
ARTICLES

Artificial
Intelligence and LINDA IN CONTEXT
Language Processi7rg

]acques Cohen
Editor

How can a system that differs sharply from all currently fashionable
approaches score any kind of success? Here’s how.

NICHOLAS CARRIER0 and DAVID GELERNTER

Linda consists of ii few simple operations that embody
the tuple space m ldel of parallel programming. Adding
these tuple-space operations to a base language yields a
paral.lel programming dialect. Use of Linda is growing
slowly but steadill as we distribute versions of the sys-
tem for beta test, and as several manufacturers work on
their own implementations. But Linda remains stub-
bornly outside the research mainstream. In the re-
search community, discussion of parallel programming
models focuses mainly on message-passing, concurrent
object oriented pr Jgramming, concurrent logic lan-
guages, and functional programming systems. Linda
bears little resemblance to any of these. How can a
system that differs sharply from all currently fashion-
able approaches score any kind of success, even a ten-
tative and preliminary one (which is all we claim for
Linda)? We’ll argue that, on balance, Linda is a simpler,
more powerful an1 more elegant model than any of
these four alternai ives. The claim doesn’t hold for all
problems and includes, obviously, a subjective element;
but we hope to convince readers that any consideration
of how to write parallel programs is incomplete without
considering this h sterodox model also. Our method is a
series of head-to-t ead comparisons. First we introduce
the Linda model and compare it to the concurrent ob-
ject model (or actually the concurrent object non-
model, as we explain). Then we compare sample pro-
grams, contrasting Linda with examples coded in
Parlog86, a concm rent logic language prominently fea-
tured in a recent issue of Communications of the ACM
[SO], and with a pure functional language.

THE MODEL AND THE SYSTEM’S STATUS
To write parallel Ilrograms, programmers must be able
to create and coorllinate multiple execution threads.

01989 ACM OOOl-0782/119/0400-0444 $1.50

Linda is a model of process creation and coordination
that is orthogonal to the base language in which it’s
embedded. The Linda model doesn’t care how the mul-
tiple execution threads in a Linda program compute
what they compute; it deals only with how these exe-
cution threads (which it sees as so many black boxes)
are created, and how they can be organized. into a
colherent program.

‘The model is based on generative communication. If
two processes need to communicate, they don’t ex-
change messages or share a variable; instead, the data
producing process generates a new data object (called a
tuple) and sets it adrift in a region called tuple space.
The receiver process may now access the tuple. Creat-
ing new processes is handled in the same way: a pro-
cess that needs to create a second, concurrently execut-
ing process generates a “live tuple” and sets it adrift in
tuple space. The live tuple carries out some specified
computation on its own, independent of the process
that generated it, and then turns into an ordinary, data
objiect tuple.

This simple scheme has a series of important implica-
tions. First, communication and process creation are
twco facets of the same operation. To create processes,
we generate live tuples, which turn into data object
tuples; to communicate, we generate data object tuples
directly. The result in both cases is the same: a new
object is added to tuple space, where any interested
party may access it. Second, data is exchanged in the
form of persistent objects, not transient mes,sages. The
receiver may remove the tuple generated by the data-
producing process, but may also leave it in tuple space,
wh.ere many other processes may read it too. We can
organize collections of tuples into distributed data
structures, structures that are accessible to many pro-
cesses simultaneously. The unification of process and
data creation means that we can organize collections of

444 Communications of thd! ACM April 1989 Volume 32 Number 4

Articles

processes in the same way, into “live data structures”:
each process in the live data structure computes and
then turns into one element of the passive data struc-
ture that is returned as the result. Roughly speaking,
the fact that we can write programs that use messages,
distributed data structures or live data structures
means that this simple model encompasses coarse, me-
dium and fine-grained approaches to parallelism.

In fact, the implications of generative communication
extend beyond parallel programming. If we think of
communication as a transaction between separate pro-
grams or processes-a transaction that can’t rely on
standard intra-program mechanisms like shared vari-
ables and procedure calls-then communication is a
fundamental problem for which few unified models ex-
ist. Two processes in a parallel program may communi-
cate; a program in one language may use communica-
tion mechanisms to deal with a program in another
language; a user program may communicate with the
operating system; or a program may need to communi-
cate with some future version of itself, by writing a file.
Most systems classify these events under separate and
unrelated mechanisms, but the tuple space model cov-
ers them all. Tuple space exists outside of (encompas-
ses) the black-box programs that do the computing. Ac-
cordingly it can be used to pass information between
black boxes in different languages (its own simple se-
mantics is independent of any one language’s), between
user and system black boxes and between past black
boxes and future ones (its lifetime isn’t bounded by the
programs it encompasses). Although implemented
Linda systems focus only on communication within
parallel programs, the generative communication model
encompasses all of these forms of communication, as
will future Linda systems.

Linda, to summarize, deals only with process crea-
tion and coordination. If a modular language is em-
bedded in the Linda model, Linda becomes part of a
“modular” approach to parallelism; likewise with an
object oriented language, or a logic language, or an in-
terpreted language or anything else. By not meddling in
computation issues, Linda wins the freedom to coexist
peacefully with any number of base languages and
computing models, and to support clean, simple, and
powerful operations within its own domain.

Current Status
Linda has been implemented and tested in a broad
range of environments. In our group we have added the
Linda operations to C and Fortran, and other groups are
working on C++, PostScript (see [Zi’]) and Scheme as
base languages; [7] describes a Modula-2 Linda, [28] an
object-oriented derivative. Linda runs on a wide range
of parallel machines: shared-memory multi-computers
like the Encore Multimax, Sequent Balance and Sym-
metry and Alliant FX/8; distributed-memory multi-
computers like the Intel iPSC/2 and the S/Net; and
Vax/VMS-based local area nets. Linda applications
have shown good speedup through 64 nodes on our

iPSC/2, which is the biggest machine we have used to
date [19]; given the nature of the Linda implementa-
tion, these applications are very likely to continue to
speed up on larger machines as well. (Linda implemen-
tations for machines like the Intel hypercube are based
on distributed hash tables that scale with machine
size.) Ports to other machines are in progress. A Linda
simulator runs on Sun workstations, and a “Linda Ma-
chine” that supports tuple space operations in hardware
is under construction [3, 251. The system has been used
for a variety of parallel programming experiments, in-
cluding matrix multiplication and LU decomposition
[13], DNA sequence comparison and parallel database
search [ll], traveling salesman, expert systems [16],
charged particle transport, finite element equation sol-
vers [34], linear programming and others, Particularly
interesting from a numerical algorithms point of view
is new work on a sparse system solver in Linda [5];
ongoing work includes a neural net simulator.

Several independent commercial implementations
now underway will expand the range of supported ar-
chitectures. In some contexts the system is now seeing
what is essentially production as opposed to experi-
mental use; Linda is used at Yale in the generation of
ray-tracing displays of fractal images (by Ken Musgrave
of Benoit Mandelbrot’s group), and at Sandia National
Labs in executing a parameter sensitivity analysis
for rocket plume simulations over a local area net-
work [H].

State of the Art?
Turn now to current research in computer science:
how should parallel programs be written? At present,
three approaches make up the most widely discussed
group: concurrent object oriented programming, con-
current logic programming, and functional program-
ming.’ Linda falls into none of these categories. The
tuple space model is strictly sui generis. Where does it
fit, though, and how does it relate to the Big Three?

In the following, we will discuss each of the three
named approaches in turn and compare each to Linda.
In their enthusiasm for object oriented, logic based, or
functional programming, proponents have argued that
these models are ideal not only for computing but for
parallel computing. We will argue that in fact, the
strengths of all three models are irrelevant to parallel-
ism, and generally unhelpful in dealing with process
creation and coordination in parallel programs.

The following three sections vary in structure. In the
first, we describe Linda’s tuple space model; we con-
trast it with concurrent object oriented programming,
and deal briefly with message passing and the Actors
model as well. In the next section, we discuss parallel
logic programming. We focus here on the programming
examples presented in a recent article on Parlog [30],
contrasting them with Linda’s solutions to the same

’ This list was proposed by Ehud Shapiro in a talk at the 1988 Hypercube
Multicomputer conference.

April 1989 Volume 32 Number 4 Communications of the ACM 445

Articles

problems. In the last section we discuss pure functional
programming, again comparing a Linda and a purely
functional solutilm to the same problem, and discussing
the implications of the comparison.

A Note on Paral .elizing Compilers
It used to be widely argued that, with sufficiently good
parallelizing compilers, programmers could code in
standard sequen-.ial languages and leave the compiler
to worry about parallelism. Smart compilers, it was
thought, could produce good parallel programs auto-
matically, and tt is was important for two reasons: not
only would it allow old programs to be recycled for
parallelism withllut any programmer intervention, but
it would spare pl*ogrammers the unknown and presum-
ably gruesome h errors of writing and debugging explic-
itly parallel programs.

Much progress has indeed been made on parallelizing
compilers. But two things have become clear as well.
First, compilers can’t find parallelism that isn’t there;
the algorithms that work best on parallel machines are
often new algorii hms, different from the ones relied on
in sequential prcgrams. Second, evidence to date (some
of which we will discuss here) suggests that writing
explicitly parallc 1 programs isn’t so terribly difficult
after all. A growing (if admittedly still small) number of
applications prog;rammers write parallel programs on a
regular basis. Gr inted, parallelizing compilers are the
only way to parallelize existing programs without re-
writing them. Nonetheless, few researchers today seem
to disagree with the contention that programmers con-
fonting a new, compute-intensive application should
have a well-designed and efficient parallel language at
hand. The quest .on is, which parallel language?

TUPLE SPACES AND CONCURRENT OBJECTS
We concentrate here on two topics: explaining the tu-
ple space model, and contrasting it with concurrent
object oriented systems. We briefly discuss Actor sys-
tems as well.

As a point of ceparture for explaining tuple space,
consider the best-known of parallel programming tech-
niques, message passing. To build a parallel program
using message p,issing, we create many processes, all
executing concurrently and asynchronously; to com-
municate--to disperse input data, collect final results
and exchange intermediate results-processes send
messages to each other. This model or something simi-
lar underlies pal allel programming in systems as di-
verse as the native communication system supplied by
Intel with the iPSC hypercube, the CSP language frag-
ment and the Occam language that is based on it [29],
and the Mach distributed operating system [Xl.

Message passi-lg systems rely on three basic opera-
tions: create-:?rocess, send-message, and
receive -mess.age. If a sending process S has a
message for a re#:eiver R, S uses the send-message
operation and R uses receive-message. In the sim-

plest case, a single process was created automatically
when we started the program; this initial process used
create-process tocreatesand R.

Linda on the other hand provides four basic opera-
tions, eval and out to create new data objects, in and
rd to remove and to read them respectively. If a Linda
sending process S has data for a receiver R, it uses out
to generate a new tuple. Then R uses in to remove the
tuple. A tuple, unlike a message, is a data object in its
own right. In message-sending systems, a message must
be directed to some receiver explicitly, and only that
receiver can read it (unless the programml:r uses some
special broadcast message operation, which some mes-
sage systems supply and some don’t). Using Linda, any
number of processes can read a message (i.e., a tuple);
the sender needn’t know or care how many processes
or which ones will read the message. Processes use the
rd operation to read a tuple without remclving it.

To create processes S and R, the initial process used
eval. Processes can also communicate by using eval
if they choose; when a sending process S has data for a
receiver R, it can use eval to generate a new process
ht. M executes some assigned piece of code; when it
terminates, it turns into a tuple. Then R uses in to
remove the tuple.

The fact that senders in Linda needn’t know any-
thing about receivers and vice versa is central to the
language. It promotes what we call an uncoupled pro-
gramming style. When a Linda process generates a new
result that other processes will need, it sirnply dumps
t:he new data into tuple space. A Linda process that
n.eeds data looks for it in tuple space. In message pass-
ing systems, on the other hand, a process can’t dissemi-
n.ate new results without knowing precisely where to
send them. While designing the data generating pro-
cess, the programmer must think simultaneously about
t:he data consuming process or processes. In our experi-
ence, parallel programming needn’t be terribly difficult,
but this kind of “thinking in simultaneities” seems cal-
culated to make it difficult.

A tuple exists independently of the process that cre-
ated it, and in fact many tuples may exist indepen-
d.ently of many creators, and may collectively form a
d.ata structure in tuple space. It’s convenient to build
d.ata structures out of tuples because tuples are refer-
enced associatively, in many ways like the tuples
i:n a relational database. A tuple is a series of typed
fields, for example (“a string”, 15. 01 , 17,
"another string"), or (0, 1). Executing the out
statements

out("a string", 15.01, 17, "another
s,tring")

out(0, 1)

causes these tuples to be generated and added to tuple
space. (out statements don’t block: the process execut-

446 Conmunications of the ACM April 1989 Volume 32 Number 4

Articles

ing out continues immediately.) An in or rd state-
ment specifies a template for matching: any values in-
cluded in the in or rd must be matched identically;
formal parameters must be matched by values of the
same type. (It’s also possible for formals to appear in
tuples, in which case a matching in or rd must have a
type consonant value in the corresponding position.
Values are not communicated from the in statement
“backward” to the tuple, however. Formals in tuples
serve only as wildcards, expanding the range of possi-
ble matches.) Consider the statement

in("a string", ? f, ? i, "another
string")

Executing this statement causes a search of tuple space
for tuples of four elements, first element ‘1 a string '1
and last element "another string", middle two
elements of the same types as variables f and i, respec-
tively. When a matching tuple is found it is removed,
the value of its second field is assigned to f and its
third field to i. If there are no matching tuples when
in executes, the in statement blocks until a matching
tuple appears. If there are many, one is chosen nonde-
terministically. The read statement, for example

rd("a string", ? f, ? i, "another
string")

works in the same way, except that the matched tuple
is not removed. The values of its middle two fields are
assigned to f and i as before, but the tuple remains in
tuple space.

It’s now easy to see how to build data structures in
tuple space. Consider one simple but important case:
we can store an n-element vector V as n tuples of the
form

("V", 1, FirstElt)
("V") 2, SecondElt)

. . .
("V", n, NthElt)

To read the jth element of the vector and assign it to x,
processes use

rd("V", j, ? x);

to change the ith element,

in("V", i, ? OldVal);
out("V", i, NewVal)

We discuss some more elaborate cases in the next
section.

We can also use Linda to build fine grained live data
structure programs. A live data structure program takes
its shape from the result it is intended to yield. If the
result is a vector, the program is a vector of processes,
and so on. Each process in the live data structure com-
putes and then turns into one element of the passive
data structure yielded as result. Consider, for example,

a program that yields an n x n matrix whose jth
counter-diagonal depends (only) on the preceding
counter-diagonal. The computation can proceed wave-
front-wise: as soon as we know a counter-diagonal, we
can compute in parallel all elements of the next coun-
ter-diagonal. (We describe a real and slightly more com-
plicated example later.) It is easy to express such a
program in Linda: we use eval statements of the form

eval("M", i, j, compute(i, j))

to create one process for each element of the result.
The function compute (i , j) uses rd to examine the
values of the preceding counter-diagonal-for
example,

rd("M", i - 1, j, ? value).

As soon as the processes along the kth counter-diagonal
have completed computing, they turn into passive
tuples and become visible to the processes along the
(k + 1)st counter-diagonal. Thus the computation pro-
ceeds in stages, as active processes turn into passive
tuples along a wave-front from upper-left to lower-right.

Such fine-grained programs are generally impractical
given our current implementations. The point is,
however, that Linda can express them cleanly, and
implementations on future generation machines can
be expected to support them efficiently.

Linda versus Concurrent Objects and Actors
Although there is no single canonical concurrent object
model, the Emerald system [8, 241 appears to be a state-
of-the-art example. A concurrent Emerald program
consists of a collection of objects, some passive and
some with embedded active processes. New objects are
generated by executing an object constructor. An object
defines methods which may be invoked procedure-
style by other objects. An object that is accessible to
many others must protect its internal data structures
against unsafe concurrent access. To do so, it embeds
its methods in a monitor (the structure proposed by
Hoare in [25]). By definition, only one process may be
active inside a given monitor’s protected routines at
any one time. A second process that attempts to enter
the monitor is automatically blocked on a monitor
queue until the monitor becomes free. When processes
enter a monitor prematurely--they needed access to
some resource, an empty buffer, say, that is at present
unavailable--they block themselves explicitly on a
condition queue. A process that frees resources associ-
ated with condition queue j signals j, allowing some
process blocked on j to continue. (In addition to these
mechanisms, Emerald includes some sophisticated op-
erations designed to relocate objects in a network. They
are not germane here, though; we are interested in how
Emerald can be used to express parallel programs.)

Monitors were designed originally for concurrent
processes within a single address space. In Emerald, a
process may access a monitor via a remote procedure

April 1989 Volume 32 Number 4 Communications of the ACM 447

Articles

call across addre ;s spaces and hence, potentially, across
machine boundaries. The effect is not to alter in any
way the expressivity of monitors, but rather to make
them available in a new environment.

The strengths md weaknesses of monitors were ex-
plored extensive .y in languages like Concurrent Pascal
[6], Modula [33] and Mesa [26]. We prefer Linda to
monitors for sevflral reasons. We can divide them
roughly into matters of simplicity and of flexibility.

In the monitor approach, process creation, inter-proc-
ess communicati In and synchronization fall into three
separate categories: process forking or object creation,
the monitor’s she red state variables, and the condition
queue and signal mechanism, respectively. Linda uni-
fies the three within the context of tuple-space opera-
tions. It follows t.lat support for monitor-based concur-
rency requires si,;nificant changes to a base language.
Linda requires that we add new operations, and so do
monitors (monitors require wait and signal operations
on condition queues). But monitors also require a new
envelope structu:*e within the language, namely the
monitor construct itself. Linda is simpler, and its
greater flexibility is related to its simplicity.

Communication in monitor-based systems is based on
procedure call (0.: method invocation, in the terminol-
ogy of object oriented monitor systems). The same
holds for distributed operating systems that are based
on remote procec.ure call [e.g., 61. Procedure call is
inherently a synchronous operation: a procedure call
blocks until a result is returned. This characteristic is
problematic in the programming environment for
which Linda is designed. In our experience, processes
in a parallel program usually don’t care what happens
to their data, and when they don’t, it is more efficient
and conceptually more apt to use an asynchronous op-
eration like Lindii’s out than a synchronous procedure
call. Using out, a process can dump a result into tuple
space and continue immediately; invoking a monitor
procedure requir as blocking until the monitor is free,
and then until the requested transaction has been per-
formed and a result is available. It’s always possible to
patch up a procedure-call system so that that it sup-
ports some form of asynchronous communication also.
But in our experience, asynchronous communication is
far more common than synchronous. This is hardly sur-
prising; in parallel programming, the goal is to compute
a result fast. In 01 der to work efficiently, the processes
that make up such a program will avoid blocking as far
as possible. It’s trvial, in Linda, to implement a syn-
chronous remote. procedure-call-like operation in terms
of out and in. There is no reason we know of, how-
ever, to base an entire parallel language on this one
easily programmcmd but not crucially important special
case.

Monitors are not as flexible as tuples for building
distributed data structures. All elements of the distrib-
uted structure must be stored within a single monitor,
which restricts ac:cess to one process at a time, or they
must be stored in separate monitors, which requires

that a new monitor and monitor queue be created for
each new element or group of elements. M:onitors don’t
support the transparent transition from process to data
object that live data structures require.

Monitors do have points in their favor: most impor-
ta.nt, they allow all operations on a particular shared
structure to be encapsulated in a simple and language-
enforced way. But Linda strikes us as more powerful,
simpler, and easier to integrate unobtrusively into a
base language.

Where Are the “Objects”?
What does the preceding discussion have to do with
object oriented programming? Curiously enough, noth-
ing. Object oriented programming, which originated
with Simula 67 and reached a cathartic climax in
Smalltalk, is a model in which objects are instantiated
from templates or classes. Classes may be created ac-
cording to an interesting scheme that allows a new
class to inherit and augment (or override) the properties
of preexisting classes. The model is powerful and at-
tractive, but irrelevant to parallelism. In the object
model, each object is accessible only by way of the
methods it defines; but what if two methods are invoked
b!y separate processes simultaneously? We can insist
that each object be an active process, that it accept
messages (of the form “invoke method M”) one at a
ti.me, and return reply messages to each invoker in
turn. So far as parallelism goes, this is merely a message
passing model. We can implement monitors, as de-
scribed, but then we’re left with a monitor-based model
of parallelism. Alternatively, we might combine an ob-
ject oriented language with Linda. Objects are gener-
ated using out (for passive objects) or eval (active
ones). Passive objects are immutable; processes get their
own copies by using rd, then invoke the methods di-
rectly. All communication with active objects goes
th.rough tuple space. Again, objects per se don’t figure in
th.is model’s approach to parallelism. We believe in sum
th.at the current widespread enthusiasm for “concur-
rent object oriented programming” is to some extent
misinformed. If you are designing an object oriented
parallel language, you face exactly the same design
choices you would face if you were design:ing any other
kind of parallel language. “Objects” in and of them-
selves do not help.

“Actors” [22] is related in some ways to Iconcurrent
object systems. The proposal is fairly old, but it contin-
ues to attract interest (see particularly Agha [2]). In an
Actors system, processes (called actors) communicate
by sending each other messages (called taiks). A proc-
ess may respond to a message by generating one or
more new processes. This kind of system is readily ex-
pressed in Linda: processes can exchange rnessages in
the form of tuples, and generate new processes by using
eval. Linda, of course, can also be used for distributed
and active data structure programming; Ac:tors, which
is basically a message passing model, seems less suita-
ble for these purposes. It’s interesting that -the Actors

440 Communications of t,w ACM April 1989 Volume 32 Number 4

Articles

model seems to cover fewer programming patterns than
Linda does, but in a more complicated way. Thus a
process and a message in the Actors model are separate
structures; in Linda, a process becomes a tuple. An Ac-
tors message contains three separate parts, a tag, a tar-
get and a communication; a tuple is merely a set of
fields, any or all of which may be tag (i.e., message id)
or target (address) or communication (data). Actors
doesn’t support the associative addressing of tasks, nor
does it allow messages to be sent to not-yet-created
processes. (In Linda, a tuple may be read or removed by
a process created long after the tuple itself was outed.)
The Actors model is, on the other hand, supported by a
fairly elaborate formal framework. Linda is not. But
Linda exists in practical implementations on a range of
commercial systems, and we don’t believe this holds (at
least at present) for the Actors model.

CONCURRENT LOGIC PROGRAMMING
Concurrent logic programming is a booming field. The
Japanese Institute for New Generation Computer Tech-
nology (ICOT) continues work on their Parallel Infer-
ence Machine, which is intended for concurrent logic
programming. A recent Communications of the ACM arti-
cle discussed the new concurrent logic language
Parlog [30], and collected papers on one of the first of
these languages, Concurrent Prolog, have just been
published (complete in 1,178 pages) by MIT Press [31].
Several years ago we published a brief discussion con-
trasting Concurrent Prolog with Linda [17], but new
developments make a comparison between Linda and
some of the Parlog solutions recently featured in
Communications seem desirable. The bulk of Ringwood’s
presentation of Parlog86-style concurrency deals with
two examples, the client-server paradigm and the din-
ing philosophers problem. We will discuss each in turn.

Concurrent logic programming takes several forms,
but in most cases the basic idea is as follows: we can
specify many parallel activities by use of a “parallel
conjunction,” which states that some result depends on
a series of sub-results, all of which may be pursued
simultaneously. A collection of “guarded clauses” al-
lows us to specify that only one of a series of parallel
conjunctions be performed, but the selection criteria
(the “guards”) can be evaluated simultaneously. Parallel
execution threads communicate by means of shared
logical variables, which are initially unbound (“unin-
stantiated”) but can’t be referenced until one party to
the communication binds them to a value. Data streams
are implemented by “partially instantiated” shared
logic variables. The data producer successively appends
(in effect) new elements to a list or stream of elements;
the data consumer reads the stream. It all adds up to a
parallel version of logic programming-to a parallel
version (in other words) of what Ringwood [30, p. 111
and many others have called a very high level ap-
proach to programming. Very high level programs have
mathematical properties that their lowlier brethren
lack, but we focus here on a more concrete issue: pre-

sumably, very high level programs are more elegant
and concise than other kinds.

In the client-server paradigm, many client processes
must communicate with a single server process. The
problem is usually associated with distributed operating
systems (the server might provide a file service, mail,
name-location or other resource management function);
in our experience, it is equally or more important in
parallel programming.

Consider the Parlog solution (Figure 1). It creates,
in effect, three processes, one corresponding to each
paragraph of code in the figure. The “server” process
repeatedly reads a stream of requests. It accomplishes
this by binding the name Transaction to the first
element and the name More- transactions to the
rest of some input stream. It proceeds to respond to
Transaction (that is, it services the stream’s head
request), and then it applies the same procedure recur-
sively to the remainder of the stream. When the
client process needs to communicate with the server,
it adds to the stream a message of the form transac -
tion (Reply). Reply is an “uninstantiated variable”:
it is forwarded to the server as (in effect) a name with-
out a binding. When service to the client is complete,
the server binds the client’s Reply variable to the
string “Roger Roger” (the code for this step isn’t
shown). By executing wait (“Roger Roger”) , the
client blocks until this binding is accomplished.

The complete system entails more than a server and
client processes, though. A Parlog stream may be ap-
pended to by a single process only, but ordinarily there
are many clients. The solution is for each client to
append messages to its own private stream, and for
these multiple client streams to be merged to form the
single request stream that the server expects. Merging
is the job of the third process: it examines each client
stream (the example shown assumes that there are
exactly two, Stream1 and StreamZ), and merges
them into a single outs t r e am, which the server scans
in turn. (Invocations that cause names to be bound
correctly-e.g., that cause the merge process’s
Outstream to be identified with the More -
transactions stream read by the server-are re-
quired as well, but the code is omitted.)

A C-Linda version is also shown in Figure 1. It as-
sumes again that the server will scan down a stream of
requests. In Linda, the stream exists as a series of num-
bered tuples, of the form

("request", 1, FirstRequest)
("request", 2, SecondRequest)
. . .

By successively incrementing the index field that
forms part of the identification template in the in state-
ment, the server can in each of these tuples in se-
quence. To respond to the jth request, it places its re-
sponse in a tuple labeled j. Whichever process made
the jth request will be waiting (again using in) for a
tuple so labeled.

April 1989 Volume 32 Number 4 Communications of the ACM 449

Articles

Parlog version:

server(CTransaction 1 More-transactions], Data,...) <--
respond(Transaction, Data, Rewdata, . ..) :
server(More-transactions, Rewdata, . ..>.

cIient([transaction(Reply) 1 More-transactions], . . .) <--
wait(Reply),

wait("Roger Roger") <--.

merge([Item I Streami]), Streama,, [Item I Outstreaml) C---
merge(Stream1, Stream2, Outstream).

merge(Stream1, [Item I Streamal, [Item I Outstreaml) <--
merge(Stream1, Stream2, Outstream).

C-Linda version:

server0

t
int index = 1;
* . .
while (1) <

in("request", index, ? req);
. . .
out("response", index++, response);

3
3

client0
(

int index;
. . .
in("server index", ? index);
out("server index", index+l);
. . .
out('*server", index, request);
in("response", index, ? response);
. . .

3

FIGURE 1. Server-Clients in Parlog and in C-Linda

Client processes must first establish where the end of
the stream is. To do so, they read and update a tuple
labelled “server index”. If many clients attempt to
update the server index simultaneously, they succeed
one-at-a-time and the index is updated safely. Once a
server has determined the current end-of-stream index,
it adds its request-tuple to the stream. It then blocks
using in until a response arrives.

How do the solutions compare? They are comparable
in length (in both cases initialization code is omitted,

amounting to several lines in C-Linda and probably
about the same for Parlog86). We would argue that the
C-Linda code is easier to understand. This contention is
subjective, but surely the Linda version is no harder to
un.derstand. The real difference involves the flexibility
of the two versions. The Parlog version requires an
extra process to perform merging; the Linda version
does not. More important, the code of Parlog86’s merge
process depends on how many and which s.treams are
being merged. The merge process examines the head

450 Communications of tt e ACM April 1909 Volume 32 Number 4

Articles

of each client stream explicitly. Consider how the
Parlog code would look if there were 20 or 100
streams to be merged instead of two. The Linda code is
insensitive to number of clients. Nothing in the code
reflects this number, or needs changing when the num-
ber or identity of client processes change.

There is nothing unrealistic in imagining 20 or 100
input streams to some server. In our experience, this
kind of pattern occurs often in master-worker-style
parallel applications. Tasks (work assignments) are per-
formed by some arbitrary number of identical worker
processes in parallel. A master process sets up the com-
putation, then reels in and coordinates the results. The
workers are clients and the master is the server.

This master-worker version of the server-client para-
digm raises an interesting and more subtle problem.
The order in which task results are returned to the
master may be irrelevant-so long as the master gets
everything eventually, there’s no need to deal with the
results in FIFO order. If ordering isn’t needed, much
better to leave it out: it complicates the code and may
require nontrivial processing at runtime. But in
Parlog86, client messages must be ordered: there is no
way to build an unordered stream. In Linda, clients can
simply drop messages into tuple space using out, omit-
ting the index field. The server withdraws tuples in
arbitrary order using in.

The merging problem in Prolog-derived concurrent
languages is well-known. Some researchers argue that
the solution is simply to add a new merge primitive.
This solution points to a deeper problem, however. The
client-server example is important because it brings
into play one of Linda’s most important advantages,
flexibility. One particular species of stream is canonical
in Parlog86. A Parlog stream has one writer, and per-
haps a series of readers. Linda has no canonical stream,
but it’s easy to build a variety of important types. The
client-server example requires a one-reader many-
writer stream. Other examples require one-writer,
many-remover streams. This type of stream’s first ele-
ment is removed repeatedly by any one of a group of
interested processes-a situation that arises where (for
example) a master process generates an ordered list of
tasks, and each worker repeatedly removes and carries
out the head task. This kind of stream is again simple to
build in Linda, but unidiomatic in Parlog86. (Note that
this example’s crucial characteristic is that many proc-
esses jointly disassemble, not merely read, the stream.)

We turn briefly to the main focus of the Parlog
article, the dining philosophers problem. A round table
is set with some number of plates (traditionally five);
there is a single chopstick between each two plates, and
a bowl of rice in the center of the table. Philosophers
think, then enter the room, eat, leave the room and
repeat the cycle. A philosopher can’t eat without two
chopsticks in hand; the two he needs are the ones to
the left and the right of the plate at which he is seated.
If the table is full and all philosophers simultaneously
grab their left chopsticks, no right chopsticks are avail-
able and deadlock ensues. To prevent deadlock, we al-

low only four philosophers (or one less than the total
number of plates) into the room at any one time.

What is the point of solving such a silly problem?
According to Ringwood, dining philosophers “is a
benchmark of the expressive power of new primitives
of concurrent programming and stands as a challenge to
proposers of these languages” [30, p. 111. While we can’t
agree that the problem is as central as Ringwood makes
it out to be, it has indeed been used as a benchmark of
expressivity since Dijkstra first suggested it.

The Parlog solution (Figure 2) is too complicated to
explain here, but generally speaking it uses a series of
processes to implement each state that a philosopher
can occupy-thinking, preparing to eat, and eating. Phi-
losophers circulate along data streams among these
process-states, passing along the way through interme-
diate processes that merge streams, match available
chopsticks to hungry philosophers and so on. In the
Linda solution, assume for concreteness that the num-
ber of place-settings and of philosophers is five. There
are four “room tickets,” represented by four tuples. A
philosopher who is ready to enter the dining room uses
in to grab a ticket. (If there are no free tickets, he will
block until some other philosopher leaves and releases
his ticket.) Once inside, he uses in to grab his left
chopstick and then his right chopstick. Each chopstick
is again represented by a separate tuple. When he’s
done eating, he replaces both chopsticks and his room
ticket.

(Careful readers will notice that, if the Linda kernel
is “unfair’‘-if it can repeatedly bypass one process
blocked on in in favor of others-the Linda solution
allows indefinite overtaking or livelock. A slow philoso-
pher could remain blocked on an in ("room
ticket ‘I) statement while a speedy one repeatedly
outs a room ticket and then grabs it again, leaving the
slow philosopher still blocked. The Parlog solution
suffers from a similar problem. Both solutions should be
read, then, under a fair implementation assumption.)

The Linda solution is, in a sense, nothing special. It
uses in and out as counting semaphore operations,
and essentially the same solution is possible in any
system that supports distributed semaphores. But here
again, we believe that the contrast between Linda and
Parlog makes an important point. When a problem
has a simple solution, a useful system will give pro-
grammers access to the simple solution. Forcing com-
plex solutions to simple problems makes us suspect that
a language has chosen the wrong “abstraction level” for
its primitives, chosen operations with too many policy
decisions built-in and too few left to the programmer.
Such languages are ostensibly “higher level” than ones
with more flexible operations, but this kind of high-
levelness dissipates rapidly when programmers step
outside the (often rather narrow) problem spectrum
that the language designer had in mind. A Parlog
proponent would almost certainly call Parlog a
“higher-level” language than C-Linda; but we’ve shown
that it is somewhat easier to solve the client-server
problem in C-Linda than in Parlog86, and much easier

April 1989 Volume 32 Number 4 Communications of the ACM 451

Articles

Parlog solution:

The Parlog solution in Ringwood’s 1988 paper involves 70 lines of
code divided into processes cloister, refec, table, cell, finder
and merge. Five diagrams help to explain the structure of the so-
lution. But these 70 lines are only part of the program: “Not all
clauses will be illustrated [i.e., not all code will be reproduced], only
those that have informative diagrams. The communication between
calls is often much more easily comprehended by means of such il-
lustrations,” Ringwood writes [p.lQ:j.

C-Linda solution:

Phil(i)
int i;

c
while(l) C

think0 ;
in(“room Cicket”) ;
in(“chopstick” , i) ;
in(“chopstick”, (i+l)%Num) ;
eat0;
out(“chopstick”, i);
out(“chopstick”, (i+i)%Num);
out(“room ticket”);

3
3

initialize0
<

int i;
for (i = 0; i < Hum; i++) C

out(“chopstick”, i);
eval(phil(i));
if (i < (Num-1)) out(‘“room ticket”);

3
3

FIGURE 2. Using Parlog and C-Linda to Solve the Dining
Philosophers Problem

to solve the dining philosophers problem. Each of the
problems involves significant issues in concurrent
programming. Both were chosen as showpieces
for Parlog by a proponent of concurrent logic
programming.

FUNCTIONAL PF.OGRAMMING
We have discussed problems for which Linda has a
shorter and neater solution than some alternative, but
we turn now to a comparison that cuts the other way.
Figure 3 shows twl) versions of a program to compute
the “similarity value” of two DNA sequences. One ver-
sion is written using a pure functional language (the
language shown is Crystal [14]); the other version uses

C-Linda. Although the two programs do not differ by
much, the C-Linda version is slightly longer.

IJnsurprisingly, there’s more to this comparison than
meets the eye. Advocates of pure functional languages
for parallel programming argue as follows: Program-
mers shouldn’t decide how to parallelize their algo-
rithms. Armed with a pure functional language, they
should express their algorithms as a set of recursion
equations. Pure functional languages impose a decisive
limitation: they don’t allow assignment statements, and
hence no variable’s binding can ever change. This re-
striction simplifies the task of finding an algorithm’s
implicit parallelism; programs expressed in functional
languages are therefore good candidates for automatic

452 Communications of thlb ACM April 1989 Volume 32 Number 4

Articles

a - (<sequence data . . . >I,
b'- [<sequence data . . . >I,
m-6,2-l-6,
?a.
?b,
h(i,jI-

<<i-o ->o,
j-o -so,
else ->\max[tl,t2,t3,0)>>

whete(
tl-h(i-l,j-l)+s(x,Y),
t2-max((hCi-l,jl-1.33331, (P(i-l,j)-.3333)),
t3-max((h(i,j-1)-1.3333),(q(i,j-1)-.3333)),

*(x,Y)-
<<x-y->l,

else -> -.3333,>,
x*a(i-11,
y-b(j-11

I
where(
P(i*j,-

<<i-O ->O,
j-o ->o,
else ->max((h(f-l,j)-l.3333),(P(i-l,j)-.3333))",

q(i. jl-
<<i-o ->o.

j-o ->o;
else ->mex((h(i,j-l)-1.33331, (q(isj-lb-.3333))"

I,
? [[h(i,j) / 0 + i <-ml I 0 <- j <- nlr

exteg-n char all, bll;
extern int m, n:
extern float maxo:

float h(i, j)
t

float tl, ttl, t2, tt2, t3, tt3:

if (i = 0 II j -- 0) return 0.0:
rd("A", i-1, j-l, ? ttl):
rd("H", i-l, j
rd("H", i, j-1:

? tt21:
? tt31:

t1 - ttl + (a[i-11 -- b[j-1)) ? 1 : -.3333:
t2 * max(tt2-1.3333, P(i-l,j)-.3333):
t3 - max(tt3-1.3333, q(i,j-l)-.3333):
return mmc(tl, maxlt2, mex(t3, 0)));

f

float p(f,j)
I

float t:

if (i -- 0 II j -- 0) return 0.0;
rd("R", i-l, j, ? t):
return mex(t-1.3333, p(i-l,j)-.3333);

1

TLoat q(ie j)
float t:

if (i -- 0)I j -- 0) return 0.0;
rd(“H”, i, j-l, 7 t):
return mex(t-1.3333, q(i,j-l)-.3333);

1

lmain (1
t

int i, j;

for (i - 0: i <- m; ++i)
for (j - 0: j <- n; ++j1

eval ("H", i, j, h(i. j)):
k

FIGURE 3. DNA Sequence Comparison Using Recursion Equations
and C-Linda

parallelization by smart compilers or run-time systems.
These arguments have been made for some time by
proponents of dataflow functional languages [I], and
also (for example) by proponents of Crystal [14, 151.
The promised advantages of the approach are substan-
tial. Source programs are portable and completely ma-
chine independent. Programmers don’t bother with
parallelism: they produce mathematical expressions in-
stead. Mathematical expressions are more conducive to
formal verification than ordinary programming lan-
guages, they are easier to debug, and the advantages of
mathematical expressions in terms of elegance and con-
ciseness are well known. Thus Turner writes that “a
basic difficulty” of programming languages that are not
“functional” is that “they are very long winded, in
terms of the amount one has to write to achieve a given
effect.. . [32, p. 51”

We can put these arguments in perspective by exam-
ining a concrete case. In The DNA-sequence compari-
son problem (Figure 3), we need to compute a similarity
value for two sequences; this value is designed to cap-
ture a geneticist’s qualitative judgement. In the algo-
rithm shown, we compute a similarity matrix whose i,
jth entry is the similarity between the first i elements

of one sequence and the first j of the other. The matrix
can be computed in wavefront fashion: first the upper-
left element, then the second counter-diagonal, then
the third and so on.

This is an ideal problem for any functional language.
It’s simple and convenient to express this algorithm as a
series of equations giving each matrix element’s de-
pendence on previous elements. A smart compiler
could establish that all elements of the similarity ma-
trix can be computed in parallel, with the elements
along the jth counter-diagonal blocking dataflow-
style until all previous counter-diagonals have been
computed.

The C-Linda version isn’t a set of equations; it is a
fine grained explicitly parallel program. It builds a live
data structure called H. The i, jth element of H is a
process that computes, then turns into, the correspond-
ing element of the similarity matrix.

Having introduced the two versions, we can contrast
them. The C-Linda version is longer, but the difference
in compactness seems minor. One major underlying as-
sumption of the functional-languages advocates-that
explicitly-parallel programs are hard to design and to
understand-gets no support from this comparison. The

April 1989 Volume 32 Number 4 Communications of the ACM 453

Articles

C-Linda version w(rs easy to design. Some readers will
find the Crystal version easier to understand, but we
doubt whether too many will find a dramatic difference
in comprehensibility. The real difference between the
two lies elsewhere The C-Linda version is a parallel
program. The Crystal version is a specification that a
compiler might turn into a parallel program. In fairness,
then, the two versions are incomparable, one being a
program and the oi her, a program specification. The
contention that pal allel programs are necessarily clun-
kier, more comple,: and less elegant than functional
language program qmifications is too often accepted
without comment, and it should not be, but the real
issue lies elsewherl?. Are the operations that create and
control parallelism best left in the programmer’s hands,
or should they be turned over to the compiler?

Leaving them to the compiler is attractive in some
ways. It releases the programmer from any responsibil-
ity for the granularity of his computation. The intent of
projects like Crystal is for the compiler to gather up the
fragments of a parallel algorithm and bundle them to-
gether in any way :hat seems appropriate-into a few
big bundles if the target architecture includes a few
powerful processors, into many small bundles if the
target machine inc. udes many less-powerful processors.
In principle, the ki:rds of analysis used in the Crystal
compiler would probably work for a program like the
C-Linda DNA comparison also, but we haven’t investi-
gated them and don’t know for certain. It’s also true
that Crystal targets special purpose SIMD architectures
like the Connection Machine, as well as asynchronous
computers: Linda is designed for asynchronous ma-
chines only.

We aren’t sold on the compiler alternative, though,
for two reasons. 0r.e involves a matter of detail related
to the point discussed earlier. The other concerns un-
derlying concept.

On the general purpose parallel machines of which
we are aware, it is far more efficient to create a smaller
number of processes, and put each in charge of comput-
ing an entire sub-b .ock of the comparison matrix, than
to put one process in charge of each element. Even on
machines that supIlort cheap processes (lightweight
tasking), creating, scheduling and passing data among a
very large number of processes can be a considerable
expense. The smari Linda programmer therefore starts
with the program shown in Figure 3, but immediately
restructures it for efficiency by using “interpretive ab-
straction” [12]-he replaces the live data structure with
a passive one, and :.aises the processes one level in the
conceptual scheme each process fills in many ele-
ments, rather than becoming a single element. We dis-
cuss the performance of this kind of solution to the
problem in [ll] (it shows good speedup). Interpretive
abstraction is a fairly simple programming technique,
but it’s only possible if the parallelism tools are under
the programmer’s control. In a pure functional lan-
guage, it appears to be impossible. Not to worry: the
functional language! compiler is designed to take care of

this problem (to carry out the equivalent of “interpre-
tive abstraction”) automatically. The detail that bothers
us is that this capability has yet to be demonstrated,
and. achieving it automatically and generally strikes us
as a difficult problem. Consider one aspect of the diffi-
culty for the DNA problem. A reasonable approach is to
divide the matrix into horizontal bands; a band is filled
in by a single process; in general, one process can fill in
ma:ny bands. How many bands should there be? Fewer,
deeper bands means loss of efficiency during startup
and. completion, because the delay in starting work on
the second band depends on the first band’s depth. A
greater number of shallower bands increases inter-band
communication overheads. Given the Linda program, it
is easy to determine a good band size by running some
experiments. The Crystal system (and all other ap-
proaches to automatic parallelization) takes it upon it-
self to determine this number a priori and automati-
cally.

These issues of granularity will become less impor-
tant over time. Newer machines will be capable of sup-
porting increasingly fine-grained programs (although
we don’t expect that the optimal granularity issue will
ever disappear entirely). But suppose we had a machine
on which the finest grain programs run well. Is it then
reasonable to surrender control over parallelbsm and
luxuriate in the pure sunlight of recursion equations?
Absolutely not, because in too many important cases,
recursion equations have nothing to do with the pro-
grams we need to write.

A.gain, the DNA problem is a good starting, point. The
approach we’ve discussed so far is-in our experi-
ence-interesting but wrong. The goal of geneticists in
practice is to compare a newly-discovered sequence
aga:inst a large database of existing sequences. The
problem is compute-intensive and parallelism is called
for, but in our experience it is usually more efficient to
run many conventional, sequential searches in parallel
than to parallelize individual searches. One efficient
approach to the problem is easy to express in C-Linda
(Figure 4). The basic method is to create many identical
searcher-processes, each initialized with a copy of the
target sequence; a master process hands out sequences
from the database; workers execute comparisons, and
return the results to the master. There are two sub-
problems: (1) Sequences in the database vary greatly in
length, so we need dynamic sequence-assignment; e.g.,
one worker may finish 10 short comparisons before an-
other finishes one long one; and (2) The database is too
big to fit in core and must be played out gradually. Both
problems are solved easily using C-Linda. Each se-
quence in the database is dumped as a tuple into tuple
space; searcher processes repeatedly grab a tuple, exe-
cute the comparison and dump a tuple holding the re-
sult back into tuple space, whence the master retrieves
it. The program is simple to write and to understand
because of the underlying physical model: a tuple is a
quasi-physical thing that can be created, added to a
pile, removed from a pile (Figure 5). Recursion equa-

454 Communications of the ACM April 1989 Volume 32 Number 4

Articles

master0

{
while (get(new_saquanca)) {

out (“task”, new-sequence) ;
if (++tasks > HIGH-WATERMARK)

do {
in(“result”, ?result);
update best-results list;

} while (--tasks > LOWYATERIARK)

>
while (tasks--) {

in(Vesult”, ?result);
update best-results list;

1
report results;

I

searcher()

{
do {

in(“task” , ?seq);
compare “seq” to target sequence, yielding Yralue”;
out(“result”, value);

} while (search is not complete)

I

FIGURE 4. Parallel Sequence Database Search in C-Linda

tions are in no way helpful in understanding this sim-
ple physical process, and functional languages are inap-
propriate for this kind of programming.’

In Figure 5, a tuple space visualization tool, built by
Paul Bercovitz of our group, displays a series of win-
dows onto tuple space, one for each “tuple class” in the
program. (The tuples within a given class have the
same type signature and have been determined by the
link-time tuple analyzer to behave-roughly speak-
ing-in the same way.) Each tuple within a class at any
given time is represented by a sphere in the appropriate
window; users can display the contents of a tuple by
mousing on its sphere. The figure shows four snapshots
of an executing DNA database-searcher that is similar
to the program described in the text, executing with a
master and five worker processes. The first snaphot (a),
soon after start-up, shows the single tuple holding the
target sequence (in the upper left-hand window), and
the first of many tuples that will hold sequences from
the database (in the wide window second from the top).
In snapshot (b), about 100 sequence tuples are awaiting
available workers, and about 20 result tuples are wait-
ing for the master, who has been busy adding sequence
tuples to tuple space. In snaphot (c), there are only a
few sequence tuples remaining to be searched; in the
last snaphot (d), the job is done. No sequence or result

’ Recent work has lead to a refined approach and further performance im-
provements in the Linda DNA-search program. without invalidating the
points made here: the new version is discussed in [5].

tuples remain. The worker processes were live tuples,
created using eval; having completed, each worker
has become an ordinary data tuple, and the five tuples
corresponding to the five finished workers appear in
the upper right-hand window. This version of the pro-
gram uses a stream of sequence tuples rather than an
unordered bag; the tuple that appears in the upper mid-
dle window is used to maintain a pointer to the current
head-of-stream.

The tuple space visualizer is a promising debugging
tool, but it points to a more basic issue as well. A useful
programming language makes it easy for the program-
mer to embody a mental model directly in working
code. A program that embodies a mental model simply
and directly is easier to write initially, and easier to
understand once it exists as a working application. The
parallel database search described in the text is one
example of a program that is at least as easy (we would
argue far easier) to imagine in terms of objects to be
manipulated than in terms of equations to be solved. In
Linda, a mental model based on objects is easily em-
bodied in working code. Merely by displaying the state
of tuple space as it evolves, the tuple space visualizer
gives the user a strong “feel” for an application-how it
works and how it is progressing. (In this case, for exam-
ple, how many sequences have been searched so far,
how many results have been tabulated, whether the
master is dumping tuples into tuple space or waiting for
tuples to be cleared out, and so on.) In short, if the
definition of a “higher level language” is a language
that is relatively closer to the programmer’s way of
thinking, it is impossible for us to accept the claim that
functional languages are necessarily higher-level than
C-Linda.

Granted, this program is a single data point, but con-
sider some others. Neither of the examples discussed in
the previous section can be solved in a pure functional
language. The solutions in both cases depend on nonde-
terminism (concretely, whichever process shows up
first gets access to some resource), and nondeterminism
is impossible in functional languages. A class of pro-
grams we’re particularly interested in now can be de-
scribed as process lattices [16], i.e., heuristic programs
structured as hierarchies of concurrent expert proc-
esses, with more general or abstract decision proce-
dures appearing at higher levels. This is a promising
structure for use in a problem area that (we believe)
will become increasingly important: the construction of
real time expert monitors. Nodes on the bottom rank of
the process lattice are wired directly to external data
sources, and incoming data values filter upward
through the lattice. This structure is conceived in terms
of communicating processes; recursion equations are
the wrong model (or at the very least, a strongly coun-
ter-intuitive one). Whiteside and Leichter have shown
that Linda programs can be made to perform well on a
collection of heterogeneous machines on a local area
network [34]; if we break an application into modules,
and run a compute-intensive back-end on a collection

April 1989 Volume 32 Number 4 Communications of the ACM 455

Articles

FIGURE 5. Tuples as Quasi-Physical Objects

456 Communications of th: ACM April 1989 Volume 32 Number 4

Articles

of parallel machines and the display-manager front-end
on a workstation, the programmer needs a way to
specify inter-module (as well as intra-module) com-
munication, and Linda gives him a way; here, once
again, recursion equations would be out of place.

CONCLUSIONS
We set out to compare Linda to three leading models of
parallel programming. We can now summarize the ar-
guments and draw some conclusions.

We have no intention of closing the book on moni-
tors, and we’re sure that monitor research and pro-
gramming will continue for quite awhile. On a different
note, we don’t doubt that object oriented programming
is a powerful and attractive model, and we look for-
ward to investigating a combination of the object model
with Linda. Concurrent object oriented programming on
the other hand is a phrase with a nice ring, but (in and
of itself) little or no meaning. It strikes us as more of a
marketing than a technical term, used mainly to
freshen up respectable but slightly shelf-worn ideas like
message passing and monitors. Discussion of parallelism
models would be clearer and better-defined, we think,
if this term disappeared.

Logic programming is obviously a powerful and at-
tractive computing model as well. Notwithstanding, we
continue to believe that the tools in concurrent logic
languages are too policy-laden and inflexible to serve as
a good basis for most parallel programs. Applications
certainly do exist that look beautiful in concurrent
logic languages, and we tend to accept the claim that
virtually any kind of parallel program structure can be
squeezed into this box somehow or other (although the
spectacle may not be pretty). But we believe that, on
balance, Linda is a more practical and a more elegant
alternative.

Pure functional languages are a trickier issue. One
point is immediate: these languages can’t be the whole
story, because in too many cases they fail to provide
the expressivity we need. Many (if not most) of the
programs we deal with are conceived in terms of ob-
jects to be manipulated, not equations to be solved. But
restricting our attention to those problems that do have
elegant functional solutions, like the DNA sequence-to-
sequence comparison-shouldn’t we be tempted to re-
code these programs in functional languages, flip the
autopilot switch, lean back, have a beer, and leave the
parallelizing to them? In fairness we might be tempted,
under the right circumstances. We’d stand to gain re-
markably little in terms of conciseness or elegance over
C-Linda, and nothing in terms of machine independ-
ence, so far as asynchronous machines are concerned.
(Again, Linda doesn’t help in programming SIMD ma-
chines. We think it will be an excellent language for
massively-parallel, fine-grained asynchronous ma-
chines, though.) It seems to us that, speaking in terms
of the machines we deal with, the only good reason to
“flip autopilot” is performance. If these systems can be
shown to perform better than Linda and a competent

programmer, we’ll use them (or at any rate, we will
gratefully appropriate their compiler technology for our
Linda compilers). Constructing a high-performance au-
topilot will be difficult; for our part, we’d find the
search more compelling if we didn’t have good, demon-
strated ways to deal with these programming problems
right now. But any difficult research problem stands to
yield unanticipated benefits if solved successfully, and
we look forward to following these efforts.

On a positive note, Linda is prepared to absorb com-
putational wisdom from any source that can provide
some. Our own preference is to program in C or Lisp,
and our numerical analyst colleagues are reasonably
happy with Fortran; as we’ve emphasized, though,
Linda can co-exist with almost any model of comput-
ing. We’d like to see the Linda model flourishing in a
wide variety of machine environments and language
models. We’re actively working toward this end, and
believe we’re making progress.

We don’t want to leave the impression, though, that
Linda is a colorless, neutral system. The Linda model-
a swarm of active tuples surrounded by a cloud of pas-
sive ones-is suggestive in itself. One program now in
design is a real-time “tracking simulation” of a subset of
patients in a hospital; patients (passive tuples) are mon-
itored and updated by a succession of manager and
scheduler processes (active tuples). The goal is to moni-
tor anomalies and rationalize the scheduling of tests
and treatments by maintaining a software microcosm of
the external world. Another program involves a biolog-
ically-accurate simulation of neuron networks; each
neuron is represented by a passive tuple; there is a
collection of identical simulation engines (active tu-
ples), and each engine repeatedly grabs a neuron, exe-
cutes one step of the simulation and blows it out the
back into a recirculating pipeline. The more simulation
engines, the faster the program runs.

The Linda operating system environment we’re now
building accommodates multiple first class tuple spaces
[26]. A tuple space is created with certain attributes-
for example, some tuple spaces are persistent, and per-
sistent tuple spaces constitute the file system. Whole
tuple spaces can be treated as single objects: they can
be suspended, archived, reactivated or snapshotted en
masse. As always, a tuple space may contain active as
well as passive tuples, which suggests that an ordinary,
passive file may also contain active processes if we
choose to toss some in. Flocks of passive tuples might
be stored alongside active shepherd processes-a file of
mail messages, for example, might contain a sorting-
and-scanning daemon to add new messages to the file
and keep things in order. We might approach any of
these three possibilities in contexts other than Linda,
but Linda suggested them. Progress on these (and other
less esoteric) projects continues.

Acknowledgments. This work is supported by Na-
tional Science Foundation SBIR grant ISI-8704025, by
National Science Foundation CCR-8601920 and CCR-

April 2989 Volume 32 Number 4 Communications of the ACM 457

Articles

8657615, and by ONR N00014-86-K-0310. The authors
thank the Yale Linda group, and particularly its senior
members, Jerrold I,eichter, Robert Bjornson, and
Venkatesh Krishn;.swamy, for their vital contributions
to this research.

REFERENCES
1. Agerwal, T., and Arlind, Data flow systems. Compufer 15, 2 (Feb.

1982), 10-14.
2. Agha, G. ACTORS: A model of concurrent computation in distributed

systems. The MIT Prass 1986.
3. Ahuja, S., et al. Mata:hing language and hardware for parallel com-

putation in the Linda machine. IEEE Trans. Computers 37, 8 (Aug.
19881, 921-929.

4. Ahuja, S., Carriero, :Q., and Gelernter, D. Linda and friends. IEEE
Computer 19, 8 (Aug. 1986), 26-34.

5. Ashcraft, C.. Carrier,. N., and Gelernter, D. Hybrid DB search and
sparse LDLT factoriznion using Linda. Yale University Department
of Computer Science Research Report (Jan. 1989).

6. Brinch Hansen, P. T:ie programming language Concurrent Pascal.
IEEE Trans. Sojfw. Eng., SE-l, 2 (1975), pp. 99-206.

7. Borrman. L., and He ,dieckerhoff, M. Linda integriert in Modula-Z-
ein Sparchkonzept fair portable parallel Software. In Proceedings IO.
GI/‘lTG-Fachfagung lwchifekfur und Befrieb van Rechensysfemen.
(Paderborn, March 1988).

8. Black, A., et al. Object structure in the Emerald system. In Proceed-
ings of fhe ACM Conf !rence on Objecf-Oriented Programming Systems,
Languages and Applicnfions (Portland, Ore., Sept. 29-Oct. 2, 19861, pp.
78-66.

9. Birrel. A.D., and Nel.;on, B.J. Implementing remote procedure calls.
ACM Trans. Compuf. Sysf. 2, 1 (Feb. 1984) pp. 39-59.

10. Carriero, N.. and Gelernter. D. The S/Net’s Linda kernel. ACM

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

Trans. Compuf. Sysf. 41, 2 (May 1986) pp. 110-129.
Carriero, N., and Gelernter, D. Applications experience with Linda.
In Proceedings of the .KM Symposium on Parallel Programming, July
1988.
Carriero, N., and Gelernter, D. How to write parallel programs: A
guide to the perplexc,d. Yale University Department of Computer
Science Research Report 628 (Nov. 1988).
Carriero, N., Gelermtr, I)., and Laichter, J. Distributed data struc-
tures in Linda. In Prc ceedings of the ACM Symposium on Principles of

Programming Languages (St. Petersburg, Fla., Jan. 13-15, 1986).
Chen, M. C. A parall 31 language and its compilation to multiproces-
sor architectures or I’LSI. In Proceedings of the ACM Symposium Prin-
ciples of Programming Languages (St. Petersburg, Fla., Jan. 13-15,
1986).
Chen, M. C.. et al. T1.e influence of machine architecture on pro-
gramming style and lierformance. In Proceedings of the Third Confer-
ence on Hypercube Co wurenf Computers and Applications (Pasadena,
Calif., Jan. 19-20. 19t 8).
Factor, M., and G&Inter, D. The parallel process lattice as an orga-
nizing scheme for reilltime knowledge daemons. Yale University
Department of Computer Science Technical Memo (March 1988).
Gelemter, D. A note xi systems programming in Concurrent Prolog.
In Proceedings of the International Symposium on Logic Programming
(Atlantic City, N.J., Fsb. 6-9, 1984).
Gelsmter, D. Genera ive communication in Linda. ACM Trans. Prog.
Lang. Sysf. 7, 1 (1985) pp. 80-112.
Galernter, D. Getting the job done. Byte 13, 12 (Nov. 1988), 301-310.
Gelernter, D. Elastic I:omputing envelopes and their operators (Linda
3). Yale University Department of Computer Science Research Re-
port (Jan. 1989).
Hoare, C.A.R. Monitors: An operating system structuring concept.
Commun. ACM 17,lO (Oct. 1974). pp. 549-557.
Hewitt, C. Viewing ctmtrol structures as patterns on passing mes-
sages. I. Art. Infell. 8, 3 (June 1977), 323.
Ingalls, D. H. H. The :Imalltalk-76 programming system design and
implementation. In Ppoceedings of fhe 1978 ACM Symposium Principles
of Programming Languqes. pp. 9-15.

24.]ul, E., et al. Fine-grained mobility in the Emerald system. ACM
‘Trans. Camp. Sys. 6, 1 (Feb. 1988) pp. 109-133.

25. Krishnaswamy, V., et al. The architecture of a Linda coprocessor. In
.oroceedings of fhe ACM Conference on Computer Architecture (1988).

26. Lampson, B.W.. and Redell. D.D. Experience with prozesses and
monitors in Mesa. Commun. ACM 23, 2 (Feb. 1980) pp. 105-117.

27. L&r, W. PIX. the latest NEWS. In Proceedings of the COMPCON
Spring ‘89 (San Francisco, Feb. 1989). IEEE.

28. Matsuoka, S., and Kawai, S. Using tuple space communication in
distributed object-oriented languages. In Proceedings of OOPSLA ‘88
(San Diego, Sept. 25-30, 1988), pp. 274-264.

29. May, M.D. Occam. ACM SIGPLAN Notices 18, 4 (1983). pp. 69-79.
30. Ringwood. G.A. Parlog and the dining logicians. Corwmun. ACM 31,

:I (Jan. 19881, pp. 10-25.
31. Shapiro, E. ed. Concurrent Prolog collected papers. Vols 1 and 2. The

MIT Press, 1987.
32. Turner, D.A. Recursion equations as a programming language. In

Functional Programming and ifs Applications, J. Darlington. P. Hender-
::on and D.A. Turner, eds., Cambridge University Press (1982) pp.
:.-28.

33. Wirth, N. Modula: A language for modular multiprogramming.
Soffw. Pracf. and Exp. 7 (1977) pp. 3-35.

34. \Yhiteside. R.A., and Leichter, J.S. Using Linda for supercomputing
on a local area network. Yale University Department Iof Computer
Science Technical Memo (March 1988).

35. Young, M. et al., The duality of memory and communication in the
implementation of a multiprocessor operating system. In Proceedings
csf the Eleventh ACM Symposium on Operating Sysfems Principles (Nov.
1987). pp. 63-76.

CR Categories and Subject Descriptors: D.1.3 [Programming Tech-
niqules]: Concurrent Programming: D.3.2 [Programming L.anguages]:
Language Classifications-parallel languages; D.3.3: Language Constructs

General Terms: Languages
Additional Key Words and Phrases: Concurrent object-oriented pro-

gramming, monitors, concurrent logic programming, functional pro-
gramming, Linda, parallelism

ABOUT THE AUTHORS:

NICIHOLAS CARRIER0 is currently an associate research sci-
entist in the Department of Computer Science at Yale Univer-
sity iand a research scientist at Scientific Computing Associates
in New Haven, Connecticut. His research interests include
parallelism, compiler techniques, and programming languages.
He is a co-author with David Celernter of a forthcoming book
on parallel programming. Author’s Present Address: Yale Uni-
versity, Department of Computer Science, New Haven, CT
06520-2158. carriero@cs.yale.edu.

DAVID GELERNTER is an associate professor of computer sci-
ence at Yale. His research interests include parallelism, pro-
gramming languages, and heuristic systems. He is a co-author
with Nicholas Carrier0 of a forthcoming book on parallel pro-
gramming, and with Suresh Jagganathan on a forthcoming
book on programming language design. Author’s Present Ad-
dress: Yale University, Department of Computer Sc:ience, New
Haven, CT 06520-2158. gelernter@cs.yale.edu.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

450 Communications of the .4ClM April 1989 Volume 3:’ Number 4

