
The Free Haven Project:

Distributed Anonymous Storage Service

Roger Dingledine

MIT

arma@mit.edu

Michael J. Freedman

MIT

mfreed@mit.edu

David Molnar

Harvard University

dmolnar@fas.harvard.edu

December 17, 2000

Abstract

We present a design for a system of anonymous storage which resists the attempts of powerful

adversaries to �nd or destroy any stored data. We enumerate distinct notions of anonymity for each

party in the system, and suggest a way to classify anonymous systems based on the kinds of anonymity

provided. Our design ensures the availability of each document for a publisher-speci�ed lifetime. A

reputation system provides server accountability by limiting the damage caused from misbehaving

servers. We identify attacks and defenses against anonymous storage services, and close with a list

of problems which are currently unsolved.

1 Introduction

Anonymous publication and storage services allow individuals to speak freely without fear of persecution,
yet such systems remain poorly understood. Political dissidents must publish in order to reach enough
people for their criticisms of a regime to be e�ective, yet they and their readers require anonymity. Less
extreme examples involve cases in which a large and powerful private organization attempts to silence
its critics by attacking either the critics themselves or those who make the criticism publically available.
Additionally, the recent controversy over Napster and Gnutella has highlighted both a widespread demand
for anonymous publication services for non-political purposes, and the consequences of such services failing
to provide the anonymity expected.

Systems meeting these needs are just starting to be deployed, and the exact requirements and design
choices are not yet clear. Events in 1999 and 2000 have highlighted some shortcomings of already
deployed systems; the identi�cation and removal of Napster users who downloaded Metallica songs[30]
and the Gnutella Wall of Shame[12] are two examples. These shortcomings led to the development of
a new generation of anonymous publication services, such as Freenet[11], which focus speci�cally on
providing anonymity.

It is in this spirit that the Free Haven Project aims to design, implement, and deploy a functioning
distributed anonymous storage service. We distinguish storage from publication in that storage services
focus less on accessibility and more on persistence of data. In the process, we hope to clarify some of the
requirements for such systems and highlight design choices.

It is not enough simply to talk about \anonymous" storage and publication. In section 2, we enumerate
the many di�erent kinds of anonymity which cover di�erent aspects of the system, all important for the
realization of a truly anonymous system.

Free Haven meets these requirements with a design based on a community of servers called the servnet.
Each server, or servnet node, holds pieces of some documents. These pieces are called shares. In addition,

1



each servnet node has a persistent identi�cation or pseudonym which allows it to be identi�ed by other
servnet nodes or potential Free Haven users. Section 3 describes the design of the Free Haven system
and the operations that it supports, including inserting and retrieving documents.

We chose to use a network of pseudonymous servers in order to give each server a reputation. This
reputation allows servers to be `paid' without needing the robust digital cash scheme required for systems
such as Anderson's Eternity Service[2]. Servers form contracts to store given shares for a certain period
of time; successfully ful�lling the contract increases the server's reputation and consequently its ability
to store some of its own data on other servnet nodes. This gives an incentive for each server to behave
well as long as cheating servers can be identi�ed. We show a technique for identifying cheating servers
in section 3.7.

The overall idea is similar to the \give up space now, get space forever" scheme used in Intermemory[10],
but allows servers to lose reputation if they start behaving badly. In section 3.9 we discuss the reputation
system, which is the system that keeps track of trust in each server.

Some of the contracts between servers are formed when a user inserts data into the servnet. Most
of them, however, will be formed when two servers swap shares by trading. Trading allows the servnet
to be dynamic in the sense that servnet nodes can join and leave easily and without special treatment.
To join, a servnet node starts building up a reputation by storing shares for others. To leave, a server
trades away all of its shares for short-lived shares, and then waits for them to expire. The bene�ts and
mechanisms of trading are described in section 3.5.

Such a system has powerful adversaries which can launch a range of attacks. We describe some attacks
on the Free Haven design in section 4 and show how well the design does (or does not) resist each attack.
We then compare our design with other systems aimed at anonymous storage and publication using the
kinds of anonymity described in section 6, allowing us to distinguish systems which at �rst glance look
very similar. We conclude with a list of challenges for anonymous publication and storage systems, each
of which reects a limitation in the current Free Haven design.

2 Anonymity for Anonymous Storage

The word \anonymous" can mean many di�erent things. Some systems claim \anonymity" without
specifying a precise de�nition. While the anonymity requirements of communication channels have been
considered previously in depth [6, 19], we are not aware of a similar investigation into the requirements
for publication and storage systems.

Information is stored in units called documents. The author of a document is the entity which initially
created the document. The publisher of a document is the entity which places the document into the
system. Documents may have readers, which are entities who retrieve the document from the system. An
anonymous storage system may have servers, which are participants who provide special services required
to keep the system running, such as dedicated disk space or bandwidth.

We do not give formal anonymity de�nitions here. Instead, we attempt to lay the groundwork for
future de�nitions by enumerating di�erent aspects of anonymity relevant to anonymous storage. This
enumeration will allow us to compare Free Haven with related work.

In all of these notions of anonymity, there are at least three distinct subnotions based on what the
adversary is assumed to already know. A document may be picked �rst, and then the adversary wishes
to learn who authored, read, published, and so on. A user may be picked �rst, and the adversary wishes
to know which documents the user authored, read, published, and so on. Finally, an adversary may know
a document and a user, and then attempt to con�rm its suspicion that the two are linked.

Author Anonymity: A system is author anonymous if an adversary cannot link an author to a docu-
ment.

2



Publisher Anonymity: A system is publisher anonymous if it prevents an adversary from linking a
publisher to a document.

Reader Anonymity: To say that a system has reader anonymity means that a document cannot be
linked with its readers. Reader anonymity protects the privacy of a system's users.

Server Anonymity: Server anonymity means no server can be linked to a document. Here, the ad-
versary always picks the document �rst. That is, given a document's name or other identi�er, an
adversary is no closer to knowing which server or servers on the network currently possess this
document.

Document Anonymity: Document anonymity means that a server does not know which documents it
is storing. Document anonymity is crucial if mere possession of some �le is cause for action against
the server, because it provides protection to a server operator even after his or her machine has
been seized by an adversary. This notion is sometimes also known as `plausible deniability', but see
below under query anonymity.

Passive-server document anonymity means that if the server is allowed to look only at the data
that it is storing, it is unable to �gure out the contents of the document. This can be achieved via
some sort of secret sharing mechanism. That is, multiple servers split up either the document or
an encryption key that recreates the document (or both). An alternative approach is to encrypt
the document before publishing, using some key which is external to the server.

Active-server document anonymity refers to the situation in which the server is allowed to com-
municate and compare data with all other servers. Since an active server may act as a reader and
do document requests itself, active-server document anonymity seems di�cult to achieve without
some trusted party that can distinguish server requests from \ordinary" reader requests.

Query-Anonymity: Query anonymity means that the server cannot determine which document it is
serving when satisfying a reader's request. For an overview of private information retrieval (PIR),
see [31]. A weaker form of query anonymity is server deniability { the server knows the identity
of the requested document, but no third party can be sure of its identity. Query anonymity can
provide another aspect of `plausible deniability'. This concept is related to deniable encryption[7].

It seems that some of these notions of anonymity may imply each other. We leave this investigation
as future work.

2.1 Anonymity and Pseudonymity

So far, we have restricted ourselves to describing anonymity. We extend these notions to allow for the
use of pseudonyms : if two transactions in the system can be linked, then the attributes which allow them
to be linked make up a pseudonym. For example, in an author-pseudonymous system, the documents
digitally signed by \Publius" could all be veri�ed as \belonging to Publius" without anyone coming to
know who \Publius" is in `real life.'

Both anonymity and pseudonymity protect the privacy of the user's location and true name. Location
refers to the actual physical connection to the system. The term \true name" was introduced by Vinge[48]
and popularized by May[33] to refer to the legal identity of an individual. Knowing someone's true name
or location allows you to hurt him or her.

Many di�erent actions can be linked to the same pseudonym, while an anonymous system allows no
linking at all. This allows the pseudonym to acquire a reputation. Free Haven uses pseudonyms to give
each server a reputation; the reputation inuences how much data a server can store and provides an
incentive to act correctly.

3



2.2 Partial Anonymity

Often an adversary can gain some partial information about the users of a system, such as the fact that
they have high-bandwidth connections or all live in California. Preventing an adversary from obtaining
any such information may be impossible. Instead of asking \is the system anonymous?" the question
shifts to \is it anonymous enough?"

We might say that a system is partially anonymous if an adversary can only narrow down a search
for a user to one of a \set of suspects." If the set is large enough, it is impractical for an adversary to act
as if any single suspect were guilty. On the other hand, when the set of suspects is small, mere suspicion
may cause an adversary to take action against all of them.

An alternate approach to classifying levels of anonymity is presented by [41], where anonymity levels
for users range from \exposed" to \beyond suspicion". These levels are in terms of an idealized adversary's
reasonable belief that a user or set of users has performed some particular action.

Independently, Syverson and Stubblebine have developed a logic for talking about the adversary's
view of a set of suspects[46]. The logic gives a formal meaning to a \set of suspects" and the notion of
an adversary's belief.

2.3 Reasoning about Anonymity

Suppose an author signs his true name to a document before placing it into an anonymous publication
system. Is the system still anonymous? This situation raises a crucial question: where does the respon-
sibility of an anonymous publication system begin, and where does it end? What can such a system
reasonably be expected to protect? We can give an answer to these questions by explicitly specifying a
model for anonymous publication.

We model anonymous publication systems as a single entity (call it Ted) which coordinates commu-
nication between other entities in the network. In our model we have a set of senders fAliceig, and a set
of recipients fBobjg. When an Alice sends a message to a Bob, Ted receives the message and delivers it
to the appropriate Bob. The privacy characteristics of Ted as a communication channel de�ne the level
of anonymity that Ted provides.

These privacy characteristics include linkability; ability to reply, persistence of this ability, privacy of
this reply; content leaks; channel leaks; persistence of speech; and authorized readers. We emphasize that
Ted is not simply a \trusted third party" (despite the name), but provides a speci�c set of characteristics
and does not provide others. For a more complete look at privacy characteristics, look at the �rst author's
thesis [13].

In addition, we will need to complicate this notion with other characteristics, such as reliability of
delivery, cost of using a given path, and availability and fragility of the network.

Thus if we can convince ourselves that a given anonymous publishing design is in some sense `equiv-
alent' to a Ted with certain privacy characteristics, then we can more easily reason about the level of
protection provided by that design { by reasoning instead about Ted. In particular, we can ask the
question \what is the responsibility of the system" with respect to Ted.

More formally, for each message Mi which Alicei sends, there is some probability distribution Di

which describes the chance of each Bob being the recipient of the message. If we can replace Ted with a
decentralized system which provides an indistinguishable probability distribution for all messages, then
we have shown that the decentralized system is equivalent to thi Ted. This may give us an easier way
to di�erentiate between the level of anonymity provided by various projects, because comparing Teds is
easier and more intuitive than trying to reason about the e�ects of trading or caching issues directly.

This description requires signi�cant work before it can become a formal model. For instance, we need
to de�ne exactly what we mean by privacy characteristics and enumerate them all; we need to �gure out
what it means for a probability distribution to be equivalent in this context; and we need to determine
exactly how to describe a probability distribution over a complex system like Freenet or Mojo Nation.

4



3 The Free Haven Design

The overall system consists of the publication system, which is responsible for storing and serving docu-
ments, and the communications channel, which is responsible for providing con�dential and anonymous
communications between parties. This section focuses on the design of the publication system as a
back-end for the communications channel.

The agents in our publication system are the publisher, the server, and the reader. These agents
are layered over the communications channel; currently they communicate with one another via addresses
which are implemented as remailer reply blocks[34]. Remailer reply blocks are a collection of encrypted
routing instructions which serve as an address for a pseudonym on the Cypherpunks remailer network.

Publishers are agents that wish to store documents in the service; servers are computers which store
data for publishers; and readers are people who retrieve documents from the service.

Free Haven is based on a community of servers called the servnet. In this community, each server
hosts data from the other servers in exchange for the opportunity to store its own data in the network.
The servnet is dynamic: data moves from one server to another every so often, based on each server's
trust of the others. Servers transfer data by trading. That is, the only way to introduce a new �le into
the system is for a server to use (and thus provide) more space on its local system. This new �le will
migrate to other servers by the process of trading.

Each server has a public key and one (or more) reply blocks, which together can be used to provide
secure, authenticated, pseudonymous communication with that server. Every machine in the servnet has
a database which contains the public keys and reply blocks of the other servers on the network.

Documents are split into shares and stored on di�erent servers. Publishers assign an expiration date
to documents when they are published; servers make a promise to keep their shares of a given document
until its expiration date is reached. To encourage honest behavior, some servers check whether other
servers \drop" data early, and decrease their trust of such servers. This trust is monitored and updated
by use of a reputation system. Each server maintains a database containing its perceived reputation of
the other servers.

3.1 Publication

When an author (call her Alice) wishes to store a new document in Free Haven, she must �rst identify a
Free Haven server which is willing to store the document for her. Alice might do this by running a server
herself. Alternatively, some servers might have public interfaces or have publically available reply blocks
and be willing to publish data for others.

To introduce a �le F into the servnet, the publishing server �rst uses Rabin's information dispersal
algorithm (IDA) [40] to break the �le into shares f1; : : : ; fn where any k shares are su�cient to recreate F .
The server then generates a key pair (PKdoc; SKdoc), constructs and signs a data segment for each share
fi, and inserts those segments as new data into its local server space. Attributes in each share include a
timestamp, expiration information, the public key which was used to sign it (for integrity veri�cation),
information about share numbering, and the signature itself.

The robustness parameter k should be chosen based on some compromise between the importance
of the �le and the size and available space. A large value of k relative to n makes the �le more brittle,
because it will be unrecoverable after a few shares are lost. On the other hand, a smaller value of k
implies a larger share size, since more data is stored in each share.

We maintain a content-neutral policy towards documents in the Free Haven system. That is, each
server agrees to store data for the other servers without regard for the legal or moral issues for that data
in any given jurisdiction. For more discussion of the signi�cant moral and legal issues that anonymous
systems raise, we refer to the �rst author's thesis[13].

5



3.2 Retrieval

Documents in Free Haven are indexed by H(PKdoc), the hash of the public key from the keypair which
was used to sign the shares of the document. Readers must locate (or be running) a server that performs
the document request. The reader generates a key pair (PKclient; SKclient) for this transaction, as well
as a one-time remailer reply block. The server broadcasts a request H(PKdoc), along with the client's
public key, PKclient, and the reply block. This request goes to all the other servers that the initial server
knows about. These broadcasts can be queued and then sent out in bulk to conserve bandwidth.

Each server that receives the query checks to see if it has any shares with the requested hash of PKdoc.
If it does, it encrypts each share using the public key PKclient enclosed in the request, and then sends
the encrypted share through the remailer to the enclosed address. These shares will magically arrive out
of the ether at their destination; once enough shares arrive (k or more), the client recreates the �le and
is done.

3.3 Share Expiration

Each share includes an expiration date chosen at share creation time. This is an absolute (as opposed to
relative) timestamp indicating the time after which the hosting server may delete the share with no ill
consequences. Expiration dates should be chosen based on how long the publisher wants the data to last;
the publisher has to consider the �le size and likelihood of �nding a server willing to make the trade.

By allowing the publisher of the document to set its expiration time, Free Haven distinguishes itself
from related works such as Freenet and Mojo Nation that favor frequently requested documents. We
think this is the most useful approach to a persistent, anonymous data storage service. For example,
Yugoslav phone books are currently being collected \to document residency for the close to one million
people forced to evacuate Kosovo"[37]; those phone books might not have survived a popularity contest.
The Free Haven system is designed to provide privacy for its users. Rather than being a publication
system aimed at convenience like Freenet, it is designed to be a private low-pro�le storage system.

3.4 Document Revocation

Some publishing systems, notably Publius, allow for documents to be \unpublished" or revoked. Revo-
cation has some bene�ts. It would allow the implementation of a read-write �lesystem, and published
documents could be updated as newer versions became available.

Revocation could be implemented by allowing the author to come up with a random private value
x, and then publishing some hash H(x) inside each share. To revoke the document, the author could
broadcast his original value x to all servers as a signal to delete the document.

On the other hand, revocation allows new attacks on the system. Firstly, it complicates accountability.
Revocation requests may not reach all shares of a �le, due either to a poor communication channel or to
a malicious adversary who sends unpublishing requests only to some members of the servnet. Secondly,
authors might use the same hash for new shares, and thus \link" documents. Adversaries might do the
same to make it appear that the same author published two unrelated documents. Thirdly, the presence
of the hash in a share assigns \ownership" to a share that is not present otherwise. An author who
remembers his x has evidence that he was associated with that share, thus leaving open the possibility
that such evidence could be discovered and used against him later (that is, breaking forward author
anonymity).

One of the most serious arguments against revocation was raised by Ross Anderson [2]. If the capability
to revoke exists, an adversary has incentive to �nd who controls this capability, and threaten or torture
him until he revokes the document.

We could address this problem by making revocation optional: the share itself could make it clear
whether that share can be unpublished. If no unpublishing tag is present, there would be no reason

6



to track down the author. (This solution is used in Publius.) But this too is subject to attack: if an
adversary wishes to create a pretext to hunt down the publisher of a document, he can republish the
document with a revocation tag, and use that as \reasonable cause" to target the suspected publisher.

Because the ability to revoke shares may put the original publisher in increased physical danger, as
well as allow new attacks on the system, we chose to leave revocation out of the current design.

3.5 Trading

In the Free Haven design, servers periodically trade shares with each other. There are a number of reasons
why servers trade:

To provide a cover for publishing: If trades are common, there is no reason to assume that some-
body o�ering a trade is the publisher of a share. Publisher anonymity is enhanced.

To let servers join and leave: Trading allows servers to exit the servnet gracefully by trading for
short-lived shares and then waiting for them to expire. This support for a dynamic network is
crucial, since many of the participants in Free Haven will be well-behaved but transient relative to
the duration of the longer-lived shares.

To permit longer expiration dates: Long-lasting shares would be rare if trading them involved �nd-
ing a server that promised to be available for the next several years.

To accomodate ethical concerns of server operators: Frequent trading makes it easy and unsus-
picious for server operators to trade away a particular piece of data with which they do not wish to
be associated. If the Catholic Church distributes a list of discouraged documents, server operators
can use the hash of the public key in each share to determine if that document is in the list, then
trade away the share without compromising their reputation as a server or the availability of the
document. In a non-dynamic environment, the server would su�er a reputation hit if it chose not to
keep the document. While we do not currently o�er this functionality, trading allows this exibility
if we need it down the road. In particular, the idea of servers getting `ISP exemption' for documents
they hold currently seems very dubious.

To provide a moving target: Encouraging shares to move from server to server through the servnet
means that there is never any speci�c, static target to attack.

The frequency of trading should be a parameter set by the server operator. When a server Alice wants
to make a trade, she chooses another server Bob from her list of known servers (based on reputation),
and o�ers a share x and a request for size and/or duration of a return share. If Bob is interested, he
responds with a share y of his own.

Trades are considered \fair" based on the two-dimensional currency of size� duration. That is, the
bigger the size and the longer the document is to be held, the more expensive the trade becomes. The
price is adjusted based on the preferences of the servers involved in the trade.

The negotiation is �nalized by each server sending an acknowledgement of the trade (including a
receipt, as described in section 3.6) to the other. In addition, each server sends a receipt to both the
buddy of the share it is sending and the buddy of the share it is receiving; buddies and the accountability
they provide are described in section 3.7. Thus, the entire trading handshake takes four rounds: the �rst
two to exchange the shares themselves, and the next two to exchange receipts while at the same time
sending receipts to the buddies.

By providing the receipt on the third round of the trading handshake, Alice makes a commitment to
store the share y. Similarly, the receipt that Bob generates on the fourth round represents a commitment
to store the share x. Bob could cheat Alice by failing to continue the protocol after the third step: in
this case, Alice has committed to keeping the share from Bob, but Bob has not committed to anything.

7



At this point, Alice's only recourse is to broadcast a complaint against Bob and hope that the reputation
system causes others to recognize that Bob has misbehaved. The alternative is to use a fair exchange
protocol[35, 20], which is unreasonably communications-intensive without a trusted third party.

When Alice trades a share to a server Bob, Alice should keep a copy of the share around for a while,
just in case Bob proves untrustworthy. This will increase the amount of overhead in the system by a
factor of two or so (depending on duration), but provide greatly increased robustness. In this case, when
a query is done for a share, the system responding should include a ag for whether it believes itself to
be the \primary provider" of the data, or just happens to have a copy still lying around. The optimum
amount of time requires further study.

3.6 Receipts

A receipt contains a hash of the public keys for the source server and the destination server, information
about the share traded away, information about the share received, and a timestamp. For each share, it
includes a hash of that document's key, which share number it was, its expiration date, and its size.

This entire set of information about the transaction is signed by server Alice. If Bob (or any other
server) has to broadcast a complaint about the way Alice handled the transaction, furnishing this receipt
along with the complaint will provide some rudimentary level of \proof" that Bob is not fabricating his
complaint. Note that the expiration date of both shares is included within the receipt, and the signature
makes this value immutable. Thus, other servers observing a receipt can easily tell whether the receipt
is still \valid"|that is, they can check to see whether the share is still supposed to be kept on A. The
size of each share is also included, so other servers can make an informed decision about how inuential
this transaction should be on their perceived reputation of the two servers involved in the trade.

We really aren't treating the receipt as proof of a transaction, but rather as proof of half of a
transaction { an indication of a commitment to keep a given share safe. This is because the trading
protocol is not bulletproof: the fact that Alice has a receipt from Bob could mean that they performed
a transaction, or it could mean that they performed 3 out of the 4 steps of the transaction, and then
Alice cheated Bob and never gave him a receipt. Thus, the most a given server can do when it detects a
misbehaving server is broadcast a complaint and hope the reputation system handles it correctly.

3.7 Accountability

Malicious servers can accept document shares and then fail to store them. If enough shares are lost,
the document is unrecoverable. Malicious servers can continue their malicious behavior unless there are
mechanisms in place for identifying and excising them.

We propose a \buddy system" that creates an association between pairs of shares from a given
document. Each share is responsible for maintaining information about the location of the other share,
or buddy. When a share moves, it noti�es its buddy.1

Periodically, a server holding a given share should query for its buddy, to make sure its buddy is
still alive. If the server that is supposed to contain its buddy stops responding, the server with the
share making the query is responsible for reporting an anomaly. This server announces which server had
responsibility for the missing share when it disappeared. The results of this announcement are described
below under section 3.9.

We considered allowing abandoned shares to optionally spawn a new share if their buddy disappears,
but discarded this notion. Buddy spawning would make the service much more robust, since lost shares
can be regenerated. However, such spawning could cause an exponential population explosion of shares
for the wrong reasons. If two servers are out of touch for a little while but are not misbehaving or dead,

1More precisely, both the server it's moving from and the server it's moving to notify the buddy, as described in section
3.5.

8



both shares will end up spawning new copies of themselves. This is a strong argument for not letting
shares replicate.

When a share x moves to a new machine, there are two buddy noti�cations sent to its buddy x0. But
since the communications channel we have chosen currently has signi�cant latency, a noti�cation to x0

might arrive after x0 has already been traded to a new server. The old server is then responsible for
forwarding these buddy noti�cations to the new server which it believes currently holds x0. Since the old
server keeps a receipt as a record of the transaction, it can use this information to remember the new
location of x0. The receipt, and thus the forwarding address, is kept by the old server until the share's
expiration date has passed.

When a buddy noti�cation arrives at a server which has traded away the share, the forwarder is
checked and the noti�cation is forwarded as appropriate. This forwarding is not done in the case of
a document request, since this document request has presumably been broadcast to all servers in the
servnet.

We have attempted to distinguish between the design goals of robustness and accountability. The
system is quite robust because a document cannot be lost until a high percentage of its shares has been
lost. Accountability, in turn, is provided by the buddy checking and noti�cation system among shares,
which protects against malicious or otherwise ill-behaving servers. Designers can choose the desired levels
of robustness and accountability independently.

3.8 Communications Channel

The Free Haven design requires a means of anonymously passing information between agents. One
such means is the remailer network, including the Mixmaster remailers �rst designed by Lance Cottrell
[17]. Other examples of anonymous communication channels are Onion Routing[47] and Zero Knowledge
Systems' Freedom[18]. We refer to David Martin's thesis for a comprehensive overview of anonymous
channels in theory and practice[32].

The design and implementation of an anonymous communication channel is an ongoing research
topic [1, 6, 8, 9, 22, 24, 25, 28, 38, 41]. The �rst implementation of the Free Haven design will use the
Cypherpunk and Mixmaster remailers as its anonymous channel. For design details, see [16].

3.9 Reputation System

The reputation system in Free Haven is responsible for creating accountability. Accountability in a system
so committed to anonymity is a di�cult task. There are many opportunities to try to take advantage
of other servers, such as merely neglecting to send a receipt after a trade, or wrongly accusing another
server of losing a share. Some of the attacks are quite insidious and complex. Some history and issues to
consider when developing a reputation system can be found in much more detail in [14].

Other systems exist which use reputations to ensure correct or \better" operation. The most directly
relevant is the PGP Web of Trust model for public keys[39]. Other systems include the Advogato[29] and
Slashdot message moderation systems, AOL's Instant Messenger[3], and much of real world commerce
and law. In another vein, MANET[27] is a DARPA project to produce \a compromise-tolerant structure
for information gathering."

Careful trust management should enable each server to keep track of which servers it trusts. Given
the large number of shares into which documents are divided|and the relatively few shares required to
reconstitute a document|no document should be irretrievably lost unless a large number of the servers
prove evil.

Each server needs to keep two values that describe each other server it knows about: reputation and
credibility. Reputation signi�es a belief that the server in question will obey the Free Haven Protocol.
Credibility represents a belief that the utterances of that server are valuable information. For each of

9



these two values, each server also needs to maintain a con�dence rating. This serves to represent the
\sti�ness" of the reputation and credibility values.

Servers should broadcast referrals in several circumstances, such as when they log the honest com-
pletion of a trade, when they suspect that a buddy of a share they hold has been lost, and when the
reputation or credibility values for a server change substantially.

3.10 Introducers

Document request operations are done via broadcast. Each server wants to store its documents on a lot
of servers, and if it �nds a misbehaving server it wants to complain to as many as possible. But how do
Free Haven servers discover each other?

The reputation system provides an easy method of adding new servers and removing inactive ones.
Servers that have already established a good reputation act as \introducers." New servers can contact
these introducers via the anonymous communication channel; the introducers will then broadcast referrals
of this new server. This broadcast by itself does not imply an endorsement of the new server's honesty
or performance; it is simply an indication that the new server is interested in performing some trades to
increase its reputation. Likewise, a server may mark another as \dormant" given some threshold of unan-
swered requests. Dormant servers are not included in broadcasts or trade requests. If a dormant server
starts initiating requests again, we conclude it is not actually dormant and resume sending broadcasts
and o�ering trades to this server.

3.11 Implementation Status

The Free Haven system is still in its design stages. Although we have a basic proof-of-concept imple-
mentation, we still wish to �rm up our design, primarily in the areas of accountability and bandwidth
overhead. Before deploying any implementation, we want to convince ourselves that the Free Haven
system o�ers better anonymity than current systems. Still, the design is su�ciently simple and modular
to allow both a straightforward basic implementation and easy extensibility.

4 Attacks on Free Haven

Anonymous publishing and storage systems will have adversaries. The attacks and pressures that these
adversaries may employ might be technical, legal, political, or social in nature. The system's design and
the nature of anonymity it provides also a�ect the success of non-technical attacks.

We now consider possible attacks on the Free Haven system based on their respective targets: on the
availability of documents and servnet operation; on the accountability o�ered by the reputation system;
and on the various aspects of anonymity relevant to anonymous storage and publication, as described in
section 2. For a more in-depth consideration of attacks, we refer to [13].

This list of attacks is not complete. In particular, we do not have a systematic discussion of what
kinds of adversaries we expect. Such a discussion would begin with the most powerful adversaries possible,
asking questions like \what if the adversary controls all but one of the servers in the servnet?" and scaling
back from there. In analyzing systems like Free Haven, it is not enough to look at the everyday, plausible
scenarios { every e�ort must be made to provide security against adversaries more powerful than any the
designers ever expect. Indeed, adversaries have a way of being more powerful than anyone ever expects.

4.1 Attacks on Documents or the Servnet

Physical attack: Destroy a server.

10



Prevention: Because we are breaking documents into shares and only k of n shares are required to
reconstruct the document, an adversary must �nd and destroy many servers before availability is
compromised.

Legal action: Find a physical server, and prosecute the owner based on its contents.

Prevention: Because of the passive-server document anonymity property that the Free Haven design
provides, the servnet operator may be able to plausibly deny knowledge of the data stored on his
computer. This depends on the laws of the country in question.

Social pressure: Bring various forms of social pressure against server administrators. Claim that the
design is patented or otherwise illegal. Sue the Free Haven Project and any known server adminis-
trators. Conspire to make a cause \unpopular", convincing administrators that they should manu-
ally prune their data. Allege that they \aid child pornographers" and other socially-unacceptable
activities.

Prevention: We rely on the notion of jurisdictional arbitrage. Information illegal in one place
is frequently legal in others. Free Haven's content-neutral policies mean that there is no reason
to expect that the server operator has looked at the data he holds, which might make it more
di�cult to prosecute. We further rely on having enough servers in enough di�erent jurisdictions
that organizations cannot conspire to intimidate a su�cient fraction of servers to make Free Haven
unusable.

Denial of service: Attack the servnet by continued ooding of queries for data or requests to join the
servnet. These queries may use up all available bandwidth and processing power for a server.

Prevention: We must assume that our communications channel has adequate protection and bu�er-
ing against this attack, such as the use of client puzzles [26]. Most communications channels we are
likely to choose will not protect against this attack. This is a real problem.

Data ooding: Attempt to ood the servnet with shares, to use up available resources.

Prevention: The trading protocol implicitly protects against this type of denial of service attack
against storage resources. The ability to insert shares, whether \false" or valid, is restricted to
trading: that server must �nd another which trusts its ability to provide space for the share it
would receive in return.

Similarly, the design provides protection against the corrupting of shares. Altering (or \spoo�ng")
a share cannot be done, because the share contains a particular public key, and its integrity is
veri�able by that key. Without knowledge of the original key which was used to create a set of
shares, an adversary cannot forge new shares for a given document.

Share hoarding: Trade until a su�cient fraction of an objectionable document is controlled by a group
of collaborating servers, and then destroy this document. Likewise, a su�ciently wealthy adversary
could purchase a series of servers with very large drives and join the servnet, trading away garbage
for \valuable data." He can trade away enough garbage to have a signi�cant portion of all the data
in the servnet on his drives.

Prevention: We rely on the overall size of the servnet to make it unlikely or prohibitively expensive
for any given server or group of collaborating servers to obtain a su�cient fraction of the shares of
any given document. The failure of this assumption would leave us with no real defense.

11



4.2 Attacks on the Reputation System

While attacks against the reputation system2 are related to attacks directly against servers, their goal is
not to directly a�ect document availability or servnet operation. Rather, these attacks seek to compromise
the means by which we provide accountability for malicious or otherwise misbehaving servers.

Some of these attacks, such as temporary denials of service, have negative repercussions on the
reputation of a server. These repercussions might be quali�ed as \unfair", but are best considered
in the following light: if a server is vulnerable to these attacks, it may not be capable of meeting the
speci�cations of the Free Haven protocol. Such a server is not worthy of trust to meet those speci�cations.
The reputation system does not judge intent, merely actions.

Simple Betrayal: An adversary may become part of the servnet, act correctly long enough to gain a
good reputation, then betray this trust by deleting �les before their expiration dates.

Prevention: The reputation economy is designed to make this unpro�table. In order to obtain
enough \currency" to store data, a server must reliably store data for others. Because a corrupt
server must store at least as much data for others as the amount of data it deletes, such an adversary
at worst does no overall harm to the system and may even help. This \50% useful work" ratio is
a rather loose lower bound | it requires tricking a great number of high-credibility servers into
recommending you. A server which engages in this behavior should be caught by the buddy system
when it deletes each share.

Buddy Coopting: If a corrupt server (or group of colluding servers) can gain control of both a share
and its buddy, it can delete both of them without repercussions.

Prevention: We assume a large quantity of shares in the servnet, making buddy capture more
di�cult. Servers also can modify their perceived reputation of a server if narrow trading parameters,
or constant trading, suggests an attempt to capture buddies. More concretely, a possible work-
around involves separating the reply-block addresses for trading and for buddy checking, preventing
corrupt servers from acquiring the buddies of the shares they already have. Such an approach adds
complexity, and possibly opens other avenues for attack.

False Referrals: An adversary can broadcast false referrals, or even send them only to selected servers.

Prevention: The con�dence rating of credibility can provide a guard against false referrals, combined
with a single-reporting policy (i.e., at most one referral per target per source is used for reputation
calculations).

Trading Receipt Games: While we believe that the signed timestamps attest to who did what and
when, receipt-based accountability may be vulnerable to some attacks. Most likely, these will
involve multi-server adversaries engaging in coordinated bait-and-switch games with target nodes.

Entrapment: There are several ways in which an adversary can appear to violate the protocols. When
another server points them out, the adversary can present receipts which show her wrong and
can accuse her of sending false referrals. A more thorough system of attestations and protests is
necessary to defend against and account for this type of attack.

4.3 Attacks on Anonymity

There are a number of attacks which might be used to determine more information about the identity of
some entity in the system.

2Parts of this section were originally written by Brian Sni�en in [43].

12



Attacks on reader anonymity: An adversary might develop and publish on Free Haven a customized
virus which automatically contacts a given host upon execution. A special case of this attack would
be to include mime-encoded URLs in a document to exploit reader software which automatically
loads URLs. Another approach might be to become a server on both the servnet and the mixnet,
and attempt an end-to-end attack, such as correlating message timing with document requests.
Indeed, servers could claim to have a document and see who requests it, or simply monitor queries
and record the source of each query. Sophisticated servers might attempt to correlate readers based
on the material they download, and then try to build statistical pro�les and match them to people
(outside Free Haven) based on activity and preferences; we prevent this attack by using each reply
block for only one transaction.

Attacks on server anonymity: Adversaries might create unusually large shares, and try to reduce the
set of known servers who might have the capacity to store such shares. This attacks the partial
anonymity of these servers. An adversary could become a server, and then collect routine status
and participation information (such as server lists) from other servers. This information might be
extended with extensive knowledge of the bandwidth characteristics and limitations of the Internet
to map servnet topology. By joining the mixnet, an adversary might correlate message timing with
trade requests or reputation broadcasts. An alternate approach is simply to spread a Trojan Horse
or worm which looks for Free Haven servers and reports which shares they are currently storing.

Attacks on publisher anonymity: An adversary could become a server and log publishing acts, and
then attempt to correlate source or timing. Alternatively, he might look at servers who might
recently have published a document, and try to determine who has been communicating with them
recently.

There are entirely social attacks which can be very successful, such as o�ering a large sum of money
for information leading to the current location of a given document, server, reader, etc.

We avoid or reduce the threat of many of these attacks by using an anonymous channel which supports
pseudonyms for our communications. This prevents most or all adversaries from being able to determine
the source or destination of a given message, or establish linkability between each endpoint of a set of
messages. Even if server administrators are subpoenaed or otherwise pressured to release information
about these entities, they can openly disclaim any knowledge.

5 Related Work

There are a number of projects and papers which discuss anonymous publication services. We start
this section by providing an overview of some of the related projects and papers. After this section, we
continue by examining the amount of anonymity that each project o�ers.

5.1 The Eternity Service

This work was inspired by Anderson's seminal paper on The Eternity Service[2]. As Anderson wrote,
\[t]he basic idea is to use redundancy and scattering techniques to replicate data across a large set of
machines (such as the Internet), and add anonymity mechanisms to drive up the cost of selective service
denial attacks."

A publisher uploads a document and some digital cash, along with a requested �le duration (cost
would be based on document size and desired duration). In the simple design, a publisher would upload
the document to 100 servers, and remember ten of these servers for the purposes of auditing their
performance. Because he does not record most of the servers to whom he submitted the �le, there is no

13



way to identify which of the participating eternity servers are storing his �le. Document queries are done
via broadcast, and document delivery is achieved through one-way anonymous remailers.

There are issues which are not addressed in his brief paper: for instance, if documents are submitted
anonymously but publishers are expected to remember a random sample of servers so they can audit
them, what do they do when they �nd that some server is cheating? Anderson passes this responsibility
on to the digital cash itself, so servers do not receive payment if they stop providing the associated service.
He does not elaborate on the possible implications of this increased accountability to the anonymity of
the publishers.

Eternity has several problems that hinder real-world deployment. Most importantly, Eternity relies
on a stable digital cash scheme, which is not available today. There is no consideration to maintaining
a dynamic list of available servers and allowing servers to smoothly join and leave. Anderson further
proposes that a directory of �les in the system should itself be a �le in the system. However, without a
mechanism for updating or revising �les, this would appear very di�cult to achieve.

5.2 Napster

The Napster service[36] is a company based around connecting people who are o�ering MP3 �les to people
who want to download them. While they provide no real anonymity and disclaim all legal liability, an
important thing to note about the Napster service is that it is highly successful. Thousands of people use
Napster daily to exchange music; if there were greater security (and comparable ease of use), we believe
that many thousands more would participate. The existence of Napster shows that demand exists for a
distributed storage and retrieval service.

5.3 Gnutella

Gnutella[15] is a peer-to-peer Napster clone. Developed originally by Nullsoft, it is currently maintained
as an open source project. The Gnutella developers claim that querying the network is \anonymous."
Analysis of the Gnutella protocol reveals features which make this statement problematic.

The header of a Gnutella packet includes two �elds: TTL (time to live: the number of additional hops
after which the packet should be dropped) and Hops taken (the number of hops this packet has made
since its creation). The TTL is started at some default value based on the expected size of the network,
and the Hops value is e�ectively an inverse of the TTL during the travel of the packet. Because the Hops
value is 1 when the packet is initially sent, it is clear when a server is generating a query.

In addition, while the protocol is designed for a user to set up connections with his \friends", there
is no infrastructure in place for �nding new friends. Instead, the Gnutella site o�ers a default set of
friends with which users can start. Most users will never change this �le if the service is functional. This
means that the actual network is a hierarchical system, as shown in pictures of the Gnutella network
topology[45]. There are a small number of central nodes which would be ideal targets for collecting
information about users and queries.

Moreover, only queries are protected. The actual downloads are done by point-to-point connections,
meaning that the IP addresses of server and reader are both revealed to each other. This is done for
reasons of e�ciency, but it is far from anonymous.

Sites such as the Gnutella Wall of Shame [12], which attempts to entrap child pornographers using
the Gnutella service, demonstrate that the direct �le-transfer portion of the Gnutella service does not
adequately protect the anonymity of servers or readers.

5.4 Eternity USENET

Adam Back proposed[4] a simpler implementation of the Eternity Service, using the existing Usenet
infrastructure to distribute the posted �les all around the world.

14



To achieve anonymity in publishing, Eternity Usenet employs cypherpunks type I and type II (mix-
master) remailers as gateways from email to newsgroups. Publishers PGP-sign documents which they
wish to publish into the system: these documents are formatted in html, and readers make http search or
query requests to `Eternity Servers' which map these requests into NNTP commands either to a remote
news server or a local news spool. With the initial implementation, the default list of newsgroups to
read consists only of alt.anonymous.messages. The Eternity Server e�ectively provides an interface to
a virtual web �lesystem which posters populate via Usenet posts. Eternity Usenet uses normal Usenet
mechanisms for retrieval, posting, and expiring, so publishers may not have control over the expiration
time or propagation rate of their document.

Reader anonymity for Eternity USENET is provided when the system is used in \local proxy" mode,
in which the user downloads the entire eternity newsgroup from a remote server. The server can still link
the reader to that day's contents of an eternity newsgroup, so the reader anonymity is not as strong as
we might like.

Back treats Usenet as an append-only �le system. His system provides support for replacing �les
(virtual addresses) because newer posts signed with the same PGP key are assumed to be from the same
publisher. Addresses are claimed on a �rst-come �rst-served basis, and PGP signatures provide linkability
between an initial �le at a given address and a revision of that �le. It is not clear what happens when two
addresses are claimed at once { since Usenet posts may arrive out of order, it would seem that there might
be some subtle attacks against �le coherency if two di�erent Eternity Servers have a di�erent notion of
who owns a �le.

While the system is not directly `censorable' as we usually consider it, the term `eternity' is misleading.
Usenet posts expire based on age and size. Back does not provide an analysis of how long a given document
will survive in the network. The task of making a feasible distributed store of Eternity documents is left
as a future work.

5.5 Freenet

Like Gnutella, Freenet[11] is a peer to peer network of servers. When a user wishes to request a document,
she hashes the name of that document (where she gets this name is outside the scope of Freenet) and
then queries her own server about the location. If her server does not have it, it passes the query on
to a nearby server which is \more likely" to have it. Freenet clusters documents with similar hashes
nearby each other, and uses a routing protocol to route queries \downhill" until they arrive at the desired
document.

Freenet bases document lifetime on the popularity of the document: frequently requested �les get
duplicated around the system, whereas infrequently requested �les live in only a few places or die out
completely. While this is a valid choice for a system that emphasizes availability and e�ciency, it precludes
certain uses of the system, e.g., the Yugoslav phone book collection project described earlier.

Freenet explicitly sets out to provide anonymity. Their goals include both sender and reader anonymity,
as well as plausible deniability for servers { the notion that a server does not know the contents of doc-
uments it is storing. They provide this last, which we call passive-server document anonymity, by refer-
encing �les by H(name) and having users encrypt the documents themselves with name before inserting
them. This means that anybody who knows the original name string can decrypt the document, but the
server storing the document is unable to invert H(name) to determine name.

Freenet has a similar potential aw with publisher and reader anonymity to Gnutella, due to the
presence of the TTL and Depth (comparable to Hops) �elds in the Freenet message headers. Freenet
takes steps to avoid the problems of Gnutella's Depth and TTL headers by randomly assigning values to
both �elds, so that a depth of 1 does not necessarily mean that a request originated with a given node.
Packets with TTL 1 are randomly either expired or forwarded onward.

Document requests are also sent through the caching-enabled network (rather than peer-to-peer as
they are in Gnutella). Because of these measures, Freenet seems to provide `more' anonymity than

15



Gnutella.
Further, statistical attacks similar to those described in the Crowds [41] paper might work to pinpoint

the location of a given reader or publisher; caching provides protection against this since the network
topology for a given document changes after each request. These attacks need to be analyzed further.

Freenet makes �les highly accessible and o�ers some level of anonymity. But since the choice to drop
a �le is a purely local decision, and since �les that aren't requested for some time tend to disappear
automatically, it can't guarantee a speci�ed lifetime for a document. We expect that Freenet will provide
a very convenient service for porn and popular audio �les, but anything less popular will be driven o�
the system.

5.6 Mojo Nation

Mojo Nation[23] is another peer-to-peer design for robustly distributing resources. The basic operations
it supports are publishing and retrieving, but it di�ers from other works because it employs a digital cash
system to help protect against abuse of the system.

In Mojo Nation, a user who wishes to publish a document (call her Alice) uses error correction
techniques to split the document into eight pieces, any four of which are su�cient to reconstruct. She
then combines hashes of these eight pieces into a second document called a sharemap, and proceeds to
do the eight-way splitting on this sharemap as well. She sends descriptions of the eight pieces of the
sharemap to a separate agent called a content tracker, which is responsible for keeping track of how to
reconstruct each document.

Other participants in the system serve as block servers. They o�er storage on their machine to the
system. Each block server has a bitmask which describes the subset of `hash space' (hashes of a piece
of a document, that is) that it will store. For each piece of her document, Alice pays the appropriate
block server to store that piece. Alice learns about the set of block servers available and interested in
her pieces through yet another agent called a metatracker. Multiple block servers overlapping on which
bitmasks they cover allow for greater redundancy. Alice informs the publication tracker when she has
published a document, and then other block servers might go to the block servers to which she published
and purchase those document pieces.

To retrieve a document, Bob queries the content tracker and receives information about the eight
pieces that will reconstruct the sharemap for that document. He asks the metatracker which block
servers serve the address space for those pieces, and then purchases them from the appropriate block
servers. He then reconstructs the sharemap, and from there repeats the process with the eight pieces of
the document he is retrieving. Because of the error correction codes, Bob actually only needs to purchase
any four of the pieces for each reconstruction phase.

As in Freenet, document pieces expire based entirely on choices local to the block server. That is, in
most cases the most popular �les will stay in the system, and the unpopular �les will be dropped.

The entire system works based on currency called mojo. Participants in the system `pay' mojo to
other participants when they ask for a service that uses resources. In this way, Mojo Nation reduces
the potential for damage from resource ooding attacks. A credit and reputation system allows the
interactions to be streamlined based on trust built up from past experience.

Mojo Nation employs a centralized bank server to handle Mojo transactions and accounting. It's also
not clear that the job of the metatracker can be done in a decentralized way (that is, without producing a
bottleneck either because loss of the metatracker implies loss of that service, or because there's no way to
smoothly inform participants of metatrackers joining and leaving the system). A good distributed (truly
decentralized) anonymous electronic cash system would be much more useful, but as far as we know there
still isn't one available.

The goals of Mojo Nation are not anonymity. Rather, they want to be a ubiquitous e�cient distributed
�le distribution system which focuses on document accessibility. It is not yet clear how robust the overall
system will be, but the design certainly appears to scale well.

16



5.7 Publius

Publius[49] attacks the problem of anonymous publishing from a di�erent angle, employing a one-way
anonymous channel to transfer documents from publishers to servers. The Publius protocol is designed
to maintain availability of documents on these servers.

In this system, a publisher generates a key K for her document, and encrypts the document with
this key. She performs Shamir's secret-sharing algorithm to build a set of n key shares, any k of which
is su�cient to reconstruct K. From there, she chooses some n of the Publius servers and anonymously
delivers the encrypted message plus one share to each of these n servers.

In this way, the document is replicated over each server, but the key is split over the n servers.
Document reading is implemented by running a local web proxy on the reader's machine; the n addresses
chosen as servers are concatenated into a URL which is presumably published or otherwise remembered.
The local proxy fetches each share independently, reconstructs the original key K, and then decrypts the
document.

The Publius system provides publisher anonymity by means of a one-way anonymous channel be-
tween authors and servers. In addition, because Shamir's secret-sharing protocol is used and each server
only receives one share, Publius provides both computational and information-theoretic passive-server
document anonymity: a single server is not able to determine anything about a document it stores.

A minor aw is that readers cannot determine if a share is corrupt simply by examining it: the reader
must request all of the shares and attempt to reconstruct in order to determine the integrity of a share.
A veri�able secret sharing scheme [44] might make the system more e�cient.

Publius provides no smooth decentralized support for adding new servers and excising dead or mali-
cious servers. More importantly, Publius provides no accountability { there is no way to prevent publishers
from entirely �lling the system with garbage data.

6 An Analysis of Anonymity

We describe the protections o�ered for each of the broad categories of anonymity. In Table 1, we provide
an overview view of Free Haven and the di�erent publishing systems which we examined. We consider
the level of privacy provided { computational (C) and perfect-forward (P-F) anonymity { by the various
systems.

Computational anonymity means that an adversary modelled as a polynomial-time Turing Machine
has no better than a 1

2
+ neg(k) chance of breaking anonymity, for some reasonable security parameter

k and negliglible function neg(k). Perfect forward anonymity is analogous to perfect forward secrecy:
a system is perfect forward anonymous if no information remains after a transaction is complete which
could later identify the participants if one side or the other is compromised. This notion is a little bit
trickier { think of it from the perspective of an adversary watching the user over a long period of time. Is
there anything that the adversary can discover from watching several transactions that he can't discover
from watching a single transaction?

Free Haven provides computational and perfect forward author anonymity, because authors commu-
nicate to publishers via an anonymous channel. Servers trade to other servers via pseudonyms, providing
computational but not perfect forward anonymity, as the pseudonyms can be broken later. Because trad-
ing is constant, however, Free Haven achieves publisher anonymity for publishers trying to trade away
all shares of the same document. The use of IDA to split documents provides passive-server document
anonymity, but the public key embedded in each share (which we require for integrity checking) makes it
trivial for active servers to discover what they are storing. Because requests are broadcast via an anony-
mous channel, Free Haven provides computational reader anonymity, and di�erent reply blocks used and
then destroyed after each request provide perfect forward reader anonymity.

Gnutella fails to provide publisher anonymity, reader anonymity, or server anonymity because of the

17



Project Publisher Reader Server Document Query
C P-F C P-F C P-F C C

Gnutella
Eternity Usenet + + ? +

Freenet + + ? +
Mojo Nation ? ? +

Publius + + +
Free Haven + + + + + +

Table 1: Anonymity Properties of Publishing Systems

peer-to-peer connections for actual �le transfer. Because Gnutella servers start out knowing the intended
contents of the document they are o�ering, they also fail to provide document anonymity.

Eternity Usenet provides publisher anonymity via the use of one-way anonymous remailers. Server
anonymity is not provided, because every Usenet server which carries the eternity newsgroup is a server.
Adam Back has pointed out that passive-server document anonymity can be provided by encrypting
�les with a key derived from the URL; active servers might �nd the key and attempt to decrypt stored
documents. Reader anonymity is not provided by open public proxies unless the reader uses an anonymous
channel because the proxy can see the content and timing of a user's queries and downloads. For local
proxies, which connect to a separate news server, however, the situation is better because the news server
knows only what the user downloads. Even so, this is not quite satisfactory, because the user can be tied
by the server to the contents of the eternity newsgroup at a certain time.

Freenet achieves passive-server document anonymity because servers are unable to reverse the hash
of the document name to determine the key with which to decrypt the document. For active-server
document anonymity, the servers can check whether they are carrying a particular key, but cannot easily
match a stored document to a key due to the hash function. Server anonymity is not provided because
given a document key, it is very easy to locate a server that is carrying that document { querying any
server at all will result in that server carrying the document! Because of the TTL and Hops �elds for
both reading and publishing, it is also not clear that Freenet achieves publisher or reader anonymity,
although they are much better in these regards than Gnutella. We note that the most recent Freenet
design introduces randomized TTL and Hops �elds in each request, and plans are in the works to allow
a publish or retrieve operation to traverse a mixnet chain before entering the Freenet system. These
protections will make attacks based on tracking queries much more di�cult.

Mojo Nation achieves passive-server document anonymity, because the server holding a share doesn't
know how to reconstruct that document. The Mojo Nation design is amenable to integrating publisher
anonymity down the road { a publisher can increase his anonymity by paying more Mojo and chaining
requests through participants that act as `relays'. The speci�cs of prepaying the path through the relays
are not currently being designed. It seems possible that this technique could be used to ensure reader
anonymity as well, but the payment issues are even more complex. Indeed, the supplied digital cash
model is not even anonymous currently; users need to uncomment a few lines in the source, and this
action breaks Chaum's patents.

Publius achieves document anonymity because the key is split between the n servers, and without
su�cient shares of the key a server is unable to decrypt the document that it stores. The secret sharing
algorithm provides a stronger form of this anonymity (albeit in a storage-intensive manner), since a
passive server really can learn nothing at all about the contents of a document that it is helping to
store. Because documents are published to Publius through a one-way anonymous remailer, it provides
publisher anonymity. Publius provides no support for protecting readers by itself, however, and the
servers containing a given �le are clearly marked in the URL used for retrieving that �le. Readers can
use a system such as ZKS Freedom or Onion Routing to protect themselves, but servers may still be

18



liable for storing \bad" data.
We see that systems can often provide publisher anonymity via one-way communication channels,

e�ectively removing any linkability; removing the need for a reply block on the anonymous channel
means that there is \nothing to crack". The idea of employing a common mixnet as a communications
channel for each of these publication systems is very appealing. This would mean that we could leave
most of the anonymity concerns to the communication channel itself, and provide a simple back-end �le
system or equivalent service to transfer documents between agents. Thus the design of the back-end
system could be based primarily on addressing other issues such as availability of documents, protections
against ooding and denial of service attacks, and accountability in the face of this anonymity.

7 Future Work

Our experience designing Free Haven revealed several problems which have no simple solutions; further
research is required. We state some of these problems here and refer to the �rst author's thesis[13] for
in-depth consideration.

Deployed Free Low-Latency Pseudonymous Channel: Free Haven requires pseudonyms in order
to create server reputations. The only current widely deployed channels which support pseudonyms
seem to be the Cypherpunk remailer network[34] and ZKS Freedom mail. The Cypherpunk and
ZKS version 1 networks run over SMTP and consequently have high latency. This high latency
complicates protocol design. The recently announced version 2 of ZKS Freedom mail runs over
POP and may o�er more opportunity for the kind of channel we desire.

Accountability and Reputation: We found it extremely di�cult to reason about the accountability
in Free Haven, especially when considering the \buddy system." At the same time, accountability
is critical to ensuring that documents remain available in the system. Future work in this area
might develop an \anonymous system reputation algebra" for formally reasoning about a server's
reliability based on various circumstances { this would allow us to verify trust protocols. We sketch
this problem in more detail in [14].

Modelling and Metrics: When desiging Free Haven, we made some choices, such as the choice to
include trading, based only on our intuition of what would make a robust, anonymous system. A
mathematical model of anonymous storage would allow us to test this intuition and run simulations.
We also need metrics : speci�c quantities which can be measured and compared to determine which
designs are \better." For example, we might ask \how many servers must be compromised by
an adversary for how long before any document's availability is compromised? before a speci�c
targeted document's availability is compromised?" or \how many servers must be compromised
by an adversary for how long before the adversary can link a document and a publisher?" This
modelling might follow from the work of Gulcu and Tsudik[22], Kesdogan, Egner, and Bschkes[28],
and Berthold, Federrath, and Kohntopp[6] which apply statistical modelling to mix-nets.

Formal De�nition of Anonymity: Closely related to the last point is the need to formalize the \kinds
of anonymity" presented in section 2. By formally de�ning anonymity, we can move closer to
providing meaningful proofs that a particular system provides the anonymity we desire. We might
leverage our experience with cryptographic de�nitions of semantic security and non-malleability
to produce similar de�nitions and proofs[21]. A �rst step in this direction might be to carefully
explore the connection remarked by Racko� and Simon between secure multiparty computation and
anonymous protocols[42].

Usability Requirements and Interface: We stated in the introduction that we began the Free Haven
Project out of concern for the rights of political dissidents. Unfortunately, at this stage of the

19



project, we have contacted few political dissidents, and as a consequence do not have a clear
idea of the usability and interface requirements for an anonymous storage system. Our concern is
heightened by a recent paper which points out serious de�ciencies in PGP's user interface [50].

E�ciency: It seems like nearly everyone is doing a peer-to-peer system or WWW replacement these
days. Which one will win? Adam Back pointed out[5] that in many cases, the e�ciency and
perceived bene�t of the system is more important to an end user than its anonymity properties.
This is a major problem with the current Free Haven design: we emphasize a quality relatively
few potential users care about at the expense of something nearly everyone cares about. Is there
a way to create an anonymous system with a tolerable loss of perceived e�ciency compared to its
non-anonymous counterpart? And what does \tolerable" mean, exactly?

We consider the above to be challenge problems for anonymous publication and storage systems.

8 Conclusion

Free Haven is a decentralized storage service which provides anonymity to publishers, readers, and servers,
provides a dynamic network, and ensures the availability of each document for a publisher-speci�ed
lifetime. None of these requirements is new by itself, but Free Haven addresses all of them at once.

The current Free Haven design is unsuitable for wide deployment, because of several remaining prob-
lems. The primary problem is e�ciency. An ine�cient design will lead to a system with few users. A
system with few users will not provide the anonymity we desire.

Free Haven uses ine�cient broadcasts for communication. One way to address this problem is by
coupling Free Haven with a widely-deployed e�cient �le sharing service such as Freenet or Mojo Nation.
Popular �les will be highly accessible from within the faster service; Free Haven answers queries for less
popular documents which have expired in this service.

Filling this role requires facing problems particular to a long-term persistent storage service. With-
out the requirement of long-term persistent storage, strong accountability measures are less necessary.
Without these measures, computational overhead can be greatly lowered, making unnecessary many
communications that are used to manage reputation metrics. And without the requirement for such
anonymity and the resulting latency from the communications channel, readers could enjoy much faster
document retrieval. Solving each of these problems is important: even if Free Haven is not the utility of
�rst resort, it must respond to requests in a timely and reliable manner.

These problems are far from being solved. Until the risks involved in using such systems can be better
evaluated, they cannot be used in good conscience for situations where failure is not an option. Much
more work remains.

Acknowledgements

Professor Ronald Rivest provided invaluable assistance as Roger's Masters and Michael's Bachelors thesis
advisor and caused us to think hard about our design decisions. Professor Michael Mitzenmacher made
possible David's involvement in this project and provided insightful comments on information dispersal
and trading. Beyond many suggestions for overall design details, Brian Sni�en provided the background
for the reputation system, and Joseph Sokol-Margolis was useful for considering attacks on the system.
Andy Oram was instrumental in helping to restructure the paper to improve ow and clarity. Adam
Back and Theodore Hong commented on our assessment of their systems and made our related work
section much better. Wei Dai caught a very embarrassing error in our description of signature schemes,
for which we thank him. Furthermore, we thank Susan Born, Nathan Mahn, Jean-Fran�cois Raymond,
Anna Lysyanskaya, Adam Smith, and Brett Woolsridge, for further insight and feedback.

20



References

[1] Masayuki Abe. Universally veri�able mix-net with veri�cation work independent of the number of
servers. In Advances in Cryptology { EUROCRYPT '98, pages 437{447.

[2] Ross Anderson. The Eternity Service. http://www.cl.cam.ac.uk/users/rja14/eternity/eternity.html.

[3] Aol instant messenger. http://www.aol.com/aim.

[4] Adam Back. The Eternity Service. http://phrack.infonexus.com/search.phtml?view&article=p51-
12.

[5] Adam Back. Re: another distributed project. http://freehaven.net/archives/freehaven/dev/Aug-
2000/msg00027.html.

[6] Oliver Berthold, Hannes Federrath, and Marit Kohntopp. Anonymity and unobservability on the
Internet. In Workshop on Freedom and Privacy by Design: CFP 2000, 2000.

[7] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryption. In Advances
in Cryptology { CRYPTO '97.

[8] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communica-
tions of the ACM, 4(2), February 1982.

[9] David Chaum. The dining cryptographers problem: Unconditional sender and recipient untraceabil-
ity. Journal of Cryptology, 1:65{75, 1988.

[10] Yuan Chen, Jan Edler, Andrew Goldberg, Allan Gottlieb, Sumeet Sobti, and Peter Yianilos. A
prototype implementation of archival intermemory. In Proceedings of the fourth ACM Conference
on Digital libraries (DL '99), 1999.

[11] Ian Clarke. The Free Network Project. http://freenet.sourceforge.net/.

[12] The Cleaner. Gnutella wall of shame. http://www.zeropaid.com/busted/.

[13] Roger Dingledine. The Free Haven Project. Master's thesis, MIT, 2000.

[14] Roger Dingledine, Michael J. Freedman, and David Molnar. Accountability. In Peer-to-peer. O'Reilly
and Associates, 2001.

[15] Ian Hall-Beyer et. al. Gnutella. http://gnutella.wego.com/.

[16] Michael J. Freedman. Design and Analysis of an Anonymous Communication Channel for the Free
Haven Project. http://theory.lcs.mit.edu/~cis/cis-theses.html, May 2000.

[17] Electronic Frontiers Georgia (EFGA). Anonymous remailer information.
http://anon.efga.org/Remailers/.

[18] Ian Goldberg and Adam Shostack. Freedom network 1.0 architecture, November 1999.

[19] Ian Goldberg, David Wagner, and Eric Brewer. Privacy-enhancing technologies for the internet. In
Proceedings of IEEE COMPCON '97.

[20] O. Goldreich, S. Even, and Lempel. A randomized protocol for signing contracts. In Advances in
Cryptology { CRYPTO '82.

21



[21] Oded Goldreich. Modern Cryptography, Probabilistic Proofs, and Pseudo-Randomness. Springer-
Verlag, 1999.

[22] C. Gulcu and G. Tsudik. Mixing e-mail with Babel. In Proceedings of the ISOC Symposium on
Network and Distributed System Security, pages 2{16, 1996.

[23] Autonomous Zone Industries. Mojonation. http://www.mojonation.com/.

[24] M. Jakobsson. Flash mixing. In Principles of Distributed Computing PODC '99.

[25] M. Jakobsson. A practical mix. In Advances in Cryptology { EUROCRYPT '98.

[26] Ari Juels and John Brainard. Client puzzles: A cryptographic defense against connection depletion
attacks. In Proceedings of the 1999 Network and Distributed System Security Symposium, February
1999.

[27] Cli�ord Kahn, David Black, and Paul Dale. MANET: Mobile agents for network trust.
http://www.darpa.mil/ito/psum1998/F255-0.html, 1998.

[28] Dogan Kesdogan, Jan Egner, and Roland Buschkes. Stop and go mixes: Providing probabilistic
anonymity in an open system. In 1998 Information Hiding Workshop, pages 83{98.

[29] Raph Levien. Advogato's trust metric. http://www.advogato.org/trust-metric.html.

[30] Mark Lewis. Metallica sues Napster, universities, citing copyright infringement and RICO violations.
http://www.livedaily.com/archive/2000/2k04/wk2/MetallicaSuesNapster,Univ.html.

[31] Tal Malkin. Private Information Retrieval. PhD thesis, MIT. see http://theory.lcs.mit.edu/ cis/cis-
theses.html.

[32] David Michael Martin. PhD thesis, Boston University, 2000. http://www.cs.du.edu/~dm/anon.html.

[33] Tim May. Cyphernomicon. http://www2.pro-ns.net/ crypto/cyphernomicon.html.

[34] David Mazieres and M. Frans Kaashoek. The design and operation of an e-mail pseudonym server.
In 5th ACM Conference on Computer and Communications Security, 1998.

[35] S. Micali. Certi�ed e-mail with invisible post-o�ces. In Talk at RSA '97.

[36] Napster. http://www.napster.com/.

[37] University of Michigan News and Information Services. Yugoslav phone books: perhaps the last
record of a people. http://www.umich.edu/~newsinfo/Releases/2000/Jan00/r012000e.html.

[38] A. P�tzmann, B. P�tzmann, and M. Waidner. ISDN-Mixes : Untraceable communication with
small bandwidth overhead. In GI/ITG Conference: Communication in Distributed Systems, pages
451{463. Springer-Verlag, 1991.

[39] PGP FAQ. http://www.faqs.org/faqs/pgp-faq/.

[40] Michael O. Rabin. E�cient dispersal of information for security, load balancing, and fault tolerance,
April 1989.

[41] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web transactions. DIMACS Technical
Report, 97(15), April 1997.

22



[42] Simon and Racko�. Cryptographic defense against tra�c analysis. In STOC 1993, pages 672{681,
1993.

[43] Brian T. Sni�en. Trust Economies in the Free Haven Project. http://theory.lcs.mit.edu/~cis/cis-
theses.html, May 2000.

[44] Markus Stadler. Publicly veri�able secret sharing. In EUROCRYPT '96, 1996.
http://citeseer.nj.nec.com/stadler96publicly.html.

[45] Steve Steinberg. Gnutellanet maps. http://gnutella.wego.com/�le depot/0-10000000/110000-
120000/116705/folder/151713/network3.jpg.

[46] Paul Syverson and Stuart Stubblebine. Group principals and the formalization of anonymity. In
World Congress on Formal Methods 1999, 1999.

[47] P.F. Syverson, D.M. Goldschlag, and M.G. Reed. Anonymous connections and onion routing. In
Proceedings of the 1997 IEEE Symposium on Security and Privacy, May 1997.

[48] Vernor Vinge. True Names. Short story.

[49] Marc Waldman, Aviel Rubin, and Lorrie Cranor. Publius: A robust, tamper-evident, censorship-
resistant and source-anonymous web publishing system.

[50] Alma Whitten and J.D. Tygar. Why johnny can't encrypt. In USENIX Security 1999, 1999.
http://www.usenix.org/publications/library/proceedings/sec99/whitten.html.

23


