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How can a system that differs sharply from all currently fashionable 
approaches score any kind of success? Here’s how. 
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Linda consists of ii few simple operations that embody 
the tuple space m ldel of parallel programming. Adding 
these tuple-space operations to a base language yields a 
paral.lel programming dialect. Use of Linda is growing 
slowly but steadill as we distribute versions of the sys- 
tem for beta test, and as several manufacturers work on 
their own implementations. But Linda remains stub- 
bornly outside the research mainstream. In the re- 
search community, discussion of parallel programming 
models focuses mainly on message-passing, concurrent 
object oriented pr Jgramming, concurrent logic lan- 
guages, and functional programming systems. Linda 
bears little resemblance to any of these. How can a 
system that differs sharply from all currently fashion- 
able approaches score any kind of success, even a ten- 
tative and preliminary one (which is all we claim for 
Linda)? We’ll argue that, on balance, Linda is a simpler, 
more powerful an1 more elegant model than any of 
these four alternai ives. The claim doesn’t hold for all 
problems and includes, obviously, a subjective element; 
but we hope to convince readers that any consideration 
of how to write parallel programs is incomplete without 
considering this h sterodox model also. Our method is a 
series of head-to-t ead comparisons. First we introduce 
the Linda model and compare it to the concurrent ob- 
ject model (or actually the concurrent object non- 
model, as we explain). Then we compare sample pro- 
grams, contrasting Linda with examples coded in 
Parlog86, a concm rent logic language prominently fea- 
tured in a recent issue of Communications of the ACM 
[SO], and with a pure functional language. 

THE MODEL AND THE SYSTEM’S STATUS 
To write parallel Ilrograms, programmers must be able 
to create and coorllinate multiple execution threads. 
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Linda is a model of process creation and coordination 
that is orthogonal to the base language in which it’s 
embedded. The Linda model doesn’t care how the mul- 
tiple execution threads in a Linda program compute 
what they compute; it deals only with how these exe- 
cution threads (which it sees as so many black boxes) 
are created, and how they can be organized. into a 
colherent program. 

‘The model is based on generative communication. If 
two processes need to communicate, they don’t ex- 
change messages or share a variable; instead, the data 
producing process generates a new data object (called a 
tuple) and sets it adrift in a region called tuple space. 
The receiver process may now access the tuple. Creat- 
ing new processes is handled in the same way: a pro- 
cess that needs to create a second, concurrently execut- 
ing process generates a “live tuple” and sets it adrift in 
tuple space. The live tuple carries out some specified 
computation on its own, independent of the process 
that generated it, and then turns into an ordinary, data 
objiect tuple. 

This simple scheme has a series of important implica- 
tions. First, communication and process creation are 
twco facets of the same operation. To create processes, 
we generate live tuples, which turn into data object 
tuples; to communicate, we generate data object tuples 
directly. The result in both cases is the same: a new 
object is added to tuple space, where any interested 
party may access it. Second, data is exchanged in the 
form of persistent objects, not transient mes,sages. The 
receiver may remove the tuple generated by the data- 
producing process, but may also leave it in tuple space, 
wh.ere many other processes may read it too. We can 
organize collections of tuples into distributed data 
structures, structures that are accessible to many pro- 
cesses simultaneously. The unification of process and 
data creation means that we can organize collections of 
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processes in the same way, into “live data structures”: 
each process in the live data structure computes and 
then turns into one element of the passive data struc- 
ture that is returned as the result. Roughly speaking, 
the fact that we can write programs that use messages, 
distributed data structures or live data structures 
means that this simple model encompasses coarse, me- 
dium and fine-grained approaches to parallelism. 

In fact, the implications of generative communication 
extend beyond parallel programming. If we think of 
communication as a transaction between separate pro- 
grams or processes-a transaction that can’t rely on 
standard intra-program mechanisms like shared vari- 
ables and procedure calls-then communication is a 
fundamental problem for which few unified models ex- 
ist. Two processes in a parallel program may communi- 
cate; a program in one language may use communica- 
tion mechanisms to deal with a program in another 
language; a user program may communicate with the 
operating system; or a program may need to communi- 
cate with some future version of itself, by writing a file. 
Most systems classify these events under separate and 
unrelated mechanisms, but the tuple space model cov- 
ers them all. Tuple space exists outside of (encompas- 
ses) the black-box programs that do the computing. Ac- 
cordingly it can be used to pass information between 
black boxes in different languages (its own simple se- 
mantics is independent of any one language’s), between 
user and system black boxes and between past black 
boxes and future ones (its lifetime isn’t bounded by the 
programs it encompasses). Although implemented 
Linda systems focus only on communication within 
parallel programs, the generative communication model 
encompasses all of these forms of communication, as 
will future Linda systems. 

Linda, to summarize, deals only with process crea- 
tion and coordination. If a modular language is em- 
bedded in the Linda model, Linda becomes part of a 
“modular” approach to parallelism; likewise with an 
object oriented language, or a logic language, or an in- 
terpreted language or anything else. By not meddling in 
computation issues, Linda wins the freedom to coexist 
peacefully with any number of base languages and 
computing models, and to support clean, simple, and 
powerful operations within its own domain. 

Current Status 
Linda has been implemented and tested in a broad 
range of environments. In our group we have added the 
Linda operations to C and Fortran, and other groups are 
working on C++, PostScript (see [Zi’]) and Scheme as 
base languages; [7] describes a Modula-2 Linda, [28] an 
object-oriented derivative. Linda runs on a wide range 
of parallel machines: shared-memory multi-computers 
like the Encore Multimax, Sequent Balance and Sym- 
metry and Alliant FX/8; distributed-memory multi- 
computers like the Intel iPSC/2 and the S/Net; and 
Vax/VMS-based local area nets. Linda applications 
have shown good speedup through 64 nodes on our 

iPSC/2, which is the biggest machine we have used to 
date [19]; given the nature of the Linda implementa- 
tion, these applications are very likely to continue to 
speed up on larger machines as well. (Linda implemen- 
tations for machines like the Intel hypercube are based 
on distributed hash tables that scale with machine 
size.) Ports to other machines are in progress. A Linda 
simulator runs on Sun workstations, and a “Linda Ma- 
chine” that supports tuple space operations in hardware 
is under construction [3, 251. The system has been used 
for a variety of parallel programming experiments, in- 
cluding matrix multiplication and LU decomposition 
[13], DNA sequence comparison and parallel database 
search [ll], traveling salesman, expert systems [16], 
charged particle transport, finite element equation sol- 
vers [34], linear programming and others, Particularly 
interesting from a numerical algorithms point of view 
is new work on a sparse system solver in Linda [5]; 
ongoing work includes a neural net simulator. 

Several independent commercial implementations 
now underway will expand the range of supported ar- 
chitectures. In some contexts the system is now seeing 
what is essentially production as opposed to experi- 
mental use; Linda is used at Yale in the generation of 
ray-tracing displays of fractal images (by Ken Musgrave 
of Benoit Mandelbrot’s group), and at Sandia National 
Labs in executing a parameter sensitivity analysis 
for rocket plume simulations over a local area net- 
work [H]. 

State of the Art? 
Turn now to current research in computer science: 
how should parallel programs be written? At present, 
three approaches make up the most widely discussed 
group: concurrent object oriented programming, con- 
current logic programming, and functional program- 
ming.’ Linda falls into none of these categories. The 
tuple space model is strictly sui generis. Where does it 
fit, though, and how does it relate to the Big Three? 

In the following, we will discuss each of the three 
named approaches in turn and compare each to Linda. 
In their enthusiasm for object oriented, logic based, or 
functional programming, proponents have argued that 
these models are ideal not only for computing but for 
parallel computing. We will argue that in fact, the 
strengths of all three models are irrelevant to parallel- 
ism, and generally unhelpful in dealing with process 
creation and coordination in parallel programs. 

The following three sections vary in structure. In the 
first, we describe Linda’s tuple space model; we con- 
trast it with concurrent object oriented programming, 
and deal briefly with message passing and the Actors 
model as well. In the next section, we discuss parallel 
logic programming. We focus here on the programming 
examples presented in a recent article on Parlog [30], 
contrasting them with Linda’s solutions to the same 

’ This list was proposed by Ehud Shapiro in a talk at the 1988 Hypercube 
Multicomputer conference. 
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problems. In the last section we discuss pure functional 
programming, again comparing a Linda and a purely 
functional solutilm to the same problem, and discussing 
the implications of the comparison. 

A Note on Paral .elizing Compilers 
It used to be widely argued that, with sufficiently good 
parallelizing compilers, programmers could code in 
standard sequen-.ial languages and leave the compiler 
to worry about parallelism. Smart compilers, it was 
thought, could produce good parallel programs auto- 
matically, and tt is was important for two reasons: not 
only would it allow old programs to be recycled for 
parallelism withllut any programmer intervention, but 
it would spare pl*ogrammers the unknown and presum- 
ably gruesome h errors of writing and debugging explic- 
itly parallel programs. 

Much progress has indeed been made on parallelizing 
compilers. But two things have become clear as well. 
First, compilers can’t find parallelism that isn’t there; 
the algorithms that work best on parallel machines are 
often new algorii hms, different from the ones relied on 
in sequential prcgrams. Second, evidence to date (some 
of which we will discuss here) suggests that writing 
explicitly parallc 1 programs isn’t so terribly difficult 
after all. A growing (if admittedly still small) number of 
applications prog;rammers write parallel programs on a 
regular basis. Gr inted, parallelizing compilers are the 
only way to parallelize existing programs without re- 
writing them. Nonetheless, few researchers today seem 
to disagree with the contention that programmers con- 
fonting a new, compute-intensive application should 
have a well-designed and efficient parallel language at 
hand. The quest .on is, which parallel language? 

TUPLE SPACES AND CONCURRENT OBJECTS 
We concentrate here on two topics: explaining the tu- 
ple space model, and contrasting it with concurrent 
object oriented systems. We briefly discuss Actor sys- 
tems as well. 

As a point of ceparture for explaining tuple space, 
consider the best-known of parallel programming tech- 
niques, message passing. To build a parallel program 
using message p,issing, we create many processes, all 
executing concurrently and asynchronously; to com- 
municate--to disperse input data, collect final results 
and exchange intermediate results-processes send 
messages to each other. This model or something simi- 
lar underlies pal allel programming in systems as di- 
verse as the native communication system supplied by 
Intel with the iPSC hypercube, the CSP language frag- 
ment and the Occam language that is based on it [29], 
and the Mach distributed operating system [Xl. 

Message passi-lg systems rely on three basic opera- 
tions: create-:?rocess, send-message, and 
receive -mess.age. If a sending process S has a 
message for a re#:eiver R, S uses the send-message 
operation and R uses receive-message. In the sim- 

plest case, a single process was created automatically 
when we started the program; this initial process used 
create-process tocreatesand R. 

Linda on the other hand provides four basic opera- 
tions, eval and out to create new data objects, in and 
rd to remove and to read them respectively. If a Linda 
sending process S has data for a receiver R, it uses out 
to generate a new tuple. Then R uses in to remove the 
tuple. A tuple, unlike a message, is a data object in its 
own right. In message-sending systems, a message must 
be directed to some receiver explicitly, and only that 
receiver can read it (unless the programml:r uses some 
special broadcast message operation, which some mes- 
sage systems supply and some don’t). Using Linda, any 
number of processes can read a message (i.e., a tuple); 
the sender needn’t know or care how many processes 
or which ones will read the message. Processes use the 
rd operation to read a tuple without remclving it. 

To create processes S and R, the initial process used 
eval. Processes can also communicate by using eval 
if they choose; when a sending process S has data for a 
receiver R, it can use eval to generate a new process 
ht. M executes some assigned piece of code; when it 
terminates, it turns into a tuple. Then R uses in to 
remove the tuple. 

The fact that senders in Linda needn’t know any- 
thing about receivers and vice versa is central to the 
language. It promotes what we call an uncoupled pro- 
gramming style. When a Linda process generates a new 
result that other processes will need, it sirnply dumps 
t:he new data into tuple space. A Linda process that 
n.eeds data looks for it in tuple space. In message pass- 
ing systems, on the other hand, a process can’t dissemi- 
n.ate new results without knowing precisely where to 
send them. While designing the data generating pro- 
cess, the programmer must think simultaneously about 
t:he data consuming process or processes. In our experi- 
ence, parallel programming needn’t be terribly difficult, 
but this kind of “thinking in simultaneities” seems cal- 
culated to make it difficult. 

A tuple exists independently of the process that cre- 
ated it, and in fact many tuples may exist indepen- 
d.ently of many creators, and may collectively form a 
d.ata structure in tuple space. It’s convenient to build 
d.ata structures out of tuples because tuples are refer- 
enced associatively, in many ways like the tuples 
i:n a relational database. A tuple is a series of typed 
fields, for example ( “a string”, 15. 01 , 17, 
"another string"), or (0, 1). Executing the out 
statements 

out("a string", 15.01, 17, "another 
s,tring") 

out(0, 1) 

causes these tuples to be generated and added to tuple 
space. (out statements don’t block: the process execut- 
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ing out continues immediately.) An in or rd state- 
ment specifies a template for matching: any values in- 
cluded in the in or rd must be matched identically; 
formal parameters must be matched by values of the 
same type. (It’s also possible for formals to appear in 
tuples, in which case a matching in or rd must have a 
type consonant value in the corresponding position. 
Values are not communicated from the in statement 
“backward” to the tuple, however. Formals in tuples 
serve only as wildcards, expanding the range of possi- 
ble matches.) Consider the statement 

in("a string", ? f, ? i, "another 
string") 

Executing this statement causes a search of tuple space 
for tuples of four elements, first element ‘1 a string '1 
and last element "another string", middle two 
elements of the same types as variables f and i, respec- 
tively. When a matching tuple is found it is removed, 
the value of its second field is assigned to f and its 
third field to i. If there are no matching tuples when 
in executes, the in statement blocks until a matching 
tuple appears. If there are many, one is chosen nonde- 
terministically. The read statement, for example 

rd("a string", ? f, ? i, "another 
string") 

works in the same way, except that the matched tuple 
is not removed. The values of its middle two fields are 
assigned to f and i as before, but the tuple remains in 
tuple space. 

It’s now easy to see how to build data structures in 
tuple space. Consider one simple but important case: 
we can store an n-element vector V as n tuples of the 
form 

("V", 1, FirstElt) 
( "V" ) 2, SecondElt) 

. . . 
("V", n, NthElt) 

To read the jth element of the vector and assign it to x, 
processes use 

rd("V", j, ? x); 

to change the ith element, 

in("V", i, ? OldVal); 
out("V", i, NewVal) 

We discuss some more elaborate cases in the next 
section. 

We can also use Linda to build fine grained live data 
structure programs. A live data structure program takes 
its shape from the result it is intended to yield. If the 
result is a vector, the program is a vector of processes, 
and so on. Each process in the live data structure com- 
putes and then turns into one element of the passive 
data structure yielded as result. Consider, for example, 

a program that yields an n x n matrix whose jth 
counter-diagonal depends (only) on the preceding 
counter-diagonal. The computation can proceed wave- 
front-wise: as soon as we know a counter-diagonal, we 
can compute in parallel all elements of the next coun- 
ter-diagonal. (We describe a real and slightly more com- 
plicated example later.) It is easy to express such a 
program in Linda: we use eval statements of the form 

eval("M", i, j, compute(i, j)) 

to create one process for each element of the result. 
The function compute ( i , j ) uses rd to examine the 
values of the preceding counter-diagonal-for 
example, 

rd("M", i - 1, j, ? value). 

As soon as the processes along the kth counter-diagonal 
have completed computing, they turn into passive 
tuples and become visible to the processes along the 
(k + 1)st counter-diagonal. Thus the computation pro- 
ceeds in stages, as active processes turn into passive 
tuples along a wave-front from upper-left to lower-right. 

Such fine-grained programs are generally impractical 
given our current implementations. The point is, 
however, that Linda can express them cleanly, and 
implementations on future generation machines can 
be expected to support them efficiently. 

Linda versus Concurrent Objects and Actors 
Although there is no single canonical concurrent object 
model, the Emerald system [8, 241 appears to be a state- 
of-the-art example. A concurrent Emerald program 
consists of a collection of objects, some passive and 
some with embedded active processes. New objects are 
generated by executing an object constructor. An object 
defines methods which may be invoked procedure- 
style by other objects. An object that is accessible to 
many others must protect its internal data structures 
against unsafe concurrent access. To do so, it embeds 
its methods in a monitor (the structure proposed by 
Hoare in [25]). By definition, only one process may be 
active inside a given monitor’s protected routines at 
any one time. A second process that attempts to enter 
the monitor is automatically blocked on a monitor 
queue until the monitor becomes free. When processes 
enter a monitor prematurely--they needed access to 
some resource, an empty buffer, say, that is at present 
unavailable--they block themselves explicitly on a 
condition queue. A process that frees resources associ- 
ated with condition queue j signals j, allowing some 
process blocked on j to continue. (In addition to these 
mechanisms, Emerald includes some sophisticated op- 
erations designed to relocate objects in a network. They 
are not germane here, though; we are interested in how 
Emerald can be used to express parallel programs.) 

Monitors were designed originally for concurrent 
processes within a single address space. In Emerald, a 
process may access a monitor via a remote procedure 
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call across addre ;s spaces and hence, potentially, across 
machine boundaries. The effect is not to alter in any 
way the expressivity of monitors, but rather to make 
them available in a new environment. 

The strengths md weaknesses of monitors were ex- 
plored extensive .y in languages like Concurrent Pascal 
[6], Modula [33] and Mesa [26]. We prefer Linda to 
monitors for sevflral reasons. We can divide them 
roughly into matters of simplicity and of flexibility. 

In the monitor approach, process creation, inter-proc- 
ess communicati In and synchronization fall into three 
separate categories: process forking or object creation, 
the monitor’s she red state variables, and the condition 
queue and signal mechanism, respectively. Linda uni- 
fies the three within the context of tuple-space opera- 
tions. It follows t.lat support for monitor-based concur- 
rency requires si,;nificant changes to a base language. 
Linda requires that we add new operations, and so do 
monitors (monitors require wait and signal operations 
on condition queues). But monitors also require a new 
envelope structu:*e within the language, namely the 
monitor construct itself. Linda is simpler, and its 
greater flexibility is related to its simplicity. 

Communication in monitor-based systems is based on 
procedure call (0.: method invocation, in the terminol- 
ogy of object oriented monitor systems). The same 
holds for distributed operating systems that are based 
on remote procec.ure call [e.g., 61. Procedure call is 
inherently a synchronous operation: a procedure call 
blocks until a result is returned. This characteristic is 
problematic in the programming environment for 
which Linda is designed. In our experience, processes 
in a parallel program usually don’t care what happens 
to their data, and when they don’t, it is more efficient 
and conceptually more apt to use an asynchronous op- 
eration like Lindii’s out than a synchronous procedure 
call. Using out, a process can dump a result into tuple 
space and continue immediately; invoking a monitor 
procedure requir as blocking until the monitor is free, 
and then until the requested transaction has been per- 
formed and a result is available. It’s always possible to 
patch up a procedure-call system so that that it sup- 
ports some form of asynchronous communication also. 
But in our experience, asynchronous communication is 
far more common than synchronous. This is hardly sur- 
prising; in parallel programming, the goal is to compute 
a result fast. In 01 der to work efficiently, the processes 
that make up such a program will avoid blocking as far 
as possible. It’s trvial, in Linda, to implement a syn- 
chronous remote. procedure-call-like operation in terms 
of out and in. There is no reason we know of, how- 
ever, to base an entire parallel language on this one 
easily programmcmd but not crucially important special 
case. 

Monitors are not as flexible as tuples for building 
distributed data structures. All elements of the distrib- 
uted structure must be stored within a single monitor, 
which restricts ac:cess to one process at a time, or they 
must be stored in separate monitors, which requires 

that a new monitor and monitor queue be created for 
each new element or group of elements. M:onitors don’t 
support the transparent transition from process to data 
object that live data structures require. 

Monitors do have points in their favor: most impor- 
ta.nt, they allow all operations on a particular shared 
structure to be encapsulated in a simple and language- 
enforced way. But Linda strikes us as more powerful, 
simpler, and easier to integrate unobtrusively into a 
base language. 

Where Are the “Objects”? 
What does the preceding discussion have to do with 
object oriented programming? Curiously enough, noth- 
ing. Object oriented programming, which originated 
with Simula 67 and reached a cathartic climax in 
Smalltalk, is a model in which objects are instantiated 
from templates or classes. Classes may be created ac- 
cording to an interesting scheme that allows a new 
class to inherit and augment (or override) the properties 
of preexisting classes. The model is powerful and at- 
tractive, but irrelevant to parallelism. In the object 
model, each object is accessible only by way of the 
methods it defines; but what if two methods are invoked 
b!y separate processes simultaneously? We can insist 
that each object be an active process, that it accept 
messages (of the form “invoke method M”) one at a 
ti.me, and return reply messages to each invoker in 
turn. So far as parallelism goes, this is merely a message 
passing model. We can implement monitors, as de- 
scribed, but then we’re left with a monitor-based model 
of parallelism. Alternatively, we might combine an ob- 
ject oriented language with Linda. Objects are gener- 
ated using out (for passive objects) or eval (active 
ones). Passive objects are immutable; processes get their 
own copies by using rd, then invoke the methods di- 
rectly. All communication with active objects goes 
th.rough tuple space. Again, objects per se don’t figure in 
th.is model’s approach to parallelism. We believe in sum 
th.at the current widespread enthusiasm for “concur- 
rent object oriented programming” is to some extent 
misinformed. If you are designing an object oriented 
parallel language, you face exactly the same design 
choices you would face if you were design:ing any other 
kind of parallel language. “Objects” in and of them- 
selves do not help. 

“Actors” [22] is related in some ways to Iconcurrent 
object systems. The proposal is fairly old, but it contin- 
ues to attract interest (see particularly Agha [2]). In an 
Actors system, processes (called actors) communicate 
by sending each other messages (called taiks). A proc- 
ess may respond to a message by generating one or 
more new processes. This kind of system is readily ex- 
pressed in Linda: processes can exchange rnessages in 
the form of tuples, and generate new processes by using 
eval. Linda, of course, can also be used for distributed 
and active data structure programming; Ac:tors, which 
is basically a message passing model, seems less suita- 
ble for these purposes. It’s interesting that -the Actors 
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model seems to cover fewer programming patterns than 
Linda does, but in a more complicated way. Thus a 
process and a message in the Actors model are separate 
structures; in Linda, a process becomes a tuple. An Ac- 
tors message contains three separate parts, a tag, a tar- 
get and a communication; a tuple is merely a set of 
fields, any or all of which may be tag (i.e., message id) 
or target (address) or communication (data). Actors 
doesn’t support the associative addressing of tasks, nor 
does it allow messages to be sent to not-yet-created 
processes. (In Linda, a tuple may be read or removed by 
a process created long after the tuple itself was outed.) 
The Actors model is, on the other hand, supported by a 
fairly elaborate formal framework. Linda is not. But 
Linda exists in practical implementations on a range of 
commercial systems, and we don’t believe this holds (at 
least at present) for the Actors model. 

CONCURRENT LOGIC PROGRAMMING 
Concurrent logic programming is a booming field. The 
Japanese Institute for New Generation Computer Tech- 
nology (ICOT) continues work on their Parallel Infer- 
ence Machine, which is intended for concurrent logic 
programming. A recent Communications of the ACM arti- 
cle discussed the new concurrent logic language 
Parlog [30], and collected papers on one of the first of 
these languages, Concurrent Prolog, have just been 
published (complete in 1,178 pages) by MIT Press [31]. 
Several years ago we published a brief discussion con- 
trasting Concurrent Prolog with Linda [17], but new 
developments make a comparison between Linda and 
some of the Parlog solutions recently featured in 
Communications seem desirable. The bulk of Ringwood’s 
presentation of Parlog86-style concurrency deals with 
two examples, the client-server paradigm and the din- 
ing philosophers problem. We will discuss each in turn. 

Concurrent logic programming takes several forms, 
but in most cases the basic idea is as follows: we can 
specify many parallel activities by use of a “parallel 
conjunction,” which states that some result depends on 
a series of sub-results, all of which may be pursued 
simultaneously. A collection of “guarded clauses” al- 
lows us to specify that only one of a series of parallel 
conjunctions be performed, but the selection criteria 
(the “guards”) can be evaluated simultaneously. Parallel 
execution threads communicate by means of shared 
logical variables, which are initially unbound (“unin- 
stantiated”) but can’t be referenced until one party to 
the communication binds them to a value. Data streams 
are implemented by “partially instantiated” shared 
logic variables. The data producer successively appends 
(in effect) new elements to a list or stream of elements; 
the data consumer reads the stream. It all adds up to a 
parallel version of logic programming-to a parallel 
version (in other words) of what Ringwood [30, p. 111 
and many others have called a very high level ap- 
proach to programming. Very high level programs have 
mathematical properties that their lowlier brethren 
lack, but we focus here on a more concrete issue: pre- 

sumably, very high level programs are more elegant 
and concise than other kinds. 

In the client-server paradigm, many client processes 
must communicate with a single server process. The 
problem is usually associated with distributed operating 
systems (the server might provide a file service, mail, 
name-location or other resource management function); 
in our experience, it is equally or more important in 
parallel programming. 

Consider the Parlog solution (Figure 1). It creates, 
in effect, three processes, one corresponding to each 
paragraph of code in the figure. The “server” process 
repeatedly reads a stream of requests. It accomplishes 
this by binding the name Transaction to the first 
element and the name More- transactions to the 
rest of some input stream. It proceeds to respond to 
Transaction (that is, it services the stream’s head 
request), and then it applies the same procedure recur- 
sively to the remainder of the stream. When the 
client process needs to communicate with the server, 
it adds to the stream a message of the form transac - 
tion (Reply). Reply is an “uninstantiated variable”: 
it is forwarded to the server as (in effect) a name with- 
out a binding. When service to the client is complete, 
the server binds the client’s Reply variable to the 
string “Roger Roger” (the code for this step isn’t 
shown). By executing wait ( “Roger Roger” ) , the 
client blocks until this binding is accomplished. 

The complete system entails more than a server and 
client processes, though. A Parlog stream may be ap- 
pended to by a single process only, but ordinarily there 
are many clients. The solution is for each client to 
append messages to its own private stream, and for 
these multiple client streams to be merged to form the 
single request stream that the server expects. Merging 
is the job of the third process: it examines each client 
stream (the example shown assumes that there are 
exactly two, Stream1 and StreamZ), and merges 
them into a single outs t r e am, which the server scans 
in turn. (Invocations that cause names to be bound 
correctly-e.g., that cause the merge process’s 
Outstream to be identified with the More - 
transactions stream read by the server-are re- 
quired as well, but the code is omitted.) 

A C-Linda version is also shown in Figure 1. It as- 
sumes again that the server will scan down a stream of 
requests. In Linda, the stream exists as a series of num- 
bered tuples, of the form 

("request", 1, FirstRequest) 
("request", 2, SecondRequest) 
. . . 

By successively incrementing the index field that 
forms part of the identification template in the in state- 
ment, the server can in each of these tuples in se- 
quence. To respond to the jth request, it places its re- 
sponse in a tuple labeled j. Whichever process made 
the jth request will be waiting (again using in) for a 
tuple so labeled. 
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Parlog version: 

server(CTransaction 1 More-transactions], Data,...) <-- 
respond(Transaction, Data, Rewdata, . ..) : 
server(More-transactions, Rewdata, . ..>. 

cIient([transaction(Reply) 1 More-transactions], . . . ) <-- 
wait(Reply), . . . . 

wait("Roger Roger") <--. 

merge([Item I Streami]), Streama,, [Item I Outstreaml) C--- 
merge(Stream1, Stream2, Outstream). 

merge(Stream1, [Item I Streamal, [Item I Outstreaml) <-- 
merge(Stream1, Stream2, Outstream). 

C-Linda version: 

server0 

t 
int index = 1; 
* . . 
while (1) < 

in("request", index, ? req); 
. . . 
out("response", index++, response); 

3 
3 

client0 
( 

int index; 
. . . 
in("server index", ? index); 
out("server index", index+l); 
. . . 
out('*server", index, request); 
in("response", index, ? response); 
. . . 

3 

FIGURE 1. Server-Clients in Parlog and in C-Linda 

Client processes must first establish where the end of 
the stream is. To do so, they read and update a tuple 
labelled “server index”. If many clients attempt to 
update the server index simultaneously, they succeed 
one-at-a-time and the index is updated safely. Once a 
server has determined the current end-of-stream index, 
it adds its request-tuple to the stream. It then blocks 
using in until a response arrives. 

How do the solutions compare? They are comparable 
in length (in both cases initialization code is omitted, 

amounting to several lines in C-Linda and probably 
about the same for Parlog86). We would argue that the 
C-Linda code is easier to understand. This contention is 
subjective, but surely the Linda version is no harder to 
un.derstand. The real difference involves the flexibility 
of the two versions. The Parlog version requires an 
extra process to perform merging; the Linda version 
does not. More important, the code of Parlog86’s merge 
process depends on how many and which s.treams are 
being merged. The merge process examines the head 
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of each client stream explicitly. Consider how the 
Parlog code would look if there were 20 or 100 
streams to be merged instead of two. The Linda code is 
insensitive to number of clients. Nothing in the code 
reflects this number, or needs changing when the num- 
ber or identity of client processes change. 

There is nothing unrealistic in imagining 20 or 100 
input streams to some server. In our experience, this 
kind of pattern occurs often in master-worker-style 
parallel applications. Tasks (work assignments) are per- 
formed by some arbitrary number of identical worker 
processes in parallel. A master process sets up the com- 
putation, then reels in and coordinates the results. The 
workers are clients and the master is the server. 

This master-worker version of the server-client para- 
digm raises an interesting and more subtle problem. 
The order in which task results are returned to the 
master may be irrelevant-so long as the master gets 
everything eventually, there’s no need to deal with the 
results in FIFO order. If ordering isn’t needed, much 
better to leave it out: it complicates the code and may 
require nontrivial processing at runtime. But in 
Parlog86, client messages must be ordered: there is no 
way to build an unordered stream. In Linda, clients can 
simply drop messages into tuple space using out, omit- 
ting the index field. The server withdraws tuples in 
arbitrary order using in. 

The merging problem in Prolog-derived concurrent 
languages is well-known. Some researchers argue that 
the solution is simply to add a new merge primitive. 
This solution points to a deeper problem, however. The 
client-server example is important because it brings 
into play one of Linda’s most important advantages, 
flexibility. One particular species of stream is canonical 
in Parlog86. A Parlog stream has one writer, and per- 
haps a series of readers. Linda has no canonical stream, 
but it’s easy to build a variety of important types. The 
client-server example requires a one-reader many- 
writer stream. Other examples require one-writer, 
many-remover streams. This type of stream’s first ele- 
ment is removed repeatedly by any one of a group of 
interested processes-a situation that arises where (for 
example) a master process generates an ordered list of 
tasks, and each worker repeatedly removes and carries 
out the head task. This kind of stream is again simple to 
build in Linda, but unidiomatic in Parlog86. (Note that 
this example’s crucial characteristic is that many proc- 
esses jointly disassemble, not merely read, the stream.) 

We turn briefly to the main focus of the Parlog 
article, the dining philosophers problem. A round table 
is set with some number of plates (traditionally five); 
there is a single chopstick between each two plates, and 
a bowl of rice in the center of the table. Philosophers 
think, then enter the room, eat, leave the room and 
repeat the cycle. A philosopher can’t eat without two 
chopsticks in hand; the two he needs are the ones to 
the left and the right of the plate at which he is seated. 
If the table is full and all philosophers simultaneously 
grab their left chopsticks, no right chopsticks are avail- 
able and deadlock ensues. To prevent deadlock, we al- 

low only four philosophers (or one less than the total 
number of plates) into the room at any one time. 

What is the point of solving such a silly problem? 
According to Ringwood, dining philosophers “is a 
benchmark of the expressive power of new primitives 
of concurrent programming and stands as a challenge to 
proposers of these languages” [30, p. 111. While we can’t 
agree that the problem is as central as Ringwood makes 
it out to be, it has indeed been used as a benchmark of 
expressivity since Dijkstra first suggested it. 

The Parlog solution (Figure 2) is too complicated to 
explain here, but generally speaking it uses a series of 
processes to implement each state that a philosopher 
can occupy-thinking, preparing to eat, and eating. Phi- 
losophers circulate along data streams among these 
process-states, passing along the way through interme- 
diate processes that merge streams, match available 
chopsticks to hungry philosophers and so on. In the 
Linda solution, assume for concreteness that the num- 
ber of place-settings and of philosophers is five. There 
are four “room tickets,” represented by four tuples. A 
philosopher who is ready to enter the dining room uses 
in to grab a ticket. (If there are no free tickets, he will 
block until some other philosopher leaves and releases 
his ticket.) Once inside, he uses in to grab his left 
chopstick and then his right chopstick. Each chopstick 
is again represented by a separate tuple. When he’s 
done eating, he replaces both chopsticks and his room 
ticket. 

(Careful readers will notice that, if the Linda kernel 
is “unfair’‘-if it can repeatedly bypass one process 
blocked on in in favor of others-the Linda solution 
allows indefinite overtaking or livelock. A slow philoso- 
pher could remain blocked on an in ( "room 
ticket ‘I ) statement while a speedy one repeatedly 
outs a room ticket and then grabs it again, leaving the 
slow philosopher still blocked. The Parlog solution 
suffers from a similar problem. Both solutions should be 
read, then, under a fair implementation assumption.) 

The Linda solution is, in a sense, nothing special. It 
uses in and out as counting semaphore operations, 
and essentially the same solution is possible in any 
system that supports distributed semaphores. But here 
again, we believe that the contrast between Linda and 
Parlog makes an important point. When a problem 
has a simple solution, a useful system will give pro- 
grammers access to the simple solution. Forcing com- 
plex solutions to simple problems makes us suspect that 
a language has chosen the wrong “abstraction level” for 
its primitives, chosen operations with too many policy 
decisions built-in and too few left to the programmer. 
Such languages are ostensibly “higher level” than ones 
with more flexible operations, but this kind of high- 
levelness dissipates rapidly when programmers step 
outside the (often rather narrow) problem spectrum 
that the language designer had in mind. A Parlog 
proponent would almost certainly call Parlog a 
“higher-level” language than C-Linda; but we’ve shown 
that it is somewhat easier to solve the client-server 
problem in C-Linda than in Parlog86, and much easier 
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Parlog solution: 

The Parlog solution in Ringwood’s 1988 paper involves 70 lines of 
code divided into processes cloister, refec, table, cell, finder 
and merge. Five diagrams help to explain the structure of the so- 
lution. But these 70 lines are only part of the program: “Not all 
clauses will be illustrated [i.e., not all code will be reproduced], only 
those that have informative diagrams. The communication between 
calls is often much more easily comprehended by means of such il- 
lustrations,” Ringwood writes [p.lQ:j. 

C-Linda solution: 

Phil(i) 
int i; 

c 
while(l) C 

think0 ; 
in(“room Cicket”) ; 
in(“chopstick” , i) ; 
in(“chopstick”, (i+l)%Num) ; 
eat0; 
out(“chopstick”, i); 
out(“chopstick”, (i+i)%Num); 
out(“room ticket”); 

3 
3 

initialize0 
< 

int i; 
for (i = 0; i < Hum; i++) C 

out(“chopstick”, i); 
eval(phil(i)); 
if (i < (Num-1)) out(‘“room ticket”); 

3 
3 

FIGURE 2. Using Parlog and C-Linda to Solve the Dining 
Philosophers Problem 

to solve the dining philosophers problem. Each of the 
problems involves significant issues in concurrent 
programming. Both were chosen as showpieces 
for Parlog by a proponent of concurrent logic 
programming. 

FUNCTIONAL PF.OGRAMMING 
We have discussed problems for which Linda has a 
shorter and neater solution than some alternative, but 
we turn now to a comparison that cuts the other way. 
Figure 3 shows twl) versions of a program to compute 
the “similarity value” of two DNA sequences. One ver- 
sion is written using a pure functional language (the 
language shown is Crystal [14]); the other version uses 

C-Linda. Although the two programs do not differ by 
much, the C-Linda version is slightly longer. 

IJnsurprisingly, there’s more to this comparison than 
meets the eye. Advocates of pure functional languages 
for parallel programming argue as follows: Program- 
mers shouldn’t decide how to parallelize their algo- 
rithms. Armed with a pure functional language, they 
should express their algorithms as a set of recursion 
equations. Pure functional languages impose a decisive 
limitation: they don’t allow assignment statements, and 
hence no variable’s binding can ever change. This re- 
striction simplifies the task of finding an algorithm’s 
implicit parallelism; programs expressed in functional 
languages are therefore good candidates for automatic 
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a - (<sequence data . . . >I, 
b'- [<sequence data . . . >I, 
m-6,2-l-6, 
?a. 
?b, 
h(i,jI- 

<<i-o ->o, 
j-o -so, 
else ->\max[tl,t2,t3,0)>> 

whete( 
tl-h(i-l,j-l)+s(x,Y), 
t2-max((hCi-l,jl-1.33331, (P(i-l,j)-.3333)), 
t3-max((h(i,j-1)-1.3333),(q(i,j-1)-.3333)), 

*(x,Y)- 
<<x-y->l, 

else -> -.3333,>, 
x*a(i-11, 
y-b(j-11 

I 
where( 
P(i*j,- 

<<i-O ->O, 
j-o ->o, 
else ->max((h(f-l,j)-l.3333),(P(i-l,j)-.3333))", 

q(i. jl- 
<<i-o ->o. 

j-o ->o; 
else ->mex((h(i,j-l)-1.33331, (q(isj-lb-.3333))" 

I, 
? [[h(i,j) / 0 + i <-ml I 0 <- j <- nlr 

exteg-n char all, bll; 
extern int m, n: 
extern float maxo: 

float h(i, j) 
t 

float tl, ttl, t2, tt2, t3, tt3: 

if (i = 0 II j -- 0) return 0.0: 
rd("A", i-1, j-l, ? ttl): 
rd("H", i-l, j 
rd("H", i, j-1: 

? tt21: 
? tt31: 

t1 - ttl + (a[i-11 -- b[j-1)) ? 1 : -.3333: 
t2 * max(tt2-1.3333, P(i-l,j)-.3333): 
t3 - max(tt3-1.3333, q(i,j-l)-.3333): 
return mmc(tl, maxlt2, mex(t3, 0))); 

f 

float p(f,j) 
I 

float t: 

if (i -- 0 II j -- 0) return 0.0; 
rd("R", i-l, j, ? t): 
return mex(t-1.3333, p(i-l,j)-.3333); 

1 

TLoat q(ie j) 
float t: 

if (i -- 0 )I j -- 0) return 0.0; 
rd(“H”, i, j-l, 7 t): 
return mex(t-1.3333, q(i,j-l)-.3333); 

1 

lmain (1 
t 

int i, j; 

for (i - 0: i <- m; ++i) 
for (j - 0: j <- n; ++j1 

eval ("H", i, j, h(i. j)): 
k 

FIGURE 3. DNA Sequence Comparison Using Recursion Equations 
and C-Linda 

parallelization by smart compilers or run-time systems. 
These arguments have been made for some time by 
proponents of dataflow functional languages [I], and 
also (for example) by proponents of Crystal [14, 151. 
The promised advantages of the approach are substan- 
tial. Source programs are portable and completely ma- 
chine independent. Programmers don’t bother with 
parallelism: they produce mathematical expressions in- 
stead. Mathematical expressions are more conducive to 
formal verification than ordinary programming lan- 
guages, they are easier to debug, and the advantages of 
mathematical expressions in terms of elegance and con- 
ciseness are well known. Thus Turner writes that “a 
basic difficulty” of programming languages that are not 
“functional” is that “they are very long winded, in 
terms of the amount one has to write to achieve a given 
effect.. . [32, p. 51” 

We can put these arguments in perspective by exam- 
ining a concrete case. In The DNA-sequence compari- 
son problem (Figure 3), we need to compute a similarity 
value for two sequences; this value is designed to cap- 
ture a geneticist’s qualitative judgement. In the algo- 
rithm shown, we compute a similarity matrix whose i, 
jth entry is the similarity between the first i elements 

of one sequence and the first j of the other. The matrix 
can be computed in wavefront fashion: first the upper- 
left element, then the second counter-diagonal, then 
the third and so on. 

This is an ideal problem for any functional language. 
It’s simple and convenient to express this algorithm as a 
series of equations giving each matrix element’s de- 
pendence on previous elements. A smart compiler 
could establish that all elements of the similarity ma- 
trix can be computed in parallel, with the elements 
along the jth counter-diagonal blocking dataflow- 
style until all previous counter-diagonals have been 
computed. 

The C-Linda version isn’t a set of equations; it is a 
fine grained explicitly parallel program. It builds a live 
data structure called H. The i, jth element of H is a 
process that computes, then turns into, the correspond- 
ing element of the similarity matrix. 

Having introduced the two versions, we can contrast 
them. The C-Linda version is longer, but the difference 
in compactness seems minor. One major underlying as- 
sumption of the functional-languages advocates-that 
explicitly-parallel programs are hard to design and to 
understand-gets no support from this comparison. The 
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C-Linda version w(rs easy to design. Some readers will 
find the Crystal version easier to understand, but we 
doubt whether too many will find a dramatic difference 
in comprehensibility. The real difference between the 
two lies elsewhere The C-Linda version is a parallel 
program. The Crystal version is a specification that a 
compiler might turn into a parallel program. In fairness, 
then, the two versions are incomparable, one being a 
program and the oi her, a program specification. The 
contention that pal allel programs are necessarily clun- 
kier, more comple,: and less elegant than functional 
language program qmifications is too often accepted 
without comment, and it should not be, but the real 
issue lies elsewherl?. Are the operations that create and 
control parallelism best left in the programmer’s hands, 
or should they be turned over to the compiler? 

Leaving them to the compiler is attractive in some 
ways. It releases the programmer from any responsibil- 
ity for the granularity of his computation. The intent of 
projects like Crystal is for the compiler to gather up the 
fragments of a parallel algorithm and bundle them to- 
gether in any way :hat seems appropriate-into a few 
big bundles if the target architecture includes a few 
powerful processors, into many small bundles if the 
target machine inc. udes many less-powerful processors. 
In principle, the ki:rds of analysis used in the Crystal 
compiler would probably work for a program like the 
C-Linda DNA comparison also, but we haven’t investi- 
gated them and don’t know for certain. It’s also true 
that Crystal targets special purpose SIMD architectures 
like the Connection Machine, as well as asynchronous 
computers: Linda is designed for asynchronous ma- 
chines only. 

We aren’t sold on the compiler alternative, though, 
for two reasons. 0r.e involves a matter of detail related 
to the point discussed earlier. The other concerns un- 
derlying concept. 

On the general purpose parallel machines of which 
we are aware, it is far more efficient to create a smaller 
number of processes, and put each in charge of comput- 
ing an entire sub-b .ock of the comparison matrix, than 
to put one process in charge of each element. Even on 
machines that supIlort cheap processes (lightweight 
tasking), creating, scheduling and passing data among a 
very large number of processes can be a considerable 
expense. The smari Linda programmer therefore starts 
with the program shown in Figure 3, but immediately 
restructures it for efficiency by using “interpretive ab- 
straction” [12]-he replaces the live data structure with 
a passive one, and :.aises the processes one level in the 
conceptual scheme each process fills in many ele- 
ments, rather than becoming a single element. We dis- 
cuss the performance of this kind of solution to the 
problem in [ll] (it shows good speedup). Interpretive 
abstraction is a fairly simple programming technique, 
but it’s only possible if the parallelism tools are under 
the programmer’s control. In a pure functional lan- 
guage, it appears to be impossible. Not to worry: the 
functional language! compiler is designed to take care of 

this problem (to carry out the equivalent of “interpre- 
tive abstraction”) automatically. The detail that bothers 
us is that this capability has yet to be demonstrated, 
and. achieving it automatically and generally strikes us 
as a difficult problem. Consider one aspect of the diffi- 
culty for the DNA problem. A reasonable approach is to 
divide the matrix into horizontal bands; a band is filled 
in by a single process; in general, one process can fill in 
ma:ny bands. How many bands should there be? Fewer, 
deeper bands means loss of efficiency during startup 
and. completion, because the delay in starting work on 
the second band depends on the first band’s depth. A 
greater number of shallower bands increases inter-band 
communication overheads. Given the Linda program, it 
is easy to determine a good band size by running some 
experiments. The Crystal system (and all other ap- 
proaches to automatic parallelization) takes it upon it- 
self to determine this number a priori and automati- 
cally. 

These issues of granularity will become less impor- 
tant over time. Newer machines will be capable of sup- 
porting increasingly fine-grained programs (although 
we don’t expect that the optimal granularity issue will 
ever disappear entirely). But suppose we had a machine 
on which the finest grain programs run well. Is it then 
reasonable to surrender control over parallelbsm and 
luxuriate in the pure sunlight of recursion equations? 
Absolutely not, because in too many important cases, 
recursion equations have nothing to do with the pro- 
grams we need to write. 

A.gain, the DNA problem is a good starting, point. The 
approach we’ve discussed so far is-in our experi- 
ence-interesting but wrong. The goal of geneticists in 
practice is to compare a newly-discovered sequence 
aga:inst a large database of existing sequences. The 
problem is compute-intensive and parallelism is called 
for, but in our experience it is usually more efficient to 
run many conventional, sequential searches in parallel 
than to parallelize individual searches. One efficient 
approach to the problem is easy to express in C-Linda 
(Figure 4). The basic method is to create many identical 
searcher-processes, each initialized with a copy of the 
target sequence; a master process hands out sequences 
from the database; workers execute comparisons, and 
return the results to the master. There are two sub- 
problems: (1) Sequences in the database vary greatly in 
length, so we need dynamic sequence-assignment; e.g., 
one worker may finish 10 short comparisons before an- 
other finishes one long one; and (2) The database is too 
big to fit in core and must be played out gradually. Both 
problems are solved easily using C-Linda. Each se- 
quence in the database is dumped as a tuple into tuple 
space; searcher processes repeatedly grab a tuple, exe- 
cute the comparison and dump a tuple holding the re- 
sult back into tuple space, whence the master retrieves 
it. The program is simple to write and to understand 
because of the underlying physical model: a tuple is a 
quasi-physical thing that can be created, added to a 
pile, removed from a pile (Figure 5). Recursion equa- 
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master0 

{ 
while (get(new_saquanca)) { 

out (“task”, new-sequence) ; 
if (++tasks > HIGH-WATERMARK) 

do { 
in(“result”, ?result); 
update best-results list; 

} while (--tasks > LOWYATERIARK) 

> 
while (tasks--) { 

in(Vesult”, ?result); 
update best-results list; 

1 
report results; 

I 

searcher() 

{ 
do { 

in(“task” , ?seq); 
compare “seq” to target sequence, yielding Yralue”; 
out(“result”, value); 

} while (search is not complete) 

I 

FIGURE 4. Parallel Sequence Database Search in C-Linda 

tions are in no way helpful in understanding this sim- 
ple physical process, and functional languages are inap- 
propriate for this kind of programming.’ 

In Figure 5, a tuple space visualization tool, built by 
Paul Bercovitz of our group, displays a series of win- 
dows onto tuple space, one for each “tuple class” in the 
program. (The tuples within a given class have the 
same type signature and have been determined by the 
link-time tuple analyzer to behave-roughly speak- 
ing-in the same way.) Each tuple within a class at any 
given time is represented by a sphere in the appropriate 
window; users can display the contents of a tuple by 
mousing on its sphere. The figure shows four snapshots 
of an executing DNA database-searcher that is similar 
to the program described in the text, executing with a 
master and five worker processes. The first snaphot (a), 
soon after start-up, shows the single tuple holding the 
target sequence (in the upper left-hand window), and 
the first of many tuples that will hold sequences from 
the database (in the wide window second from the top). 
In snapshot (b), about 100 sequence tuples are awaiting 
available workers, and about 20 result tuples are wait- 
ing for the master, who has been busy adding sequence 
tuples to tuple space. In snaphot (c), there are only a 
few sequence tuples remaining to be searched; in the 
last snaphot (d), the job is done. No sequence or result 

’ Recent work has lead to a refined approach and further performance im- 
provements in the Linda DNA-search program. without invalidating the 
points made here: the new version is discussed in [5]. 

tuples remain. The worker processes were live tuples, 
created using eval; having completed, each worker 
has become an ordinary data tuple, and the five tuples 
corresponding to the five finished workers appear in 
the upper right-hand window. This version of the pro- 
gram uses a stream of sequence tuples rather than an 
unordered bag; the tuple that appears in the upper mid- 
dle window is used to maintain a pointer to the current 
head-of-stream. 

The tuple space visualizer is a promising debugging 
tool, but it points to a more basic issue as well. A useful 
programming language makes it easy for the program- 
mer to embody a mental model directly in working 
code. A program that embodies a mental model simply 
and directly is easier to write initially, and easier to 
understand once it exists as a working application. The 
parallel database search described in the text is one 
example of a program that is at least as easy (we would 
argue far easier) to imagine in terms of objects to be 
manipulated than in terms of equations to be solved. In 
Linda, a mental model based on objects is easily em- 
bodied in working code. Merely by displaying the state 
of tuple space as it evolves, the tuple space visualizer 
gives the user a strong “feel” for an application-how it 
works and how it is progressing. (In this case, for exam- 
ple, how many sequences have been searched so far, 
how many results have been tabulated, whether the 
master is dumping tuples into tuple space or waiting for 
tuples to be cleared out, and so on.) In short, if the 
definition of a “higher level language” is a language 
that is relatively closer to the programmer’s way of 
thinking, it is impossible for us to accept the claim that 
functional languages are necessarily higher-level than 
C-Linda. 

Granted, this program is a single data point, but con- 
sider some others. Neither of the examples discussed in 
the previous section can be solved in a pure functional 
language. The solutions in both cases depend on nonde- 
terminism (concretely, whichever process shows up 
first gets access to some resource), and nondeterminism 
is impossible in functional languages. A class of pro- 
grams we’re particularly interested in now can be de- 
scribed as process lattices [16], i.e., heuristic programs 
structured as hierarchies of concurrent expert proc- 
esses, with more general or abstract decision proce- 
dures appearing at higher levels. This is a promising 
structure for use in a problem area that (we believe) 
will become increasingly important: the construction of 
real time expert monitors. Nodes on the bottom rank of 
the process lattice are wired directly to external data 
sources, and incoming data values filter upward 
through the lattice. This structure is conceived in terms 
of communicating processes; recursion equations are 
the wrong model (or at the very least, a strongly coun- 
ter-intuitive one). Whiteside and Leichter have shown 
that Linda programs can be made to perform well on a 
collection of heterogeneous machines on a local area 
network [34]; if we break an application into modules, 
and run a compute-intensive back-end on a collection 
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FIGURE 5. Tuples as Quasi-Physical Objects 
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of parallel machines and the display-manager front-end 
on a workstation, the programmer needs a way to 
specify inter-module (as well as intra-module) com- 
munication, and Linda gives him a way; here, once 
again, recursion equations would be out of place. 

CONCLUSIONS 
We set out to compare Linda to three leading models of 
parallel programming. We can now summarize the ar- 
guments and draw some conclusions. 

We have no intention of closing the book on moni- 
tors, and we’re sure that monitor research and pro- 
gramming will continue for quite awhile. On a different 
note, we don’t doubt that object oriented programming 
is a powerful and attractive model, and we look for- 
ward to investigating a combination of the object model 
with Linda. Concurrent object oriented programming on 
the other hand is a phrase with a nice ring, but (in and 
of itself) little or no meaning. It strikes us as more of a 
marketing than a technical term, used mainly to 
freshen up respectable but slightly shelf-worn ideas like 
message passing and monitors. Discussion of parallelism 
models would be clearer and better-defined, we think, 
if this term disappeared. 

Logic programming is obviously a powerful and at- 
tractive computing model as well. Notwithstanding, we 
continue to believe that the tools in concurrent logic 
languages are too policy-laden and inflexible to serve as 
a good basis for most parallel programs. Applications 
certainly do exist that look beautiful in concurrent 
logic languages, and we tend to accept the claim that 
virtually any kind of parallel program structure can be 
squeezed into this box somehow or other (although the 
spectacle may not be pretty). But we believe that, on 
balance, Linda is a more practical and a more elegant 
alternative. 

Pure functional languages are a trickier issue. One 
point is immediate: these languages can’t be the whole 
story, because in too many cases they fail to provide 
the expressivity we need. Many (if not most) of the 
programs we deal with are conceived in terms of ob- 
jects to be manipulated, not equations to be solved. But 
restricting our attention to those problems that do have 
elegant functional solutions, like the DNA sequence-to- 
sequence comparison-shouldn’t we be tempted to re- 
code these programs in functional languages, flip the 
autopilot switch, lean back, have a beer, and leave the 
parallelizing to them? In fairness we might be tempted, 
under the right circumstances. We’d stand to gain re- 
markably little in terms of conciseness or elegance over 
C-Linda, and nothing in terms of machine independ- 
ence, so far as asynchronous machines are concerned. 
(Again, Linda doesn’t help in programming SIMD ma- 
chines. We think it will be an excellent language for 
massively-parallel, fine-grained asynchronous ma- 
chines, though.) It seems to us that, speaking in terms 
of the machines we deal with, the only good reason to 
“flip autopilot” is performance. If these systems can be 
shown to perform better than Linda and a competent 

programmer, we’ll use them (or at any rate, we will 
gratefully appropriate their compiler technology for our 
Linda compilers). Constructing a high-performance au- 
topilot will be difficult; for our part, we’d find the 
search more compelling if we didn’t have good, demon- 
strated ways to deal with these programming problems 
right now. But any difficult research problem stands to 
yield unanticipated benefits if solved successfully, and 
we look forward to following these efforts. 

On a positive note, Linda is prepared to absorb com- 
putational wisdom from any source that can provide 
some. Our own preference is to program in C or Lisp, 
and our numerical analyst colleagues are reasonably 
happy with Fortran; as we’ve emphasized, though, 
Linda can co-exist with almost any model of comput- 
ing. We’d like to see the Linda model flourishing in a 
wide variety of machine environments and language 
models. We’re actively working toward this end, and 
believe we’re making progress. 

We don’t want to leave the impression, though, that 
Linda is a colorless, neutral system. The Linda model- 
a swarm of active tuples surrounded by a cloud of pas- 
sive ones-is suggestive in itself. One program now in 
design is a real-time “tracking simulation” of a subset of 
patients in a hospital; patients (passive tuples) are mon- 
itored and updated by a succession of manager and 
scheduler processes (active tuples). The goal is to moni- 
tor anomalies and rationalize the scheduling of tests 
and treatments by maintaining a software microcosm of 
the external world. Another program involves a biolog- 
ically-accurate simulation of neuron networks; each 
neuron is represented by a passive tuple; there is a 
collection of identical simulation engines (active tu- 
ples), and each engine repeatedly grabs a neuron, exe- 
cutes one step of the simulation and blows it out the 
back into a recirculating pipeline. The more simulation 
engines, the faster the program runs. 

The Linda operating system environment we’re now 
building accommodates multiple first class tuple spaces 
[26]. A tuple space is created with certain attributes- 
for example, some tuple spaces are persistent, and per- 
sistent tuple spaces constitute the file system. Whole 
tuple spaces can be treated as single objects: they can 
be suspended, archived, reactivated or snapshotted en 
masse. As always, a tuple space may contain active as 
well as passive tuples, which suggests that an ordinary, 
passive file may also contain active processes if we 
choose to toss some in. Flocks of passive tuples might 
be stored alongside active shepherd processes-a file of 
mail messages, for example, might contain a sorting- 
and-scanning daemon to add new messages to the file 
and keep things in order. We might approach any of 
these three possibilities in contexts other than Linda, 
but Linda suggested them. Progress on these (and other 
less esoteric) projects continues. 
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