
Legion
The next logical step toward the world-wide virtual computer

Andrew S. Grimshaw, Wm. A. Wulf

and the whole Legion team

1 The Opportunity

 The dramatic increase in ubiquitously available network bandwidth will qualitatively change how the
world computes, communicates, and collaborates. The rapid expansion of the world-wide web, and the
changes that it has wrought are just the beginning. As high bandwidth connections become available they
“shrink” distance” and change our modes of computation, storage and interaction. Inevitably, users will
operate in a wide-area environment that transparently consists of workstations, personal computers, graph-
ics rendering engines, supercomputers, and non-traditional computing and rendering devices: TVs, toast-
ers, etc. The relative physical location of the users and their resources will become increasingly irrelevant.

The realization of such an environment, sometimes called a “metasystem”, is not without problems.
Today’s experimental high speed networks such the vBNS and the I-way preview both the promise and pit-
falls. There are many difficulties: few approaches scale to millions of machines, the tools for writing
applications are primitive, faults abound and mechanisms to handle them are not available, issues of secu-
rity are treated in a patchwork manner, and site autonomy — controlling ones own resources while still
playing in the global infrastructure —þis not addressed.

As usual, the fundamental difficulty is software — specifically, we believe the problem is an inade-
quate conceptual model. In the face of the onrush of hardware, the community has tried to stretch an exist-
ing paradigm, interacting autonomous hosts, into a regime for which it was not designed. The result is a
collection of partial solutions — some quite good in isolation, but lacking coherence and scalability — that
make the development of even a single wide-area application demanding at best.

Thus, the challenge to the computer science community is to provide a solid, integrated, conceptual
foundation on which to build applications that unleash the potential of so many diverse resources. The
foundation must at least hide the underlying physical infrastructure from users and from the vast majority
of programmers, support access, location, and fault transparency, enable inter-operability of components,
support construction of larger integrated components using existing components, provide a secure environ-
ment for both resource owners and users, and it must scale to millions of autonomous hosts.

The technology to meet this challenge largely exists: (1) parallel compilers that support execution on
distributed memory machines, (2) advances in distributed systems software that manage complex distrib-
uted environments, (3) the widespread acceptance of the object-oriented paradigm because of its encapsu-
lation and reuse properties, and (4) advances in cryptography and cryptographic protocols.

Legion is a metasystems software project at the University of Virginia1. Begun in the Fall of 1993, our
goal is a highly usable, efficient and scalable system based on solid principles. We have been guided by
our own work in object-oriented parallel processing, distributed computing, and security, as well as by
decades of research in distributed computing systems. When complete, Legion will provide a single,
coherent virtual machine that addresses each of the issues raised earlier: scalability, programming ease,

1. We can provide only an introduction to Legion in this short paper. For more information, including all referenced
technical reports, see the Legion home page at http://www.cs.virginia.edu/~legion/.

Copyright © 1996 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of
this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept,
ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

fault tolerance, security, site autonomy, etc. In short, we believe Legion is a conceptual base for the sort of
metsystem we seek.

Our vision of Legion is of a system consisting of millions of hosts and billions of objects co-existing in
a loose confederation tied together with high-speed links. The user will have the illusion of a very powerful
computer on her desk. She will sit at her terminal and manipulate objects. We use terminal in its most lib-
eral sense. Terminal could mean anything, a workstation, an immersive environment such as a head-
mounted display or CAVETM, or a portable Personal Digital Assistant. The objects she manipulates will
represent data resources such as digital libraries or video streams, applications such as teleconferencing or
physical simulations, and physical devices such as cameras, telescopes, or linear accelerators. Naturally the
objects being manipulated may be shared with other users – allowing the construction of shared virtual
workspaces.

It is Legion’s responsibility to support the abstraction presented to the user, to transparently schedule
application components on processors, manage data migration, caching, transfer, and coercion, detect and
manage faults, and ensure that the users data and physical resources are adequately protected.

2 Project Objectives

To realize our vision is a daunting task. We have distilled ten design objectives that are central to the
success of the project: site autonomy; an extensible core; scalability; an easy-to-use, seamless computa-
tional environment; high performance via parallelism; a single persistent name space; security for both
users and resource providers; management and exploitation of resource heterogeneity; multi-language sup-
port and inter-operability; and fault tolerance.
• Site autonomy: Legion will not be a monolithic system. It will be composed of resources owned and

controlled by an array of organizations. These organizations, quite properly, will insist on having con-
trol over their own resources, e.g., specifying how much resource can be used, when it can be used, and
who can and cannot use the resource.

• Extensible core: We cannot know the future or all of the many and varied needs of users. Therefore,
mechanism and policy must be realized via extensible, replaceable, components. This will permit
Legion to evolve over time and will allow users to construct their own mechanisms and policies to meet
specific needs.

• Scalable architecture: Because Legion will consist of millions of hosts, it must be a scalable architec-
ture; there must be no centralized structures — the system must be totally distributed.

• Easy-to-use, seamless computational environment: Legion must mask the complexity of the hardware
environment and of communication and synchronization of parallel processing — for example, achene
boundaries should be invisible to users. As much as possible, compilers, acting in concert with run-time
facilities, must manage the environment for the user.

• High performance via parallelism: Legion must support easy-to-use parallel processing with large
degrees of parallelism. This includes task and data parallelism and their arbitrary combinations.

• Single, persistent name space: One of the most significant obstacles to wide area parallel processing is
the lack of a single name space for file and data access. The existing multitude of disjoint name spaces
makes writing applications that span sites extremely difficult.

• Security for users and resource owners: Because we cannot replace existing host operating systems, we
cannot significantly strengthen existing operating system protection and security mechanisms. How-
ever, we must ensure that existing mechanisms are not weakened by Legion. Further, we must provide
mechanism for users to manage their own security needs; Legion should not define the security policy
or require a “trusted” Legion.

• Management and exploitation of resource heterogeneity: Clearly, Legion must support inter-operability
between heterogeneous hardware and software components. In addition, some architectures are better
than others at executing particular applications, e.g., vectorizable codes. These affinities, and the costs
of exploiting them, must be factored into scheduling decisions and policies.

• Multiple language support and inter-operability: Legion applications will be written in a variety of lan-
guages. It must be possible to integrate heterogeneous source language application components in much
the same manner that heterogeneous architectures are integrated. Inter-operability also means that we
must be able to support legacy codes.

• Fault-tolerance: In a system as large as Legion, it is certain that at any given instant, several hosts,
communication links, and disks will have failed. Thus, dealing with failure and dynamic re-configura-
tion is a necessity — both for Legion itself, and for applications.

In addition to these goals, several constraints restrict our design—for example:
• We cannot replace host operating systems: Organizations will not permit their machines to be used if

their operating systems must be replaced. Operating system replacement would require them to rewrite
many of their applications, retrain many of their users, and possibly make them incompatible with other
systems in their organization. Our experience with Mentat [ref] indicates that it is sufficient to layer a
system on top of an existing host operating system.

• We cannot legislate changes to the interconnection network: We must initially assume that the network
resources, and the protocols in use, are a given. Much as we must accommodate operating system heter-
ogeneity, we must live with the available network resources. However, we can layer better protocols
over existing ones, and we can state that performance for a particular application on a particular net-
work will be poor unless the protocol is changed.

• We cannot require that Legion run as “root” (or the equivalent). Indeed, quite the contrary — to pro-
tect themselves, most Legion users will want it to run with the least possible privileges.

2.1 Legion’s Object Foundation
The common framework that enables a coherent solution to these problems is object-orientation. In

Legion all components of interest to the system are objects, and all objects are instances of defined classes.
Thus users, data, applications and even class definitions are objects. Use of an object-oriented foundation,

including the paradigm’s encapsulation and inheritance properties, will make accessible a variety of the
benefits often associated with the paradigm, including, software reuse, fault containment, and reduction in
complexity. The need for the paradigm is particularly acute in a system as large and complex as Legion.

Objects, written in either an object-oriented language or other languages such as HPF Fortran, will
encapsulate their implementation, data structures, and parallelism, and will interact with other objects via
well-defined interfaces. In addition they may also have associated inherited timing, fault, persistence, pri-
ority, and protection characteristics. Naturally these may be overloaded to provide different functionality
on a class by class basis. Similarly, a class may have multiple implementations with the same interface.

While we are committed to the object-oriented paradigm we recognize that Legion will need to support
applications written in a variety of languages in order to support existing legacy codes, permit organiza-
tions to use familiar languages (C, ADA, Fortran), and support a variety of parallel processing languages
and tools. We intend to provide multilanguage support, and interoperability between user objects written in
different languages in three ways, by generating object “wrappers” for codes written in languages such as
Fortran, ADA, and C; by exporting the Legion run-time system interface and retargeting existing compil-
ers and tools; and by a combination of the two.

2.2 System philosophy
Complementing our use of the object-oriented paradigm is one of our driving philosophical

themes—we cannot design a system that will satisfy every user’s needs. We must design Legion to allow
users and class implementors the greatest flexibility in the semantics of their applications; We must, there-
fore, resist the temptation to provide “the solution” to a wide range of system functions. Users should be
able, whenever possible, to select both the kind and the level of functionality, and make their own trade-
offs between these and cost.

Neither the “kind” nor the “level” of functionality are linearly ordered, but a simplistic model is that of
a multi-dimensional space. The needs of users will dictate where they need to be and/or can afford to be in
this space; we, the designers of the supporting conceptual system have no way of knowing what those
needs are, or what they will evolve to be in the future. Indeed, if we were to dictate a system-wide “solu-
tion” to almost any of issues raised in our list of objectives we would preclude large classes of potential
users and uses.

Consider security with respect to both kind and level of functionality. Some users are mostly concerned
with privacy, while others are more concerned with the integrity of their data — both banks and hospitals
are in the later category for example. Some users are content with password authentication, while others
might feel the need for stronger user identification — signature analysis, fingerprint verification, or what-
ever. Both of these are examples of differences in the kind of security functionality. The size of crypto-
graphic key, on the other hand, is an issue of the degree, or level, of security. Without changing the basic
nature of the security provided, users can get a greater degree of security by paying the higher cost of using
a longer key or a stronger algorithm.

In the Legion approach, rather than providing a fixed security mechanism, with the result that no one is
completely satisfied, users may choose their own trade-offs by implementing their own policies or by

kind of functionality

co
st

lev
el

of
 se

rv
ice

using existing policies via inheritance. Some users may require a policy that requires every method invoca-
tion to have all of its parameters encrypted, that the caller be separately authenticated, and that the user on
whose behalf the call is being made be fully authenticated as well. Such a policy will be expensive (CPU,
bandwidth, time). Alternatively, an application that requires low overhead cannot afford such a policy and
should not be forced to use it. Such an application could instead choose a light-weight policy that simply
checks if the caller is its parent (creator) without any authentication or encryption, or perhaps does not
check anything at all.

Next consider consistency semantics in a distributed file system. To achieve good performance it is
often desirable to make copies of all or portions of a file. If updates to the file are permitted the different
copies may begin to diverge. There are many ways to attack this problem, don’t replicate writable files, use
a cache invalidate protocol, use lazy updates to a master copy, and so on. Each has an associated cost and
semantics. Some applications don’t require all copies to be the same, others require a strict “reads deliver
the last value written” semantics, others know that the file is read only so that consistency protocols are a
waste of time, while others may need different semantics for the file in different regions of the application.
Independent of the file semantics, some users may need automatic backup and archiving frequently, while
others may not. The point is that they system should not make such decisions for users, they should select
the kind and level of service they require.

The philosophy has been extended into the system itself. The Legion object model specifies the compo-
sition and functionality of Legion’s core objects—those objects that cooperate to create, locate, manage,
and remove objects from the Legion system. Legion specifies the functionality, not the implementation, of
the system’s core objects. Therefore, the core will consist of extensible, replaceable components. The
Legion project will provide implementations of the objects that comprise the core, but users will not be
obligated to use them. Instead, Legion users will be encouraged to select or construct objects that imple-
ment mechanisms and policies that meet the users’ own specific requirements.

The object model provides a natural way to achieve this kind of flexibility. Files, for example, are not
part of Legion itself. Anyone may define a new class whose general semantics we would recognize as
those of a file, but whose specifics match the particular semantics match that user’s needs. We (the Legion
team) need to provide an initial collection of file classes that reflect the most common needs — but we do
not have to anticipate all possible future requirements.

3 Experiences - The CWVC and the I-way

In the summer of 1995 we released our first prototype Legion implementation, the Campus Wide Vir-
tual Computer (CWVC). This first implementation is based on an earlier object-oriented parallel process-
ing system, Mentat [5]. Mentat was originally designed to operate in homogenous, dedicated environments
but has been extended to operate in an environment with heterogeneous hosts, disjoint file systems, local
resource autonomy, and host failure. We could have continued to stretch Mentat but felt that one can only
transform a system so far before it begins to show signs of the stress; it is often better to design from the
ground up so that the resulting system has a clean coherent architecture, rather than a patchwork of modifi-
cations based on a solution for a different problem.

The campus-wide virtual computer is a direct extension of Mentat onto a larger scale, and is a prototype
for the nationwide system and reflects the fact that the university is a microcosm of the world. The compu-
tational resources at the University are operated by many different departments, there is no shared name
space, and sharing of resources is currently rare.

Even though the CWVC is much smaller, and the components much closer together, than in the envi-
sioned nationwide Legion, it still presents many of the same challenges. The processors are heterogeneous,
the interconnection network is irregular, with orders of magnitude differences in bandwidth and latency,
and the machines are currently in use for on-site applications that must not be negatively impacted. Fur-
ther, each department operates essentially as an island of service, with its own NFS mount structure, and
trusting only machines in the island.

The CWVC is both a prototype and a demonstration project. The objectives are to:
• demonstrate the usefulness of network-based, heterogeneous, parallel processing to university compu-

tational science problems,
• provide a shared high-performance resource for university researchers,
• provide a given level of service (as measured by turn-around time) at reduced cost,
• act as a testbed for the nationwide Legion.

The CWVC consists of over one hundred workstations and an IBM SP-2 in six buildings using two
completely disjoint underlying file systems. We have developed a suite of tools to address common prob-

lems encountered (Table 1). In collaboration with domain scientists both at the University of Virginia and
elsewhere we have also developed a set of applications that exploit the environment (Table 2).

In addition to the local production environment we have also demonstrated the CWVC on wide-area
systems. During Supercomputing ‘95 in San Diego we ran the CWVC on the I-Way, an experimental net-
work connecting the NSF supercomputer centers, several of the DOE and NASA labs, and a number of
other sites. Many of the connections were at DS-3 (45 mb/sec) and OC-3 (155 mb/sec) rates. The CWVC
was installed at three sites using seven hosts of three different architectures. At NCSA (Urbana) we used
for SGI Power Challenges and the Convex Exemplar. At the CTC (Cornell) and ANL (Argone) we used
IBM SP-2’s.

Once the IP routing tables had been properly configured moving the CWVC to the wide-area environ-
ment was relatively simple. We copied the CWVC to the platforms, adjusted the tables to use IP names
that routed through the high-speed network, and tested the system. As expected,. files could be accessed in
a location transparent fashion, executables were transparently copied from one location to another as
needed, the scheduler worked, and the system automatically reconfigured on host failure. Utilities and

TABLE 1. Campus Wide Virtual Computer Toolset

Problem Tools available

Writing parallel application CWVC-aware PVM, parallel C++, Fortran wrappers

Multiple separate file systems Federated file system - transparent file access

Heterogeneous resources Automatic scheduling, binary selection and migration,
application specific scheduling tools

Multiple resource owners Owner control of resource consumption, detailed
resource consumption accounting

Debugging parallel programs is hard Post-mortem playback using off-the-shelf debuggers,
e.g., dbx.

Host/network failure Automatic system reconfiguration and limited applica-
tion fault-tolerance

TABLE 2. Sample of existing CWVC applications

Discipline Application

Biology DNA&protein sequence comparison

Computer Science Parallel databases & I/O, genetic algorithms

Electrical Engineering Automatic test pattern generation, VLSI routing,

Engineering Physics Trajectory and range of ions in matter

Physics 2D electromagnetic finite element mesh

tools such as the debugger also migrated easily. The real bonus though was that user applications required
no changes to run in the new environment.

For our demonstration excercised our utilities, and ran one of our applications, complib, on the I-way.
Complib compares two DNA or protein sequence databases using one of several selectable algorithms [6].
The first database was located at ANL, while the second was located at NCSA. The application transpar-
ently accessed the databases using the Legion file system while the underlying system schedulers placed
application computation objects throughout the three-site system. All communication, placement, synchro-
nization, and code and data migration was handled completely transparently by Legion.

Since Supercomputing we have repeated the demonstration several times, and are now in the process of
constructing a more permanent prototype. The new prototype will span NCSA and SDSC and will opper-
ate as a part of the DARPA funded Distributed Object Computation Testbed.

4 Related work

The vision of a seamless metacomputer such as Legion is not novel; worldwide computers have been
the vision of science fiction authors and distributed systems researchers for decades. However, to our
knowledge no other project has the same broad scope and ambitious goals of Legion. Fortunately, it is not
necessary to develop all of the required technology from scratch. A large body of relevant research in dis-
tributed systems, parallel computing, fault-tolerance, management of workstation farms, and pioneering
wide area parallel processing projects, provide a strong foundation on which to build.

Related efforts such as OSF/DCE [7] and CORBA [2] are rapidly becoming industry standards. Legion
and DCE share many of the same objectives, and draw upon the same heterogeneous distributed comput-
ing literature for inspiration. Consequently, both projects use many of the same techniques, e.g., an object-
based architecture and model, IDL’s to describe object behavior, and wrappers to support legacy code.
However, Legion and DCE differ in several fundamental ways. First, DCE does not target high-perfor-
mance computing; its underlying computation model is based on blocking RPC between objects. Further,
DCE does not support parallel computing; instead, the emphasis is on client-server based distributed com-
puting. Legion, on the other hand, is based upon a parallel computing model, and one of our primary objec-
tives is high performance via parallel computation. Another important difference is that Legion specifies
very little about the implementation. Users and resources owners are permitted—even encouraged—to
provide their own implementations of “system” services. Our core model is completely extensible and pro-
vides choice at every opportunity—from security to scheduling to fault-tolerance. Similarly, CORBA[2]
defines an object-oriented model for accessing distributed objects. CORBA includes an Interface Descrip-
tion Language, and a specification for the functionality of runtime systems that enable access to objects
(ORB’s). But like DCE, CORBA is based on a client-server model rather than a parallel computing model,
and less emphasis is placed on issues such as object persistence, placement, and migration.

Other projects share many of the same objectives but not the scope of Legion. Nexus[4] provides com-
munication and resource management facilities for parallel language compilers. Castle[3] is a set of related
projects that aims to support scientific applications, parallel languages and libraries, and low-level commu-
nications issues. The NOW[1] project provides a somewhat more unified strategy for managing networks
of workstations, but is intended to scale only to hundreds of machines instead of millions. Globe[9] is an
architecture for supporting wide area distributed systems, but does not yet seem to address important issues
such as security and site autonomy.

In its intended application for distributed collaboration and information systems, Legion might be com-
pared to the World Wide Web. In particular, the object-oriented, secure, platform independent remote exe-
cution model afforded by the Java language[8] has added more Legion-like capabilities to the Web. The
most significant differences between Java and Legion lie in Java’s lack of a remote method invocation
facility, lack of support for distributed memory parallelism, and its interpreted nature, which even in the
presence of “just-in-time” compilation leads to significantly lower performance than can be achieved using

compilation. Furthermore, the security and object placement models provided by Java are rigid and are a
poor fit for many applications.

5 Summary and the Future

Legion is an abitious middleware project that will provide a solid, integrated, conceptual foundation on
which to build applications. One could argue that Legion is perhaps too abititious, that there are just too
many different complex issues to addrerss. The number of different issues is certainly a risk. On the other
hand, eventually there will be Legion-like metasystem software; it is a necessary condition for a large scale
digital society. The real issue is whether it will come about by design, in an organized and coherent fash-
ion, or by pasting together different solutions. Legion’s strength is that its object model that was designed
from its very inception both for the intended environment and for extensibility We feel that these attributes
will permit Legion to readily adapt to an ever changing world.

Legion – as defined by by our objectives, is not yet a reality. While we have a prototype, the purpose of
the prototye is to demonstrate the feasibility of construcing a wide-area system and to permit application
and tool development to occur concurrently with system implementation. It is not designed to evolve
directly into a complete Legion implementation.

In March of 1996 we began our implementation of the core Legion object model. Unike the existing
prototype the new implementation incoporates mechanism for security, fault-tolerance, application
directed scheduling, autonomy, scalable binding, etc. This “full blown” implementation re-uses many
components of the prototype, e.g., the compiler, debuggers, and so on, but for the most part is being writen
from the ground up. We expect to have a useable, documented, system available for public use in mid
1997. The system, and sources, will be pubically available.

6 References

[1] T.E. Anderson, D.E. Culler, D.A. Patterson, and the NOW team, “A Case for NOW (Networks of Worksta-
tions),” to appear in IEEE MIcro.

[2] Ron Ben-Naten, CORBA: A Guide to the Common Object Request Broker Architecture, McGraw-Hill, 1995.

[3] The Castle Project, University of California, Berkeley, http://http.cs.berkeley.edu/projects/parallell/castle/cas-
tle.html.

[4] I. Foster, Carl Kesselman, Steven Tuecke, “Nexus: Runtime Support for Task-Parallel Programming Lan-
guages,” Argonne National Laboratories, http://www.mcs.anl.gov/nexus/paper/.

[5] A. S. Grimshaw, A. J. Ferrari, and E. A. West, “Mentat” Parallel Programming Using C++, Editor: Greg Wil-
son, MIT Press, 1996.

[6] A. S. Grimshaw, E. A. West, and W.R. Pearson, “No Pain and Gain! - Experiences with Mentat on Biological
Application,” Concurrency: Practice & Experience, pp. 309-328, Vol. 5, issue 4, June, 1993.

[7] H.W. Lockhart, Jr., OSF DCE Guide to Developing Distributed Applications, McGraw-Hill, Inc. New York
1994.

[8] Sun Microsystems, “The Java Language Specification,” Version 1.0 Beta,Oct. 30, 1995

[9] M. van Steen, P. Homburg, L. van Doorn, A.S. Tanenbaum, and W. de Jonge. “Towards Object-based Wide Area
Distributed Systems”. In L.-F. Carbrera and M. Theimer, (eds.), Proceedings International Workshop on Object
Orientation in Operating Systems, pp. 224-227, Lund, Sweden, August 1995.

