ACM Transactions on Computer Systems, Vol. 4, NO. 2, May 1986, Pages 110-129.

The S/Net’s Linda Kernel l 111

checks and rewrites them on the basis of symbol table information, and can
optimize the pattern of kernel calls that result based on its knowledge of constants
and loops, among other things. (Most of our programming experiments so far
have been conducted in C-Linda, but we have recently implemented a Fortran-
Linda preprocessor as well, at the request of Yale’s Numerical Analysis group.)
The S/Net [l] is a multicomputer that can also function as the backbone of a
local area net. Each S/Net is a collection of not more than sixty-four memory-
disjoint computer nodes communicating over a fast, word-parallel broadcast bus.
We have implemented a Linda-supporting communication kernel on an S/Net
at AT&T Bell Laboratories (where the machine was designed and built). This
implementation is of interest-we will argue-for two reasons. It demonstrates,
first, that Linda’s usually powerful and flexible communication primitives can
be made to run well; the language’s shared-memory-like semantics can in fact be
supported efficiently in the absence of physically shared memory. Second, al-
though Linda and the S/Net are particularly well-matched, the simplicity of the
language and of the implementation’s design and of the S/Net logical structure
suggest to us that Linda implementations like ours might readily be constructed
on similar architectures elsewhere. Such implementations would promise, as ours
does, to synthesize some of the advantages of shared-memory programming on
the one hand and of unshared-memory network architectures on the other.

We have argued elsewhere that Linda’s operators are in many cases substan-
tially more powerful and expressive than comparable ones in other languages;
that Linda is often cleaner, simpler and easier to use; and that the distributed
data structures Linda supports and most other parallel languages forbid are often
the most natural complement to distributed algorithms. In Section 2 we outline
the language and briefly rehash some of these arguments. We compare Linda in
particular to the remote procedure call protocol, which is of special interest
because it has become the most widely discussed interprocess communication
technique, and has been implemented, tested and used (Birrell and Nelson [3]).
In Section 3 we describe our general strategy for implementing Linda on bussed
networks, and in Section 4 we discuss the S/Net implementation specifically.
Section 5 presents performance results, and Section 6, conclusions.

2. LINDA

Processes in Linda communicate through a globally-shared collection of ordered
tuples called tuple space or TS. The four operators that Linda provides (1) add
tuples to this shared collection, (2) remove tuples, (3) read tuples, (4) add
unevaluated tuples whose evaluation begins as soon as they enter tuple space.

The four operations defined over TS are out () , in () , read () and
eval (). out (t) causes tuple t to be added to TS; the executing process
continues immediately. in (s) causes some tuple t that matches template s to be
withdrawn from TS; the values of the actuals in t are assigned to the formulas
in s, and the executing process continues. If no matching t is available when
in (s) executes, the executing process suspends until one is, then proceeds as
before. If many matching t’s are available, one is chosen arbitrarily. read (s) is
the same as in (s) , with actuals assigned to formals as before, except that the

ACM Transactions on Computer Systems, Vol. 4, No. 2, May 1986.

112 l Nicholas Carrier0 and David Gelernter

matched tuple remains in TS. eval (t) is the same as out (t), except that
e va 1 adds an unevaluated tuple to TS. (eva 1 is not primitive in Linda; it will
be implemented on top of out. We haven’t done this yet in S/Net-Linda, so we
omit further mention of eval.)

For example: executing

out("P", 5, false)

causes the tuple (" P" , 5 , f a 1 se) to be added to TS. The first component of
a tuple serves as a logical name, here l1 P II; the remaining components are data
values. Subsequent execution of

in("P", int i, boo1 b)

might cause tuple (“P " , 5 , false) to be withdrawn from TS; 5 would be
assigned to i and f a 1 se to b. Alternatively it might cause any other matching
tuple-any other, that is, whose first component is "P" and whose second and
third components are an integer and a Boolean respectively-to be withdrawn
and assigned. Executing

read("P", int i, boo1 b)

when (P , 5 , false) is available in TS may cause 5 to be assigned to i and
f a 1 se to b, or equivalently may cause the assignment of values from some other
type consonant tuple, with the matched tuple itself remaining in TS in either
case.

The parameters to an in () or read () statement need not all be formals.
Any actuals among them must be matched by corresponding actuals in a tuple
for tuple-matching to occur. Thus the statement

in("P*l, int i, 15)

may withdraw tuple (” P ” , 6 , 15) but not tuple ("P ” , 6 , 12) . This extended-
naming convention (it resembles the select operation in relational databases) is
referred to as “structured naming.” Structured naming makes TS content-
addressable, in the sense that processes may select among a collection of tuples
that share the same first component on the basis of the values of any other
component fields. Any parameter to out () or eval () except the first may
likewise be a formal; a formal parameter in a tuple matches any type-consonant
actual in an in or read statement’s template.

2.1 Linda versus Remote Procedure Call

The remote procedure call model-to communicate with R, process Q sends
invocation parameters to an entry in R and then blocks until the remotely-
invoked entry sends result parameters back-is ubiquitous in parallel-language
work, for an obvious reason. Since procedure invocation is the best tool for
intraprocess communication, it seems natural to propose it as the basis for
communication between processes as well. The Ada entry call [S] and the Qlambda
process-closure invocation [lo] are both variants of this basic protocol, and
ACM Transactions on Computer Systems,Vol. 4, No. 2, May 1986.

The S/Net’s Linda Kernel l 113

Birrell and Nelson implement remote procedure call in its pure form.’ It is
obviously of interest, then, to compare Linda to remote procedure call.

RPC can easily be implemented on top of Linda. The invoker uses out to send
invocation parameters and a subsequent in to retrieve results, including a unqiue
name (supplied by the system as the value of “me ‘I) as a parameter in the out
tuple; the remote procedure prefaces the result tuple with this name. Thus the
invoker executes

out(ProcName, me, invocation-paranx) ; in (me, result-params) .

Linda, of course, can be implemented on top of RPC as well’-so which kernel
is preferable, where should we start? Obviously there is no absolute answer, but
it may not be obvious that, for better or worse, Linda lends itself to a style of
programming that is different from RPC style. Linda programs exist that would
be so awkward under RPC that they are effectively ruled out of consideration.
These idiomatic Linda programs depend, by and large, on distributed data
structures-data structures that may be manipulated by many parallel processes
simultaneously. Such structures are illegal in most remote-procedure-call lan-
guages, which require instead that shared data objects be encapsulated in manager
processes; operations on shared objects are carried out, on request, by the manager
process on the user’s behalf. Manager processes are safe and reasonable, but
there are important cases where distributed data structures seem by far more
natural and more efficient; a useful parallel language (to our way of thinking)
will support both.

Distributed data structures are interesting for a number of reasons. In the
manager-process model, all processes must funnel their shared-data manipula-
tions through the manager, and there are potential costs in parallelism and in
run time interprocess-communication and process-management overhead. Op-
erations that might safely have been carried out by many user processes in
parallel are performed by the (single) manager process one at a time; every
operation on a shared object entails a conversation with its manager-process
chaperone, and creating a new sharable data object requires either the creation
of a new process or an increase in the load on an existing manager. Harder to
quantify but perhaps of greater importance, the manager-process model preju-
dices the development of a truly parallel programming style by forcing parallel
programs into conventional, sequential molds. It would not be surprising if
distributed data structures proved, in many cases, to be the most natural com-
pliment to distributed algorithms.

‘The CSP-Occam output statement [15, 161 . 1s another remote-procedure-call variant of sorts:
executing a CSP output statement forces the sender to suspend until its message is received by the
target process; the target process may thereupon return only an “okay-to-proceed” synchronization
signal to the sender, where a remotely-invoked procedure would have been free to return whatever it
liked. In any case, both the remote invocation and the CSP output statement deliver a message to an
explicitly-designated receiver and suspend until the receiver gets it, both of which distinguish them
from Linda.
* With (most likely) prohibitive inefficiency, however: we would need to provide a central server to
manage tuple space.

ACM Transactions on Computer Systems, Vol. 4, No. 2, May 1986.

114 l Nicholas Carrier0 and David Gelernter

The simple matrix-multiplication program whose performance is discussed in
Section 5 is a good illustration. The program consists of an initialization process,
a cleanup process, and at least one but ordinarily many worker processes. Each
worker is repeatedly assigned some element of the product matrix to compute; it
computes this assigned element and is assigned another, until all elements of the
product matrix have been filled in. If A and B are the matrices to be multiplied,
then specifically-The initialization process uses a succession of out statements
to dump A’s rows and B’s columns into TS. When these statements have
completed, TS holds

("A", 1 , llrow'l, A’s-first-row) ("B", 1 , "col", B’s-first-column)
("A", 2, "row", A’s-second-row) ("B'l , 2 , q*coln , B’s-second-column).

.

Indices are included as the second element of each tuple so that worker processes,
using structured naming, can select the ith row or j th column for reading. The
initializer then adds the tuple

("Dot", 1, dim, "A", "B", "C")

to TS, and terminates. Here 1 indicates the next element to be computed, dim
is the dimension of the input matrices, "A" and "B" are the inputs and "Cl' is
the name of the product.

Each worker process repeatedly decides on an element to compute, then
computes it. To select a next element, the worker removes the “Dot” tuple from
TS, determines from its second field the indices of the product element to be
computed next, and reinserts “Dot” with an incremented second field:

in("Dot", var NextElem, var dim, var matl, var mat2, var
prod);

if (NextElem < dim*dim)
out("Dot", NextElem + 1, dim, matl, mat2, prod);

i = (NextElem - l)/dim -I- 1;
j = (NextElem - l)%dim + 1;

The worker will now proceed to compute the product element whose index is
(i, j). Note that if (i, j) is the lust element of the product matrix, the “Dot” tuple
is not reinserted. When the other workers attempt to remove it, they will block.
A Linda program terminates when all processes have terminated or have blocked
at in or read statements. (Blocked workers can also be restarted on a new
problem simply by dropping in a new “Dot” tuple.)

To compute element (i, j) of the product, the worker executes

read(mat1, i, var row);
read(mat2, j, var col);
out(prod, i, j, DotProduct(row, col));

Thus each element of the product is packed in a separate tuple and dumped into
TS. (Note that the first read statement picks out a tuple whose first element is
ACM Transactions on Computer Systems, Vol. 4, No. 2, May 1986.

The S/Net’s Linda Kernel l 115

llA1l and second is the value of i; this tuple’s third element is assigned to the
formal row.)

The cleanup process reels in the product-element tuples, installs them in the
result matrix prod, and prints prod:

for (row = 1; row c= NumRows; row++)
for (co1 = 1; co1 + NumCols; col++)

in(prod, row, col, var prod[row] [col]);
print prod;

This simple program was easy to write and strikes others (in our limited
experience) as easy to understand. It has the nice property of scaling transpar-
ently to accommodate any number of worker processes; it might be developed
and debugged with a single worker, but thereafter it will run just as well with ten
workers or a hundred. Unlike the “quasi-systolic” matrix program described by
Shapiro [17], it does not require the system to fork a new process for every
element in the result matrix; the user creates as many processes as seem
reasonable given the available resources at any particular run. Finally, as we
discuss in Section 5, it performs well. Note that many types of algorithms may
be programmed within this general task-queue model [14].

This little matrix program illustrates many of the important differences
between distributed data structures and manager processes. The input matrices
are distributed data structures; all worker processes may read them simultane-
ously. In the manager-process model, processes would send read-requests to the
appropriate manager and await its reply. The “Next” tuple is a distributed data
structure: all worker processes share direct access to it. In the manager process
model, again, worker processes would read and update the “Next” counter
indirectly via a manager. The product matrix is a distributed data structure, which
all workers participate in building simultaneously.

Notice how poor a conceptual model procedure-invocation provides for the
interraction between the workers and the cleanup process. Workers don’t need
to suspend processing, each time they send a message to the printer, until the
message is received. To do so would be a waste of time. Of course we can fix this
problem, in the remote-procedure context, by forking a proxy process to perform
the remote call and be suspended until it returns, or by providing a special
asynchronous-invocation operator, as Qlambda does. Neither fix addresses the
conceptual problem: remote-procedure advocates rely on the naturalness of their
model, but the relationship between the workers and the cleanup process is not
that of a caller to a callee. The same holds of interprocess relationships in many
other simple parallel program structures-consider the relation between one
segment and the next in a parallel pipeline, for example.

Remote procedure calls (as noted) are simple to build in Linda. What is
interesting, though, is the number of cases in a single short program where they
are not needed and not wanted-where direct dealings with a distributed structure
are at least as natural and efficient, and arguably much more so. And note that
matrix multiplication was singled out, not for anything special in its relationship
to Linda, but simply because it was a readily-understood application, easy to
write and to test.

ACM Transactions on Computer Systems, Vol. 4, No. 2, May 1966.

116 l Nicholas Carrier0 and David Gelernter

3. LINDA ON BUSSED NETWORKS

Linda has been widely regarded as posing a difficult implementation problem.
Thus Andrews and Schneider [2], after noting that Linda’s global-naming scheme
is well suited to programming client-server interactions (as discussed in [ll]),
write as follows in discussing the TS operations:

Unfortunately, implementing mailboxes can be quite costly without a specialized commu-
nications network . . . When a message is sent, it must be relayed to all sites where a receive
could be performed on the destination mailbox; then, after a message has been received, all
these sites must be notified that the message is no longer available for receipt. [9]

While the authors misunderstand the nature of Linda’s primitives (which resem-
ble mailbox operations only superficially), their misgivings are easy to credit; the
distributed, globally-accessible character of tuple space allows a naive implemen-
tation great latitude for running poorly. Fortunately, on the S/Net, as on most
bus and ring interconnects, it takes no longer to send to all n network nodes
than to one. Thus it is in fact no more time-consuming (in the sense of elapsed
clock time) to relay a tuple “to all sites where a receive could be performed”
than it is to relay a message to any single site, nor is it more time-consuming to
inform all sites that a tuple has been received, and should be deleted, than it is
to inform the sender alone. There are indeed inherent costs in implementing
Linda instead of plain send-message and receive-message, notably because the
broadcast protocols we use require every processor on the bus to handle every
message. On networks where there are no front-end communication processors
(like our current S/Net), processors are therefore interrupted far more frequently
than they would be under plain message-passing-but we still get good perform-
ance from our kernel. (These interrupt-handling costs will in any case largely
disappear on the next-generation S/Net, now being tested; it provides commu-
nication coprocessors to absorb bus interrupts.)

Our implementation buys speed at the expense of communication bandwidth
and local memory; the reasonableness of this trade-off was our starting point.
(Variants are possible that are more conservative with local memory; we discuss
one below.)

In the simplest version of the scheme-the version we implemented-executing
out (t) causes tuple t to be broadcast to every node in the network; thus every
node stores a complete copy of TS. Executing in (s) triggers a local search for
a matching t. If one is found, the local kernel attempts to delete t network-wide
using a procedure we discuss later; if the attempt succeeds, t is returned to the
process that executed in () . (The attempt fails only if a process on some other
node has simultaneously attempted to delete t, and it has succeeded). If the local
search triggered by in (s) turns up no matching tuple, all newly-arriving tuples
are checked until a match occurs, at which point the matched tuple is deleted
and returned as before. read () works in the same way as in (), except that
no tuple deletion need be attempted; as soon as a matching tuple is found, it is
returned immediately to the reading process.

The delete protocol must satisfy two requirements: all nodes must receive the
“delete” message; if many processes attempt to delete simultaneously, only one
must succeed. The manner in which these requirements are met will depend, of
course, on the available hardware.

ACM Transactions on Computer Systems, Vol. 4, No. 2, May 1986.

The S/Net’s Linda Kernel l 117

When some node fails to receive and buffer a broadcast message, a negative-
acknowledgement signal is available on the S/Net bus. The first delete protocol
we implemented therefore had two parts: the sending kernel rebroadcasts a
“delete t” message repeatedly until the negative acknowledgement signal is not
present; it then awaits a message, reliably transmitted point-to-point from the
node on which t originated, informing it either that “t has been assigned to you:
proceed,” or “t has not been assigned to you: wait.” In this protocol, then, the
kernel on the tuple’s origin node is responsible for allowing one process, and only
one, to delete it.

The following is an informal argument that this protocol works correctly. We
know, once node k has completed its “broadcast the delete message” phase, that
every node in the network has been informed that t is gone, no longer available
either for reading or removing. If some node hadn’t gotten the word (if it had
failed to receive k’s broadcast message), a negative acknowledgement would have
been present on the bus and k would have retried the broadcast. (Note that delete
messages are idempotent-instructions to delete a tuple that isn’t there are
ignored.) Given that all nodes have been informed that t should be deleted,
suppose k needs to rebroadcast its delete message several times, and the origin
node’s response arrives during this period-will in complete correctly? It will,
so long as we insure that the kernel is prepared to respond properly to arbitrary
messages received during the delete phase, and then to resume the delete phase-
which we have done. Suppose other nodes are simultaneously attempting to claim
t-will only one of them be told to proceed? Yes. The origin node can easily
make sure that it returns only one “proceed” message for each tuple in its custody.
Will at least one node receive a “proceed” message? We can be sure that the
origin node received the delete request, because if it hadn’t, a negative acknowl-
edgment would have been raised during phase one. The “proceed” message itself
is sent via a reliable point-to-point protocol: It is retried until the intended
receiver gets it.

We have noticed that broadcast failures on the S/Net are very rare; in fact,
we’ve never seen one. If broadcast were necessarily reliable, the delete protocol
would be simpler: a “delete t” message is broadcast; if the broadcasting node
reads its own message back off the bus with no other “delete t” message
intervening, the delete attempt has succeeded. If some other node’s “delete t”
arrives first, the attempt fails. When several nodes attempt to delete simultane-
ously, in other words, the kernel that grabs the bus first succeeds. We have used
this procedure in combination with our ability to detect failure to develop a
second delete protocol. We assume that broadcast is reliable, and use “reliable
bus” delete; a failed-broadcast signal, should one ever occur, triggers the execution
of a higher-level (potentially complicated) recovery routine.

The protocols outlined above depend heavily on the availability of a negative
broadcast acknowledgment on the S/Net bus. We are now in the process of
completing a Linda kernel for an Ethernet-based Micro-Vax network, where
there is no such signal. One approach in this new environment therefore requires
(1) that each node remember the sequence number of the last message received
from each other node, and send a back-order request if and when it notices a gap
(this simple message-logging scheme is related to the technique described by
Chang and Maxemchuck [5]); (2) that reads as well as ins get clearance from

ACM Transactions on Computer Systems, Vol. 4, No. 2, May 1986.

118 . Nicholas Carrier0 and David Gelernter

the tuple’s origin node-in the case of read, if node k misses a delete message,
a tuple that it believes is available may already have been deleted, only the tuple’s
origin node (which alone may authorize a delete) knows for sure. Many other
protocols are possible, and we expect to experiment with several.

The S/Net’s kernel is costly in storage required, because tuple space is repli-
cated. We currently allocate approximately 300 kbytes worth of tuple storage
space on each node, out of total RAMS ranging from 600 kbytes to 1.2 Mbytes.
As noted, other kernel designs are possible that are more conservative with
storage space; we are now implementing one. In the new protocol, designed by
Jerry Leichter, out requries only a local install; in (s) causes template s to be
broadcast to all nodes in the network. Whenever a node receives a template s, it
checks s against all of its locally-stored tuples. If there is a match, it sends the
matched tuple off to the templates’s node; if not, it stores the template for x ticks
(checking all tuples newly-generated within this period against it), then throws
it out. If the template’s origin node hasn’t received a matching tuple after x ticks,
it rebroadcasts the template. More than one node may respond with a matching
tuple to a template-broadcast; when a template-broadcaster receives more that
one tuple, it simply installs the extras alongside its locally-generated tuples and
sends them onward when they are needed. This scheme doesn’t require reliable
broadcast, and it doesn’t require tuples to be replicated on each node, so per-
node storage requirements are much lower.

In the current S/Net kernel, each node’s copy of tuple space is hashed on a
tuple or template’s first component (which must, recall, be an actual). Tuple
matching (that is, the mapping of newly-arrived tuples to waiting templates, or
new templates to stored tuples) is guided by control words stored in each tuple
or template’s header. This hashing scheme is less than ideal and will eventually
be replaced. The problem is a common and useful Linda program pattern in
which a large number of tuples have the same first field and are distinguished by
some other field, consider the matrix program, for example. Hashing breaks down
under these circumstances; for efficiency, we generally list the index first: thus
(1, "A", A ‘s-first-row) . (Tuples are arranged in this fashion in the S/Net matrix
program we tested.) The user should not have to worry about the kernel’s hashing
scheme, though, and we are now investigating a table organization in which each
tuple field is hashed separately, and the shortest hash chain guides the tuple-
match search.

4. DETAILS OF THE S/NET LINDA KERNEL

The S/Net we worked on consisted of 8 MC-68000’s with local memory ranging
between 650 to 1200 kbytes, and a VAX 11/750, all connected by a word-parallel
bus whose capacity is about 80 Mbits per second. There are no DMA channels
or front ends (although in future iterations of this hardware there will be). The
VAX handles Unix systems calls for the 68000’s; Unix calls are trapped by
monitors on the 68000’s and sent to the VAX over the S/Net bus.

The S/Net Linda kernel currently consists of a set of systems calls that allow
a user to write C programs that run on several processors and communicate using
ins, outs and reads. The Apollo Linda compiler shields the user from these
low-level calls; we have yet to port it to the S/Net, but this will be done soon.
ACM Transactions on Computer Systems, Vol. 4, No. 2, May 1986.

The S/Net’s Linda Kernel l 119

TIME

in(a, b, c)
User Level

out(a, b, c)

Fig. 1. Linda S/Net kernel
system calls.

match-loop(ptp-copy)

User Level

t

(The Apollo Linda compiler is simply a C preprocessor, so the move will be easy.)
The kernel is written in C with the exception of one assembly routine tha sends
data over the bus, and the few lines of code that invoke the Linda interrupt
handler (written in C) upon the arrival of any Linda-format message. This
dispatch-to-Linda routine is necessary because Linda processes and messages
may coexist with others on the S/Net; our interrupt handler is installed above
an S/Net monitor that invokes it when appropriate.

Figure 1 illustrates the ways in which the kernel routines interact. Two data
structures are fundamental A ptp (proto-tuple packet) is a “tuple descriptor”
that contains, for any tuple or template (recall that tuples and templates are
structurally identical), the value or a pointer to the value of each actual element,
and the type of each formal element. ptp’s are fixed-size structures, because our
implementation imposes a limit of six fields per tuple beyond the first field-
which is required to be either a string of at most sixteen characters or a long
integer. (The tuples or templates themselves are not of fixed size, though. We
currently support tuple elements of type integer, string, and “block”-where a
block is an array of longwords and may be used to store reals, arrays and so
forth.) tb's (tuble blocks) hold tuple packets in a form that is suitable for
transmission across the bus. They come in two sizes: 20 bytes of header infor-
mation plus either 100 or 512 bytes of data. When the routine ptp-tb()

converts a tuple descriptor to a series of tuple blocks, it attempts to fit the tuple
into the data area of a small tb. If the tuple spills over, additional large tb's are
linked on until the tuple fits. (Here and throughout, these numbers were chosen

ACM Transactions on Computer Systems, Vol. 4, No. 2, May 1986.

120 - Nicholas Carrier0 and David Gelernter

by intuition. After we have gained some experience working with the implemen-
tation, we will be in a position to refine them.)

Matching of in templates to out tuples is done by match-loop. Tuples are
hashed on their first element into one of 256 linked tuple lists. Executing an in
causes an invocation of match-loop () , which searches the appropriate hash
list for a tuple to receive. If it finds one it attempts to delete it, as discussed in
Section 3. If it doesn’t find one, or if its delete attempt fails, it blocks pending
arrival of a matching tuple. (We have not yet implemented multiprocessing
within each S/Net node; for the time being, then, since each node runs only a
single Linda process, a Linda process may block simply by spinning on a flag
that is eventually toggled by the kernel in response to an interrupt. The Apollo
Linda kernel does implement context-switching, though, and since the Apollo
kernel is also a C program for the MC-680000 processor, adding per-node
multiprocessing on the S/Net should be simple and will be undertaken soon.) A
new tuple’s arrival triggers a search for a matching template, and if a match is
found the kernel proceeds as above.

It is worth noting that, although the kernel’s organization may seem a bit
complex, it has been designed to allow flexibility in deciding at some future time
on an optimal division of work between the compiler and the run time kernel.
The work done at run time by make-ptp() (which builds tuple descriptors)
can in fact be done almost entirely at compile time. The same holds in some
cases for ptp-tb () , which converts descriptors into tuple packets-although
how frequently this is so depends on the compiler’s sophistication. Tuples whose
elements are all constants, for example, can obviously be packetized at compile
time. A slightly more sophisticated compiler might also move packetizing out of
a loop when tuple elements are loop invariant, and so on.

5. PERFORMANCE

Our first goal in experimenting with the S/Net kernel was to establish how long
the basic TS operations, out and in, take to perform. We then attempted to
refine our understanding of the kernel’s performance by studying a simple Linda
application program.

In order to estimate the time required to perform in's and out's we ran the
following programs on separate processors:

PING :

PONG :

count = 0;
while(TRUE) (

in("ping");
if (*count == LIMIT) break;
out(**pong**);

I
print elapsed time;
while(TRUE) (

out("ping");
in("pong");

Since we wanted to measure basic communication cost, we moved the support
calls make-ptp and ptp-tb out of the loops, which is equivalent to assuming
the existence of a compiler that is able to recognize that the strings vlping*' and
ACM Transactions on Computer Systems, Vol. 4, No. 2, May 1986.

The S/Net’s Linda Kernel 121

rrpongsv are constants. Elasped time was measured using the 68000’s clock via
routines supplied by the existing operating system.

Running with LIMIT equal to 20000 (i.e., 40000 out-in pairs) we measured
a rate of 720 pairs per second (where a pair is out ("ping") plus in ("ping")
or out (~~pong~~) plus in ("pang")) with the first delete protocol and 770 pairs
per second with the second, simpler one. So the evidence suggests that a
maximally-simple out-in transaction, from kernel entry on the out side to
kernel exit on the in side, excluding, as noted, the cost of packetizing, takes
about 1.3 ms with the fast delete protocol and 1.4 ms with the slow one. Other
similar experiments support these general figures. The experiments were repeated
various times with similar results, ordinarily with little or no nonLinda traffic
sharing the S/Net bus with us.

We sought a better idea of the kernel’s performance by implementing the
matrix program discussed above. Figures 2 and 3 show measured execution time
for Linda programs using one through four worker processes (one through six in
the 32 x 32 case) in addition to one other process that first initializes and then
cleans up. Each process runs on a separate processor, so two processors were
active in the “one worker process” case, three in the “two workers” case and so
forth, up to seven processors in the “six workers” case. We measured run time
from the startup of the initializer to the point where the cleanup routine has
removed the last product element from TS. (Cleanup then goes on to print the
product matrix, and printing time is excluded from our measurement.) We are
assuming an especially stupid compiler: we are measuring at run time tuple-
formatting computations that would be avoided or done at compile time given a
more sophisticated compiler. The graphs also show the time a standard C program
(running on a single processor, or course) required to do the multiplication. Even
for a matrix as small as 16 x 16, 3 Linda workers were enough to beat the C
program. For large matrices, just two workers were enough.

Figures 2 and 3 show another interesting datum as well. In every case there
existed an a and b such that a curve of the form (a/n) + b would fit our datapoints
precisely; our performance curves, in other words, have the shape of linear speedup
curves. We interpret this data as suggesting that a represents parallelizable time
while b represents fixed time. Execution time of the Linda program, in other
words, can be divided into two parts: processing that can be split among the
workers (a) and processing that is inherently sequential (b). Inherently sequential
processing includes initialization time and time spent in kernel interrupts.
Parallelizable time is composed of the time needed for the computations and for
that portion of the communication burden that occurs outside of interrupt-
handling and can therefore be carried out in parallel.

Note that our goals in this experiment were to learn something about the
performance of our kernel, not to build a matrix multiplier that is fast in absolute
terms. The boards we are working with do not have floating point chips-floating
point multiplications are done in software. It is interesting to note, though, that
when we ran a version of this routine using long integer instead of floating-point
multiplies, the speedup curved that resulted were almost identical in shape to
the ones in Figures 2 and 3, although all times are scaled down in absolute terms.

We are now in a position to make some further estimates of low-level com-
munication costs. The fixed, sequential cost for a 64 x 64 multiplication is

ACM Transactions on Computer Systems, Vol. 4, No. 2, May 1986.

122 l Nicholas Carrier0 and David Gelernter

Fig. 2. Execution time versus j
number of worker (DOT com-
puting one element of result

!2

matrix). 0 = measured value; 0 _
-= a/n + b; - - - = uniproces- e
sor C.

Number of WorKcr Processors

roughly 8.2 seconds (s) (b above). This is largely made up of the 0.6s we have
measured as required initialization time (the time needed to dump the input
matrices into TS), plus the time needed, for each element of the product, to
handle interrupts for two out - in pairs, one for the “Dot” tuple and one for the
result. We ran this program with the longer delete protocol only; under this
protocol, three interrupts are handled by each kernel in the course of handling
an out - in pair. The net result is 0.3 ms per interrupt-driven invocation of the
Linda kernel.
ACM Transactions on Computer Systems, Vol. 4, No. 2, May 1986.

The S/Net’s Linda Kernel 123

150

140

130

120

110

100

90

1 80

z 70 I-

60

50

40

30

20

10

n

0

C? \ L 40 x 40

-

-\----

(2

u1
II-

2 3 4 5 6

Fig. 3. Execution time versus
number of workers (DOT
computing one element of re-
sult matrix). 0 = measured
value; - = a/n + b; --- =
uniprocessor C.

Number of WorKer Processors

We went on to test a second version of the algorithm in which the granularity
of parallelism is coarser and communication costs are correspondingly lower. In
this version, worker processes compute an entire row of the product, not just a
single element, in each task step. Figure 4 shows results for matrices with
dimension 16, 32, and 64 using 1, 2, 3, 4 and 5 worker processors. (Data for
16 x 16 has been scaled up by a factor of twenty.) Here we have plotted our data
against curves that represent ideal speed-up of the C program. The solid curves
intersect the ordinate at a point which represents measured performance of the

ACM Transactions on Computer Systems, Vol. 4, No. 2, May 1986.

124 l Nicholas Carrier0 and David Gelernter

100 \ 64 X 64

- 70
::

s 60

:

T 50

40

30

20

10

0

- 16 X 16 \O

1 2 3 4 5 -6
Number of WorKer Processors

Fig. 4. Execution time versus number of workers (DOT computing one row of the result
matrix). 0 = measured value; q = measured value * 20; - = (time of Q/n; --- = (time of
C * 20)/n.

C version: thus in the 64 x 64 case, for example, C took 113s (Linda with a
single worker required 116s); the curve represents the effect of simply turning
up C’s speed linearly-doubling it, tripling it and so on. For the two larger
dimensions we observe a good fit, for all five processors, of Linda time to the
idealized C speedup curve. 16 x 16 is not as good, but even so the addition of just
one extra processor is sufficient for this version to finish faster than t,he
uniprocessor C program.

The astute reader may have noticed that the data points for odd numbers of
processors are slightly worse than for even numbers. This is most pronounced in
the 16 X 16 case for five processors. The explanation lies in the relatively large
granularity of parallelism in this program. Consider the extreme case. For the
16 x 16 problem, there are 16 rows of the result matrix to compute. Given four
workers, each computes four rows. Given five, four will need to compute only
three rows, but the fifth still needs to compute four, exactly as in the four-worker
case. Despite the extra worker we must still wait, then, for a full four rows to be
ACM Transactions on Computer Systems, Vol. 4, No. 2, May 1986.

The S/Net’s Linda Kernel 125

computed in sequence-and so it is not surprising that the four and five worker
versions take equal amounts of time to finish. In the finer-grained, element-by-
element version of this problem, we have 256 tasks to distribute instead of 16,
with a maximum of 64 tasks for four workers and 52 for five-an appreciable
difference. Communications costs, on the other hand, are much greater in the
fine-grained version, and the net result is that row-by-row ran twice as fast as
element-by-element.

One more interesting fact about the row-by-row version: if we were chaining
matrix multiplications together-if we were waiting to multiply the product of A
and B by C-then row-by-row multiplication of A and B produces results in the
optimal sequence and the correct format for pipelining the two multiplications;
multiplication of A x B by C can begin as soon as the first A X B worker-task
completes.

Is matrix multiplication a reasonable test case? Note that the Linda solution
has more generality than we need. The matrix program assigns tasks to workers
dynamically, but in a problem as simple and regular as matrix multiplication, we
could as well have assigned each of n workers l/n. of the product matrix to
compute. (It’s interesting to note, however, that even with a problem as orderly
as matrix multiplication, dynamic scheduling might be the technique of choice if
we were running on an inhomogeneous network, on which processors vary in
speed and in run time loading. We’ve been studying just such a network-a
collection of Vaxes ranging from Micro-Vax I’s to 8600’s.) What is interesting,
then, is the fact that we measured good speedups despite (unnecessary) dynamic
scheduling; a generalization of this same solution framework will work on
irregular problems where dynamic scheduling is important. (We discuss such
problems in [4].)

5.1 Limitations of our Test Results

The Linda kernel has only recently been completed, and we have much more
testing to do. Most important, we can not yet say how our kernel will run on
more than eight nodes; eight is the maximum available to us on our machine.
We will have some basis for prediction once we know what fraction of the
S/Net’s total communication capacity our running programs consume; we are
now developing tests that will measure this. Several points are worth mentioning,
though. Note first that, given programs like the matrix multipliers, total bytes
transmitted over the bus depends on the size of the input matrices only, not on
the number of parallel workers. Whether we run a single worker or a hundred,
the “Dot” tuple is ined and outed exactly once for each element of the product,
and so fourth. We don’t increase total bytes to be transmitted, then, when we
add processors; we increase offered load insofar as we attempt to send the same
number of bytes within a shorter interval. Test programs measured by other
researchers at Bell have not succeeded, however, in using more than about 20
percent of the S/Net’s available capacity even when doing nothing but repeated
sends. This figure suggest to us that there is room for much more speedup as we
add workers beyond the number we have been able to test so far, and that the
TS primitives will continue to run well as total processors increase. We won’t
know for sure, though, until we have access to a larger S/Net.

ACM Transactions on Computer Systems, Vol. 4, No. 2, May 1986.

126 l Nicholas Carrier0 and David Gelernter

6. CONCLUSIONS

Linda offers parallel programmers a new way of looking at network communi-
cations systems. Standard communication protocols require that information be
handed around from process to process; no process can unburden itself of new
data without first determining where the data should go, and then handing it
along explicitly. Linda processes, on the other hand, are anonymous drones
sharing access to one data pool. Shared memory has long been regarded as the
most flexible and powerful way of sharing data among parallel processes-but a
naive shared memory is hard to implement without hardware support, and
requires the addition of synchronization protocols if it is to be safely accessed in
parallel. In Linda, however, the shared memory’s cell-size is the logical tuple, not
the physical byte, and so it is coarse-grained enough to be supported efficiently
without special hardware. And because, in Linda’s shared memory, data may not
be altered in situ-it is accessible via read, remove and add instead of the
standard read and write-it may safely be shared by any number of parallel
processes.

Several limitations and one nonlimitation of this work should be noted. A
major limitation is the cursory way in which we have dealt with questions of
reliability and failure. A Linda environment is not a particularly vulnerable one;
in some ways, failure or unreliability of the nodes or the interconnect are easier
to handle in a Linda environment than in a conventional one. Regardless, we
have not yet dealt carefully with failure, and we will clearly need to before our
implementation is complete. There is another limitation of sorts in the fact that
our focus in the S/Net project to date has been on the Linda primitives them-
selves, not on parallel applications that use them; applications programming
using our Linda kernel is a current research topic both for ourselves and for a
parallel-application project at Bell.

One further point that will perhaps be taken as a limitation is the limited
extensibility of the S/Net architecture and the limited generalizability, in this
sense, of our results. The current S/Net bus will not support more than sixty-
four nodes: A VLSI-based reimplementation will accomodate no more than 256.
The S/Net and its Linda kernel will not suffice for thousand or multithousand
node super-computer networks. We have in fact studied the implementation of
Linda on large hypercube-connected linked networks [12], and a Linda imple-
mentation for such a machine is now in design. More important, the limited
extensibility of the S/Net is irrelevant to our interests and goals in this project,
and we do not regard it as a limitation. This is so for three reasons. First, we
believe that a working fifty- or one hundred-node multicomputer that application
programmers could actually use (one whose potential power was conveniently
accessible to a wide community of programmers, not limited to those with
intimate knowledge of the machine), would be highly powerful and desirable tool.
Such a machine has certainly not (to our knowledge) been achieved to date.
Second, smaller networks will continue to be of interest in the design of advanced
workstations; investigation of a parallel workstation (one that uses the Linda
kernel to support a parallel interpreter for Symmetric Lisp [141) is a major future
goal of the S/Net-Linda project. Finally, the techniques we are investigating on
the S/Net should be applicable to much larger bussed networks as well.
ACM Transactions on Computer Systems, Vol. 4, No. 2, May 1966.

The S/Net’s Linda Kernel l 127

Linda is intended as a general-purpose programming vehicle both for parallel
applications and for distributed systems. Our S/Net work to date has included,
besides the matrix multiplication routines, experiments with parallel LU decom-
position with partial pivoting, and with a VLSI simulator; some of this ongoing
work is discussed in [4]. The Micro-Vax Linda kernel is intended mainly for
distributed systems programming; previous work with an Apollo-workstation-
based Linda simulator included concurrent-system problems like Dijkstra’s din-
ing philosophers and the readers-writers problem, the Jacobi iterative method
for differential equations, pipeline programs (a square-root approximator, for
example), parallel sorting and prime-number-generating routines that build
process pipelines dynamically in outward-telescoping fashion, and a concurrent
version of the Apollo Linda preprocessor itself.

As a communications kernel for a bus-connected network, S/Net-Linda falls
generally within the category of several others that have been reported in recent
years, including the Birrell and Nelson RPC kernel, Cheriton and Zwaenpoel’s
V Kernel [7] and Spector’s Remote Operations kernel [18], among others. Linda
differs fundamentally from all three in what it offers the user; the V kernel
provides RPC-like synchronous message passing (in addition to an efficient
internode file transfer service), and Spector provides flexible systems-level pro-
tocol-construction tools to the systems programmer. It is nonetheless worth
pointing out that Linda’s performance, within latitude of all the obvious incom-
parabilities, is roughly in league with the others (assuming the software and not
the microcoded version of Spector’s system). In the V kernel, the synchronous
send of a short message, from send-message until the sender receives a reply,
requires 2.56 ms3; a generally comparable operation in Linda requires roughly
2.6 ms with a null message. (The figure for short messages is about the same).
Birrell and Nelson’s reported 1.1 ms for remote invocation of a procedure of no
arguments that returns no results-the figure represents elapsed time from
invocation through remote procedure execution and return-is considerably
faster; but Linda and the V Kernel both run on MC-68000’s, the RPC kernel on
the much-faster Dorado.

Since Linda provides a form of logically shared memory, it might be deemed
reasonable to compare it to physically shared memory systems. Two separate
questions are possible: Is Linda as expressive as the programming systems
provided with physically shared memory machines? Does it run as well? For
now, the second question is unanswerable, because we haven’t implemented
Linda on a shared memory machine. Comparing Linda on the S/Net to something
else on a shared memory architecture tells us nothing, because we have not
controlled for hardware: In general, we expect communication to be cheaper on
physically shared memory systems; we expect them to be capable of realizing
speedups from programs that are far more communication-intensive than any-
thing we can run efficiently using S/Net-Linda-but of course, we’d also expect
Linda on a shared-memory machine to run faster than S/Net-Linda. Regarding
the first question, programming primitives developed for shared-memory archi-
tectures cannot on the whole be expected to run, as Linda does, on network

3 A second paper [7] quotes a higher figure for a modified system, but the lower number reflects a
kernel that is closer to ours.

ACM Transactions on Computer Systems, Vol. 4, No. 2, May 1986.

128 l Nicholas Carrier0 and David Gelernter

machines. Once again, we are dealing with incomparables. For the sake of
argument, the programming tools that have been made available on shared-
memory architectures seem generally to be conceptually lower-level than Linda’s
primitives. Consider, for example, the Chrysalis operating system for the BBN
Butterfly [9]. Global names in Chrysalis may refer to memory segments, events,
“dual queues,” or processes. (In Linda, global names refer only to tuples; Linda
processes never need to deal directly with memory segments or with other
processes.) Chrysalis provides operations on segment attribute registers for
purposes of memory sharing, and events (with associated event handlers and
event blocks), together with “post” operations, for synchronization and commu-
nication. (Events are always associated with processes; “post” may send either
to an event or to a dual-queue.) There are doubtless cases in which Chrysalis
primitives are more appropriate than Linda primitives; in most cases, we will
prefer Linda’s simplicity.

The S/Net architecture has features that suit it particularly well to our kernel,
and we have made significant use of them, as noted. In planning new Linda
kernels we are not restricted, however, either to the S/Net in particular or to
bus-based networks generally. The Micro-Vax kernel (which we have already
used for some preliminary matrix-multiplication experiments) is very similar to
the S/Net’s, but Linda kernels for two different hypercube multicomputers are
also in design, and their lower-half communication routines are very different
(though the upper-half routines that set up and manage tuple space are largely
the same). Linda does not require shared memory, but it is a natural match to
multicomputers that happen to provide it; we believe that Linda will be easy to
implement on shared memory machines, and that it will prove valuable as a
clean, simple way of parcelling out access to the shared memory resource. This
is potentially complex to control in a parallel-programming environment.

Despite the varied architectures we are now dealing with, the S/Net’s special
importance to the Linda project can not be denied. Some of our most interesting
current collaborative work involves developments in S/Net hardware that will
allow the Linda kernel to run better. In the short term this work involves
communication coprocessors that will soak up the heavy bus-interrupt load our
kernel generates, leaving the host processors free to compute in peace. For the
longer term, we are investigating the design of a VLSI “Linda chip” that executes
a good part of the kernel in hardware. All of our work to date tends to the
conclusion that the tuple-space operators are in fact a good basis for a parallel
machine language-a simple set of flexible, powerful operators to be supported
directly by a multicomputer’s communication hardware. These basic operators
are accessed most directly via Linda, but higher-level languages may be imple-
mented above them as well. Our goal of a hardware Linda Machine is likely to
be realized first in the S/Net context.

ACKNOWLEDGMENTS

This work was performed primarily at AT&T Bell Laboratories, Holmdel; Sid
Ahuja, Erik DeBenedictis, Robert Gaglianello, Howard Katseff and Thomas
London, all of Bell Laboratories, were our research collaborators.

’ A 12%node Intel iPSC and a 64-node cube designed and built by Erik DeBenedictis of AT&T Bell
Labs.

ACM Transactions on Computer Systems, Vol. 4, No. 2, May 1986.

The S/Net’s Linda Kernel l 129

REFERENCES

1. S. AHUJA. S/Net: A high-speed interconnect for multiple computers. IEEE Selected Areas in
Communication (Nov. 1983), 751-756.

2. ANDREWS, G. R. AND SCHNEIDER, F. B. Concepts and notations for concurrent programming.
ACM Camp. Suru. 15, 1 (Mar. 1983), 3-44.

3. BIRREL, A. D. AND NELSON, B. J. Implementing remote procedure calls. ACM Trans. Comp.
Syst. 2, 1 (Feb. 1984), 39-59.

4. CARRIERO, N., GELERNTER, D. AND LEICHTER, J. Distributed data structures in Linda. In
Proceedings of the ACM Symposium on Principles Programming Languages (Jan. 13-15, St.
Petersburg, Fla.), 1986, ACM, N.Y.

5. CHANG, J. M. AND MAXEMCHUCK, N. F. Reliable broadcast protocols. ACM Trans. Comp. Syst.
2,3 (May 1984), 251-273.

6. CHERITON, D. R. AND ZWAENEPOEL, W. The distributed V kernel and its performance for
diskless workstations. In Proceedings of the Ninth ACM Symposium on Operatings Systems
Principles. (Oct. 11-13, Bretton Woods, N.H.), 1983, ACM, N.Y., 128-139.

7. CHERITON, D. R. AND ZWAENEPOEL, W. Distributed process groups in the V kernel. ACM
Trans. Comp. Syst. 3,2 (May 1985), 77-107.

8. DEPARTMENT OF DEFENSE. Reference Manual for the Ada Programming Language, U.S. Dept.
of Defense, July 1982.

9. DEUTSCH, J. T. AND NEWTON, A. R. MSPLICE: A multiprocessor-based circuit simulator. In
Proceedings of the 1984 International Conference on Parallel Processing, (Aug. 1984), 207-214.

10. GABRIEL, R. P. AND MCCARTHY, J. Queue-based multi-processing Lisp. In Proceedings of the
ACM Symposium on Lisp. and Functional Programming (Aug. 6-8, Austin, Tex.), 1984, ACM,
N.Y ., 25-44.

11. GELERNTER, D. AND BERNSTEIN, A. Distributed communication via global buffer. In Proceed-
ings ACM Symposium Principles of Distributed Computing (Aug. 18-20, Ottawa, Ont.), 1982,
ACM, N.Y., 10-18.

12. GELERNTER, D. Dynamic global name spaces on network computers. In Proceedings Znternu-
tionul Conference Parallel Processing, (Aug. 1984).

13. GELERNTER, D. “Generative communication in Linda. ACM Trans. Prog. Lang. Syst. 7, 1 (Jan.
1985), 80-112.

14. GELERNTER, D., CARRIERO, N., CHANDRAN, S. AND CHANG, S. “Parallel programming in
Linda,” In Proceedings of the International Conference on Parallel Processing, (Aug. 1985),
255-263.

15. HOARE, C. A. R. Communicating sequential processes. Commun. ACM 21, 11 (Aug. 1978),
666-677.

16. INMOS LTD. OCCAM Programming Manual. Prentice-Hall (1984).
17. SHAPIRO, E. Systolic programming: A paradigm of parallel processing. Tech. Rep. CS84-21,

Weitzmann Institute of Science, Dept. of Applied Mathematics, Rehovot, Israel (Aug. 1984).
18. SPECTOR, A. Performing renidts-operations efficiently on a local network. Commun. ACM 25,

4 (1982), 246-260.

Received July 1985; revised September 1985; accepted November 1985

ACM Transactions on Computer Systems, Vol. 4, No. 2, May 1986.

