

State of the Art Review of

Distributed Event Models

René Meier
Inf. Ing. HTL, M.Sc.,

Department of Computer Science,

University of Dublin, Trinity College,

Dublin, Ireland.

March 2000.

Version: 1.0

- i -

CONTENTS

1. INTRODUCTION.. 1

1.1 Motivation ... 1

1.2 Roadmap .. 2

1.3 Event-based Communication ... 2

1.4 Event Model Features .. 4

1.4.1 Typed Events .. 4

1.4.2 Event Filters .. 5

1.4.3 Quality of Service Constraints .. 5

1.4.4 Real-Time Constraints .. 6

1.4.5 Scalability.. 7

2. OMG CORBA EVENT MODELS ... 10

2.1 CORBA Event Service ... 10

2.1.1 The Event Channel Architecture... 11

2.1.2 Generic and Typed Event Channels... 12

2.2 CORBA Notification Service... 12

2.2.1 The Notification Channel Architecture .. 13

2.2.2 Administrative Capabilities.. 14

2.2.3 Filtering Capabilities.. 14

2.2.4 Quality of Service Capabilities .. 15

2.2.5 Structured Event Communication ... 16

2.3 Summary .. 17

3. JAVA EVENT MODELS .. 19

3.1 Java AWT: Delegation Event Model... 19

3.1.1 Delegation Event Model Architecture ... 19

3.1.2 Event Adapters ... 21

3.2 Java Distributed Event Model... 22

3.2.1 Distributed Event Model Architecture ... 22

3.2.2 Third Party Objects ... 23

3.3 Summary .. 24

4. THE CAMBRIDGE EVENT MODEL .. 25

4.1 Cambridge Event Model Architecture... 25

4.2 Event Filtering... 27

4.3 Event Composition ... 28

4.4 Summary .. 28

5. ECO.. 29

- ii -

5.1 ECO Event Model Architecture .. 29

5.1.1 Events, Constraints and Objects .. 29

5.1.2 ECO’s Event Application Interface.. 30

5.2 Notify Constrains .. 31

5.3 Pre- and Post-Constraints .. 31

5.4 Zones.. 31

5.5 Summary .. 32

6. JEDI.. 34

6.1 JEDI Event Model Architecture .. 34

6.2 Event Pattern.. 36

6.3 Reactive Objects and Mobility .. 37

6.4 Summary .. 37

7. SIENA... 39

7.1 The SIENA Event Model Architecture .. 39

7.1.1 Operational Semantics ... 40

7.1.2 Server Topologies... 41

7.2 Event Filter and Pattern.. 43

7.3 Mobility ... 43

7.4 Summary .. 44

8. EVENT MODELS BASED ON THE OMG CORBA EVENT SERVICE............... 45

8.1 Real-Time Event Service.. 45

8.1.1 RT Event Service Architecture.. 45

8.1.1.1 QoS Parameter ... 46

8.1.1.2 Event Filter.. 46

8.1.1.3 Periodic Event Processing.. 47

8.1.2 Summary... 47

8.2 CONCHA .. 48

9. SYNTHESIS ... 49

9.1 Event Model Architectures ... 49

9.2 Event Model Features .. 54

9.3 Conclusion.. 56

10. REFERENCES... 58

State Of The Art Review of Distributed Event Model

March 2000 Page 1

1. INTRODUCTION

This review deals with an investigation into the architecture and features of distributed

communication models that are based on the event paradigm.

A variety of event-based communication models are used in different application domains,

including real-time, mobile and large-scale environments. To fulfil the needs of their

application domain, event models differ in their architecture and in the features they support.

Although several event models are available supporting a variety of features, non of them

suffices the requirements of a event-based system running in a large-scale environment that

supports application component mobility and real-time event delivery.

1.1 Motivation

In the traditional client/server [Maf00] computing model, the means of communication is

typically synchronous and logically one-to-one. Clients invoke a method on the remote server

and wait for the response to return. This requires that client and server need to have some

knowledge1 of each other. With the use of mobile or large-scale distributed systems, the need

for asynchronous, anonymous one-to-many communication pattern arises. Event Models are

application independent infrastructures that allow event-based communication, where an

Event Supplier asynchronously communicates Event Data to a group of Event Consumers,

ideally without knowledge of the number and location of the event consumers. Figure 1.1

shows the difference between the traditional client/server computing model and the event-

based computing model.

Distributed Event Models are used in a number of application domains, including real-time,

mobile and large-scale environments. To fulfil the needs of their application domain, event

models differ in their architecture and in the features they provide. In this paper, we review a

number of distributed event models and one centralised event model from different

application domains. To our knowledge, this has not been presented in this form yet. Thus,

each event model is reviewed by presenting background information, such as its history,

terminology and application domain, and by describing its architecture and the supported

features. By doing this, we outline the approaches taken to provide event-based

communication in different application domains. This enables us to reflect on the architecture

and the features needed to support event-based communication in our application domain,

1 The client needs to know the server on which to invoke the method and the server needs to

know the client to which to return the response.

State Of The Art Review of Distributed Event Model

March 2000 Page 2

which requires application component mobility and real-time event delivery in a large-scale

environment.

Fig. 1.1. Client/Server and Event-based Computing Models.

1.2 Roadmap

In the remainder of this Section, we introduce the general terminology of event models and

the most important event model features, which are supported by several of the reviewed

event models.

We then review the chosen event models in the following Sections. Each reviewed model

is introduced by presenting general background information, such as the event model’s

history, the event model’s application domain and the event model’s specific terminology. The

model is described by outlining its architecture and by determining the features supported.

Finally, we conclude this review by summarising and comparing the event models in

Section 9.

1.3 Event-based Communication

In order to provide event-based communication pattern, an event model defines two roles for

application components. The role of an event supplier which produces event data (events)

and the role of an event consumer which processes event data. The event model’s

infrastructure allows event suppliers2 to anonymously communicate events to a group of

event consumers. To receive events, event consumers have to subscribe to the events they

2 An event-based application may include several event suppliers, each of which

communicating events to a group of event consumers.

Client

Server

Request

Client/Server Communication

Event
Supplier

Event
Consumer

Event-based Communication

Event
Consumer Event

Consumer

Response

Event
Data

State Of The Art Review of Distributed Event Model

March 2000 Page 3

are interested in; they are said to register interest in events. As shown in Figure 1.2, once

consumers have subscribed to events, they receive all events that are produced within the

scope of the event model until they unsubscribe (de-register).

Fig. 1.2. Event-based Communication.

Distributed event models, as opposed to centralised event models where suppliers and

consumers are located in the same address space, allow suppliers and consumers to be

located on different physical machines. Supplier and consumer are connected via a network,

through which event communication takes place.

Event Supplier

time = 0;

produce event1

time = 2;

produce event2

time = 4;

produce event3

time = 6;

produce event4

…

Event Consumer X

time = 1;

subscribe to events

time = 2;

receive event2

time = 3;

unsubscribe

…

Event Model
Infrastructure

Legend:

 subscribe/unsubscribe Raise Event Deliver Event

Event Consumer Y

time = 1;

subscribe to events

time = 2;

receive event2

time = 4;

receive event3

time = 5;

unsubscribe

…

State Of The Art Review of Distributed Event Model

March 2000 Page 4

1.4 Event Model Features

Each of the Sections that reviews an event model includes:

• An introduction to the event model. The history and background to the event model are

presented along with a description of the specific terminology of the event model.

• A description of the architecture of the event model. The components of the event

model are introduced as well as the relationships among them.

• A presentation of the features of the event model. Special capabilities, such as Event

Filters, Real-Time Constraints and Quality of Service (QoS) Properties, featured by the

event model are presented.

• An event model summary.

In the remainder of this Section we present a general introduction of the most important

event model features and issues. These features represent valuable capabilities of event

models and thus, are addressed, although by different means, by many of the reviewed event

models.

1.4.1 Typed Events

The main purpose of an event model is to provide a means for delivering event messages

(events) from an event producer to one or more event consumers. The structure of the

propagated events varies considerably depending on the chosen model and the intended

application domain. Generally, events are said to be either generic or typed. The information

that describes a generic event is a data blob without an expressive structure of the likes of

type any, e.g. as supported by the Java programming language. Typed events on the other

hand, provide a well-defined and expressive data structure into which a wide variety of event

types can be mapped.

The structure of typed events ranges from simple to complex, usually consisting of a name

(instance name) and additional, user-definable data (parameters). Examples of typed events

structures are:

• A single string representing the event name, without any additional parameters

• A set of ordered strings, the first string representing the event name and the

remaining strings representing the event parameters

• A single string representing the event name preceding a set of ordered numbers

representing the event parameters

State Of The Art Review of Distributed Event Model

March 2000 Page 5

• A set of ordered attributes in which each attribute is a triple of name, type and

value. A predefined set of types is available. The set of available types may or may

not be limited to a subset of the types supported by the programming language

used.

• An programming language specific object including a set of attributes a described

above and a set of methods

It may be argued that simple forms of typed events are merely generic and not typed.

However, we consider events that have some sort of structure recognised by the event model

as typed. Significantly, typed events are not only well-defined and expressive, but also enable

the utilisation of event filters as introduced in the next Section.

1.4.2 Event Filters

An event-based system may consist of a number of suppliers, all of which produce events

that may contain different information. Thus, the number of events propagated in an event

based system may be quite large. However, a particular consumer may only be interested in

a subset of the events propagated in the system. Event filters are a means to control the

propagation of events. Filters enable a particular consumer to subscribe to the exact set of

events it is interested in receiving3. Consumers define filters by specifying the type and

parameters of the events they are interested in. Filters are passed to the event model

infrastructure during subscription. Before events are propagated, they are matched against

the filters and are only delivered to consumers that are interested in them, i.e. the matching

produced a positive result. The expressiveness of event filters depends directly on the

expressiveness of the event types supported by the event model.

In this Section, the general idea of event filters was introduced. Filtering capability is an

important event model feature and is therefore supported by many event models. There are

several different approaches for defining filters used in a event system and for passing them

to the event model infrastructure. The approaches taken by the reviewed event models will

be discussed in the corresponding Sections.

1.4.3 Quality of Service Constraints

A system’s non-functional requirements include real-time and Quality of Service (QoS)

constraints, the former being a subset of the latter. However, in this document we discuss

3 An event that is delivered uses network bandwidth and CPU processing power on the

consumer side. It is therefore desirable to prevent the delivery of unwanted events.

State Of The Art Review of Distributed Event Model

March 2000 Page 6

real-time and QoS constraints separately, thus when referring to QoS we exclude real-time

issues.

The requirements of a system include functional or non-functional requirements.

Definitions of functional and non-functional requirements are:

The QoS characteristics of an event system may be influenced by a variety of QoS

constraints. Many QoS properties are directly built into the event system, without allowing the

application to influence them. Other QoS properties are configurable by the application,

hence allowing the application to control the QoS characteristics of the event system and the

event delivery. We say an event model features QoS when applications can access and

configure the system’s QoS properties according to their needs.

[Som95] identifies reliability, response time and memory management as QoS constraints.

Response time is related to an event model’s real-time constraints which is discussed below.

Examples of an event model’s reliability properties are event reliability and connection

reliability. Memory management is addressed by properties like maximum number of

consumers and producers, queue sizes, order policies and discard policies.

1.4.4 Real-Time Constraints

In order to describe the problem domain, we firstly present a simple real-time system

description and then state a more definite description of a real-time system as defined in the

Oxford Dictionary of Computing:

Functional requirements are statements of services the system should
provide, how the system should react to particular inputs and how the system
should behave in particular situations. In some cases, the functional
requirements may also explicitly state what the system should not do
[Som95, p.118].

Non-functional requirements are constraints on the services or functions
offered by the system. They include timing constraints, constraints in the
development process, standards and so on. .. Examples are reliability,
response time and store occupancy [Som95, p.119].

State Of The Art Review of Distributed Event Model

March 2000 Page 7

A real-time system that features event-based communication requires the involved event

model itself provide real-time guarantees. As with other non-functional requirements, namely

the QoS constraints discussed above, we say an event model features real-time when

applications can access and configure the system’s real-time properties according to their

needs.

Although a distributed event model might not be able to guarantee low latency4, it may

include real-time constraints that enable predictions on the event delivery behaviour and

duration, thus allows deterministic event communication. A common real-time feature is a

priority assigned to an event that allows a dispatcher to pre-empt the delivery of an event in

order to deliver an event that has a higher priority. Other real-time requirements may include

delivery deadlines, e.g. earliest and latest delivery time, and delivery timeouts.

1.4.5 Scalability

[CDK94] states that distributed systems operate effectively and efficiently at many different

scales, the smallest practicable distributed system consisting of two clients and a server,

larger ones consisting of several hundred clients and many servers. Several local-area

networks are often interconnected forming wide-area networks that may contain thousands of

clients and servers, enabling resources to be shared between them. Hence, distributed

systems (of any scale) are typically required to perform in an environment where its scale

dynamically changes over time.

4 Latency in distributed communication depends on the available bandwidth and the quality of

the underlying network. Both of which depend on the topology and the traffic of the network

and may therefore change over time. Thus, “low” latency in a distributed event model is

relative.

A real-time system is any information processing activity which has to
respond to externally generated input stimuli within a finite and specified time
[BW96, p.2].

A system in which the time at which the output is produced is significant. This
is usually because the input corresponds to some movement in the physical
world, and the output has to relate to that same movement. The lag from input
time to output time must be sufficiently small for acceptable timeliness.

State Of The Art Review of Distributed Event Model

March 2000 Page 8

The term scalability is used to describe a distributed system’s behaviour when changing its

scale. There is no generally accepted scientific definition of scalability, with textbooks tending

to rely on examples to explain it and generally providing rather vague definitions. [CDK94]

uses the London telephone system that run out of numbers and a file server that becomes a

performance bottleneck with increasing number of accesses as examples of lack of

scalability. However, the following definition is also provided:

[Mul93] describes the evolution of the Andrew File System (AFS) to present their design

strategy for scalability, but also provides a more specific definition:

From those examples and definitions, it can be observed that the scalability of a systems

depends on several factors. With regards to event models, the parameters that may vary are:

• Number of users

• Number of entities (i.e. event consumers and producers)

• Number of mediators (i.e. zero or more)

• Number of nodes (i.e. physical machines)

• Number of activities (i.e. communications)

In principle, these parameters are independent, but in practice they are likely to increase

consecutively. For example, increasing the number of entities is likely to amplify the number

of activities. As suggested in the definitions above, an event system that scales well must

facilitate increasing the number of entities without other entities or mediators becoming a

performance bottleneck. Another requirements related to scalability could state that

application software on entities should not need to change when the scale of the system

The system and application software should not need to change when the
scale of the system increases. .. The demand for scalability in distributed
systems has led to a design philosophy in which no single resource –
hardware or software – is assumed to be in restricted supply. Rather, as the
demand for a resource grows, it should be possible to extend the system to
meet it [CDK94, p.18].

A scalable distributed system is one that can easily cope with the addition of
users and sites, and whose growth involves minimal expense, performance
degradation, and administrative complexity [Mul93, p.363].

State Of The Art Review of Distributed Event Model

March 2000 Page 9

increases. Generally, it can be observed that the importance of scalability increases with the

complexity of a distributed event system.

State Of The Art Review of Distributed Event Model

March 2000 Page 10

2. OMG CORBA EVENT MODELS

The Common Object Request Broker Architecture (CORBA) is an open standard for object

management specified by the Object Management Group (OMG). The architecture uses

Object Request Brokers (ORBs) as the middleware to allow application components, which

are objects, to communicate with each other across boundaries such as the network, different

operating systems and different programming languages. To extend the ORB core

capabilities, the CORBA 2.0 specification [Gro95a] defines a wide range of general-purpose

services, one of which is the CORBA Event Service [Gro95b]. This service allows application

components to communicate with events in addition to the means of communication provided

by the bare ORB. In order to extend the Event Service with filtering and quality of service

(QoS) capabilities, a Request For Proposal [Gro96] to define a CORBA Notification Service

was issued by the OMG in 1996. The submitted joint revised submission [Cea98] was

accepted by the end of 1998. The event models used in both services include a mediator

through which events or notifications respectively are distributed and can be characterised as

extremely general, to cover the needs of different business domains, and quite complex due

to the large number of interfaces. We review each of these event models in the following

sections.

2.1 CORBA Event Service

The CORBA Event Service [Gro95b] supports an event model that defines two roles for

objects. The role of a supplier which produces event data and the role of a consumer which

processes event data. Suppliers and consumers are collectively addressed as clients. There

are two approaches to initiate event communication between suppliers and consumers called

push-model and pull-model. They allow either supplier or consumer to initiate communication.

The push-model allows the supplier to initiate the transfer of event data to consumers and the

pull-model allows a consumer to request the event data from a supplier. In the former model,

the supplier initiates event communication and in the latter model the consumer initiates

event communication by polling the supplier for event data. A consumer may use either a

blocking (pull) or a non-blocking (try_pull) mechanism for requesting event data. In a simple

scenario, where consumers and suppliers invoke directly on each others’ interface methods

to exchange event data, clients are required to know each others’ object references.

Therefore, event communication cannot be anonymous. The CORBA Event Service also

supports the role of an event channel that enables anonymous event communication.

State Of The Art Review of Distributed Event Model

March 2000 Page 11

2.1.1 The Event Channel Architecture

The Event Channel is an intervening object between suppliers and consumers, that

decouples the communication between suppliers and consumers and allows multiple

suppliers to communicate with multiple consumers anonymously. An event channel therefore

acts as both supplier and consumer of event data. It can communicate with suppliers and

consumers using a mix of communication models. E.g. the consumer uses the pull-model to

obtain the event data from the event channel, whereas the supplier used the push-model to

transmit the event data to the event channel.

Fig. 2.1. CORBA Event Channel Overview.

An overview of the Event Channel architecture is shown in Figure 2.1. The architecture

includes the event channel as well as a group administration and several proxy interfaces on

each of the two sides of the channel. The supplier side includes all interfaces used by

suppliers and the consumer side includes all interfaces used by consumers. The group

administration interfaces, the SupplierAdmin and the ConsumerAdmin, act as factory objects5

for adding consumers and suppliers respectively. The operations for adding consumers

return proxy suppliers, the operations for adding suppliers return proxy consumers. The

obtained proxy interfaces are then used to connect to the push/pull supplier/consumer

interfaces.

The ConsumerAdmin interface defines two operations to obtain proxy suppliers.

I nt er f ace Consumer Admi n {
 Pr oxyPushSuppl i er obt ai n_push_suppl i er () ;
 Pr oxyPul l Suppl i er obt ai n_pul l _suppl i er () ;
}

The SupplierAdmin interface defines two operations to obtain proxy consumers similar to the

ConsumerAdmin.

5 A factory object is an object that instantiates new objects.

Event
Consumers

Event
Channel

Consumer
Admin

Proxy
Supplier

Proxy
Supplier

Supplier
Admin

Proxy
Consumer

Event
Supplier

Consumer Side Supplier Side

State Of The Art Review of Distributed Event Model

March 2000 Page 12

I nt er f ace Suppl i er Admi n {
 Pr oxyPushConsumer obt ai n_push_consumer () ;
 Pr oxyPul l Consumer obt ai n_pul l _consumer () ;
}

An event channel may also include build-in filtering capabilities and quality of service

(QoS) capabilities such as event priority or event delivery guaranty. Such features are not

defined in the event service specification and depend therefore on the implementation of a

particular vendor. To combine the features of different event channels, this architecture

supports the composition of event channels. That is, one event channel may consume the

events supplied by another. This solution is sufficient, but as a side-effect it increases latency

and constrains interoperability. The CORBA event service specification does not include a

policy for clients to locate event channels. There are several means for clients to obtain the

event channel’s object reference, including making use of a naming service or looking it up in

a locally stored file or table.

2.1.2 Generic and Typed Event Channels

An event channel can be implemented as either generic or typed event channel. Both work

as described above, but the generic event channel only supports generic event

communication, whereas the typed event channel supports both typed and generic event

communication. The information that describes a generic event is of data type any. Thus, it is

flexible enough to cope with the needs of different applications. Typed event data is

described in OMG Interface Definition Language (IDL). Suppliers call operations on

consumers using a mutually agreed IDL interface. A generic event channel can handle

events supplied and consumed in any combination of the forms push/pull and generic/typed.

Event data supplied in a typed form can be consumed in a generic form and vice versa6. The

authors of [Cea98] state that many users have found typed event communication difficult to

understand and implementers have found it particularly difficult to deal with.

2.2 CORBA Notification Service

In December 1996, the OMG issued a Request For Proposal [Gro96] to define a CORBA

Notification Service. The notification service extends the existing CORBA Event Service

[Gro95b] described in the last section adding new capabilities such as filtering and quality of

6 Thus, the event channel must support the conversion of a typed event into a generic event,

i.e. IDL into any, and vice versa. Doing this requires an understanding of the generic event

channel interfaces and depends on the particular implementation of the event channel.

State Of The Art Review of Distributed Event Model

March 2000 Page 13

service (QoS). The finally submitted joint revised submission [Cea98], written by a group of

organisations including Borland International, International Business Machines Corporation,

Iona Technologies Plc. and NEC Corporation, was accepted by the OMG by the end of 1998.

2.2.1 The Notification Channel Architecture

The main design goal of the CORBA Notification Service was to directly extend the existing

CORBA Event Service enhancing it with important features. This is achieved by inheriting the

interfaces of the Notification Channel directly from those defined be the Event Channel

allowing for interoperability between basics event service clients and notification service

clients. The notification channel therefore contains all the interfaces and functionality

supported by the event channel. Additionally, the notification channel supports multiple

instances of the ConsumerAdmin and the SupplierAdmin interfaces as depicted in Figure 2.2.

Fig. 2.2. CORBA Notification Channel Overview.

This symmetric architecture7 of the notification channel supports capabilities such as

administration, filtering, quality of service (QoS) and structured event communication, which

are described in the following sections. It also includes an optional event type repository that

may be used to perform run-time type checking of the event properties or to discover the

structure of types of events.

7 The supplier side and the consumer side of the notification channel are symmetric.

Notification
Channel

Consumer
Admin

Proxy
Supplier

Proxy
Supplier

Supplier
Admin

Proxy
Consumer

Event
Suppliers

Event
Consumers

Consumer Side Supplier Side

Consumer
Admin

Proxy
Supplier

Proxy
Supplier

Supplier
Admin

Proxy
Consumer

Proxy
Consumer

Proxy
Consumer

State Of The Art Review of Distributed Event Model

March 2000 Page 14

2.2.2 Administrative Capabilities

At creation time, a number of administrative properties can be set on a notification channel to

help in managing memory space. Those properties include the maximum number of suppliers

and consumers, as well as the maximum number of events that will be queued by the

notification channel before the notification channel begins discarding them.

Starting from any object, clients may discover all objects that comprise a notification

channel. Whenever a factory object creates a new object, a unique numeric identifier is

assigned to it. Factories also support operations to query the identifiers created by it, to

convert them into object references and to return the reference of its parent object. These

identifiers are unique among all objects created by a particular notification channel, but unlike

Interoperable Object References (IOR), they are not globally unique. Globally unique

identifiers are required by systems that use federated Notification Channels.

The offer_change and subscription_change operation are available on interfaces

supported by notification channels. The former is used by suppliers to indicate changes in the

supplied event types, the latter is used by consumers to inform suppliers of the event types

they require. Consequently, suppliers know which events are being consumed and which are

not. This knowledge can be used to produce notifications on demand and therefore optimise

network traffic.

2.2.3 Filtering Capabilities

The most important enhancement introduced by the notification service is the support of filter

objects. Filter objects can be assigned to individual proxy objects (proxy supplier and proxy

consumer), to admin objects (supplier admin and consumer admin) and to the notification

channel itself. This results in hierarchical filtering on each side8 of the notification channel,

where the filter object assigned to an admin object applies to all its proxy objects and

therefore to its clients, whereas the filter object assigned to a proxy object applies only to the

group of clients connected to itself. Filter objects encapsulate a set of constraints which are

text strings containing a boolean filtering expression. All filter objects belonging to an event,

i.e. defined at proxy, admin and channel level, are evaluated at the proxy level when an event

is received, resulting in a decision whether or not to forward an event. The filter object shown

below forwards events of domain type “Finance” and type name “ExchangeRateUpdate” or of

domain type “Health” and type name “PulseLow” that contain an attribute “office” whose value

8 As opposed to other event models, filtering can take place on the supplier side as well as on

the consumer side.

State Of The Art Review of Distributed Event Model

March 2000 Page 15

is equal to seven. The domain type, type name and the attributes of events are further

described in section 2.2.5.

(($domai n_t ype == “ Fi nance” and $t ype_name == “ ExchangeRat eUpdat e”)
or ($domai n_t ype == “ Heal t h” and $t ype_name == “ Pul seLow”))
and of f i ce == 7

The syntax of the constraint expression conforms to a constraint grammar defined in a

constraint language. The notification service specifies a default constraint language that is an

extension of the Trader Constraint Language [Gro97]. Other constraint languages can be

defined and can co-exist in the notification service.

The notification service defines two types of filter objects. The first, called forwarding filter,

affects the event forwarding decision as described above. The second, called mapping filter,

influences the delivery policy applied to an event. Mapping filter objects change the

characteristics of an event. Constraints can de defined which, when matched, dynamically

assign a different priority to an event or set a changed expiration time, i.e. lifeline.

2.2.4 Quality of Service Capabilities

Another extension to the event service introduced by the notification service is the definition

of interfaces for influencing the Quality of Service (QoS) characteristics of event delivery. A

variety of QoS properties, such as reliability and priority, may be set to control the delivery

characteristics of event messages. Operations for setting QoS properties are specified at

various levels of scope throughout the notification service architecture. QoS properties can

be accessed on:

• The notification channel (per-channel)

• Supplier and consumer group administration (per-admin)

• Proxy suppliers and consumers (per-proxy)

• Individual event messages (per-event)

Table 2.1. shows the supported QoS properties and their level of scope. A detailed

discussion of these QoS properties may be found in [Cea98].

State Of The Art Review of Distributed Event Model

March 2000 Page 16

QoS property Per-Event Per-Proxy Per-Admin Per-Channel

EventReliability
�

�

ConnectionReliability

�
 � �

Priority � � � �
StartTime 	
StopTime

Timeout � �
 �
StartTimeSupported

�
 � �

StopTimeSupported
�

 � �
MaxEventPerConsumer

�
 � �

OrderPolicy
�

 � �
DiscardPolicy

�
 � �

MaximumBatchSize
�

 �
PacingInterval

!
 " #

Tab. 2.1. Notification Service QoS properties.

The list of supported QoS properties, along with the levels of scope where settings can be

made, provides a very flexible QoS configuration of a notification channel. However,

meaningless QoS settings are not prevented. An event message is transmitted through three

conceptual points; the supplier side, the consumer side and the notification channel. End-to-

end QoS requirements can only be guaranteed with the co-operation of all three parties.

Although event delivery can be assured by setting persistent reliability and assign high

priority and long lifetime to a message, no predictions can be made regarding delivery

latency.

2.2.5 Structured Event Communication

To provide an easy-to-use but strongly typed event communication an new event message

style, the structured event message, is introduced by the notification service. Structured

events provide a well-defined data structure into which a wide variety of event types can be

mapped. As depicted in Figure 2.3, structured events compose of a header and a body.

State Of The Art Review of Distributed Event Model

March 2000 Page 17

Fig. 2.3.The General Structure of a Structured Event.

The fixed event header contains event type and instance identifier and the variable event

header may contain QoS requirement name-value pairs, e.g. message priority. The event

body contains the filterable event data also name-value pairs and a remainder that may be

used to transmit additional large data blobs, e.g. files.

2.3 Summary

Both, the CORBA Event Service and the CORBA Notification Service specify an event model

that defines the role of event suppliers, event consumers and an event channel or a

notification channel respectively. Event communication may either be initiated directly

between suppliers and consumers or may be delivered via a channel. The channel acts as a

mediator between event suppliers and consumers, thus enables anonymous event

commination. Both CORBA event services feature the push-model and the pull-model for

delivering event data, whereas the other event models reviewed in this document support the

push-model only. Event data is propagated in the form of generic events or typed events and,

with the notification service, in the form of structured events. The notification service directly

ohf_value1ohf_name1

domain_type

remainder_of_body

type_name

event_name

ohf_value2

ohf_valuen

ohf_name2

ohf_namen

fd_name1 fd_value1

...

...

fd_name2

fd_namen

fd_value2

fd_valuen

Event Header

Event Body

Fixed Header

Variable Header

Filterable Body Fields

Remaining Body

State Of The Art Review of Distributed Event Model

March 2000 Page 18

extends the event service by enhancing it with Filtering Capabilities, QoS Properties and

Administrative Features.

Both event models can be characterised as extremely general, covering the needs of a

variety of business domains, including telecommunications, finance, and medical and

consequently complex due to the large number of interfaces and properties. Neither of the

event models addresses federated event communication. To overcome this, the OMG issued

a Request For Proposals for a service that provides the ability to configure, manage, and

control a group of event channels connected together in a topology of arbitrary complexity

[Gro98]. The request for proposal was answered by a consortium that submitted a

specification for management of event domains in December 1999, the vote for the

suggested architecture was completed in March 20009.

9 The decision was not available for publication yet.

State Of The Art Review of Distributed Event Model

March 2000 Page 19

3. JAVA EVENT MODELS

Java is an object-oriented programming language developed by Sun, that was formally

announced at a major conference in May 1995. It is suitable for use for the same type of

development tasks as C and C++, but without the difficulties and source of bugs common to

those languages. Java generated immediate interest in the business community and became

increasingly popular because of Internet-related development, such as the World Wide Web.

The Java architecture includes a Delegation Event Model [SM97] and a Distributed Event

Model [SM98]. The delegation event model is used for event communication within a single

Java Virtual Machine (JVM) for small centralised applications such as Graphical User

Interfaces (GUIs), whereas the distributed event model enables event communication

between objects located in different JVM’s which may be distributed across virtual, and even

physical, machines. Both event models are reviewed in the following Sections.

3.1 Java AWT: Delegation Event Model

As part of the Java Foundation Classes (JFC), a class library, the Abstract Window Toolkit

(AWT) is the standard Application Program Interface (API) for providing Graphical User

Interfaces (GUIs) for Java applications. The Delegation Event Model [SM97] was introduced

in AWT by Java Development Kit (JDK) 1.1. to catch and process GUI events. It replaces the

event processing model in version 1.0 of the AWT that is based on inheritance. The

delegation event model provides a more robust framework to support more complex Java

applications than the inheritance-based event model and supports filtering of events. A

number of other Java components also make use of the delegation event model. It has been

adopted by the JavaBeans component architecture for general event processing and has

been extended by the Swing component set, a new GUI toolkit. Furthermore, it is supported

by the EmbeddedJava and PersonalJava application environments. The former is used for

building embedded applications with dedicated functionality and strictly limited memory. The

latter is used for building network-connected applications for consumer devices for home,

office and mobile use.

3.1.1 Delegation Event Model Architecture

The delegation event model is the only centralised event model we review. Event suppliers

are called Event Sources and event consumers are called Event Listeners. An event source,

typically a GUI component, is said to fire events, when propagating an event of a specific

State Of The Art Review of Distributed Event Model

March 2000 Page 20

Event Type. Event source, event listener and event types are encapsulated in two JDK 1.1

interfaces;

Java. ut i l . Event Obj ect
Java. ut i l . Event Li st ener

Java applications can implement simple event-based communication by implementing

methods defined in the two JDK interfaces in the manner described in [SM97]. In order to

establish event-based communication, listeners register with the specific event type they are

interested in by invoking the set<EventType>Listener or add<EventType>Listener methods

on the source and passing the interface reference of their event handler, as shown in Figure

3.1. The source provides a set<EventType>Listener and an add<EventType>Listener per

supported event type. To register a single listener, the single-cast set<EventType>Listener

method is invoked. The multi-cast add<EventType>Listener method is invoked to register

several listeners that are interested in the same event type on a source. To fire an event, the

event source object invokes the handler method on the listener object and passes the

instance of an event type.

Fig. 3.1. Java Delegation Event Model Overview.

Events are always delivered synchronously, meaning that the listener’s event handler is

actually executed by the source thread. Hence, a multi-cast source that fires an event must

deliver the event to the listeners in sequence. 10

10 No guarantees are made about the order in which the events are delivered to a set of

registered listeners for a given event on a given source.

AddEventTypeListener
(EventTypeListener Handler)

Event Source

class Handler implements
EventTypeListener

void Occurred(Event ev)

Event Listener

Register Event Listener

Deliver Event Object

State Of The Art Review of Distributed Event Model

March 2000 Page 21

The delegation event model couples event sources and event listeners very tightly

together, thus there is no possibility for anonymity. The only way to partially de-couple

sources and listener is by using so-called Event Adapters.

3.1.2 Event Adapters

A Java application may use an Event Adapter component to interpose between event source

and event listener. An event adapter can be inserted between source and listener to partially

de-couple the event communication between them as shown in Figure 3.2. As opposed to

other event models, e.g. CORBA Event/Notification Service, the presented event adapter is

asymmetric, i.e. it hides the listener form the source, but not vice versa. Thus, an event

adapter introduces some notion of anonymity, i.e. the listener is anonymous but the source is

not.

Fig. 3.2. Java Delegation Event Model with an Event Adapter.

The event adapter is an extremely important component of the delegation event model.

Besides de-coupling the source from the listener, an event adapter may also introduce

additional behaviour on event delivery, including event queuing, event filtering and event

demultiplexing. The demultiplexing adapter technique may be used in applications where a

given event listener object only implements a given event listener interface once. Thus if the

listener registers itself with multiple event sources for the same event, the listener has to

determine for itself which source actually emitted a particular event. An adapter may be used

AddEventTypeListener
(EventTypeListener Handler)

Event Source

void doIt(Event ev) {
…

Event Listener

Register Event Adapter

Deliver
Event Object

Forward
Event Object

class Handler implements
EventTypeListener

void Occurred(Event ev)
destination.doIt(ev);

Event Adapter

State Of The Art Review of Distributed Event Model

March 2000 Page 22

to allow the events fired by different event sources to invoke on different methods on the

listener object. For example, this technique may be used to have two buttons invoke on two

different methods in the same listener.

3.2 Java Distributed Event Model

Java’s Distributed Event Model [SM98] relies on Java Remote Method Invocation (RMI) that

enables objects in one JVM to seamlessly invoke methods on objects in a remote JVM.

Therefore, it allows an object in one JVM to register interest in the occurrence of some event

occurrence in an object in some other JVM. This is the event model adopted by Jini [SM99], a

Java technology that provides a simple mechanism which enables devices to plug together to

form an communication community without any planning or installation.

3.2.1 Distributed Event Model Architecture

The architecture of Java’s distributed event model is similar to its delegation event model. It

specifies the interface that is used to send an event and the information that an event must

contain and allows various degrees of delivery assurance, different policies of event

scheduling and an interposing object that may collect, hold, filter and forward events.

Although it provides an example of an interest registration interface, it does not specify such

an interface. This is to allow a wide variety of kinds of events. Thus, the way these events

register interest may vary from object to object.

The entities involved are:

• The Event Generator is the event supplier that generates events and sends them to

registered listeners.

• The Remote Event Listener is the event consumer that registers interest in some kind

of events in some other objects.

• The Remote Event is the event object that is passed from generator to listener. It

contains information about the occurred event kind, a reference to the generator

object, a sequence number to identify the particular event instance and a handback

object supplied by the listener.

The event listener registers with the event generator that generates the events it is

interested in. Such a registration is limited to a given duration using the notation of a lease.

This is discussed in more details in Java’s Distributed Leasing Specification. The event

generator sends events to the registered listener by calling the listeners notify method. As

shown here,

State Of The Art Review of Distributed Event Model

March 2000 Page 23

publ i c i nt er f ace Remot eEvent Li st ener
 ext ends Remot e, j ava. ut i l . Event Li st ener {
 voi d not i f y(Remot eEvent t heEvent
 t hr ows UnknownEvent Except i on, Remot eExcept i on;
}

the notify method has a single parameter, the event. To know if the call was successful a

call to the notify method is synchronous. The sequence number included in the event acts as

a hint to the number of event occurrences and is guaranteed to be strictly increasing.

3.2.2 Third Party Objects

As in the Java delegation event model [SM97], the distributed event model may be enhanced

with third party objects, or agents, so called Distributed Event Adapters. As shown in Figure

3.3, an event adapter interposes (mediates) between event generator and event listener and

must support the notify method. Thus it allows enhancements to functionality without

changing the basic interfaces.

Fig. 3.3. Java Distributed Event Model with an Event Adapter.

It may act as filter or mailbox and may introduce policies of reliability to the event model.

The use of event adapters also introduces a notation of anonymity, but increases event

delivery latency. Since event adapter functionality is not specified, it can be used to provide

application specific features for a listener or a group of listener while co-existing and co-

operating in a system with other listeners and adapters without affecting them.

Event Generator Remote Event
Listener

Register Event Adapter by any means

Deliver Remote
Event Object

Event Adapter

Forward Remote
Event Object

Notify

N
o
t
i
f
y

State Of The Art Review of Distributed Event Model

March 2000 Page 24

3.3 Summary

The Java programming language architecture introduces a delegation event model used for

processing events in small centralised applications such as GUI’s and a distributed event

model used for event communication between object located in different JVM’s. Both event

models are adapted by a number of Java components and environments.

The delegation and the distributed event model have a similar architecture in that they

allow the use of adapters. Adapters are objects that interpose between event generator and

listener, thus enhance the system with application specific functionality, such as filers or QoS,

without loosing compatibility. The delegation event model can easily be included in

applications. This is achieved by implementing the specified event listener interface and by

registering it with an event source. The distributed event model can be described as a thin

event model specification that does not specify an event registration method, but therefore

allows event generators, listeners and adapters from different vendors to co-exist and co-

operate within a system.

State Of The Art Review of Distributed Event Model

March 2000 Page 25

4. THE CAMBRIDGE EVENT MODEL

Jean Bacon, John Bates, Richard Hayton and Ken Moody developed a Composite Event

Model at the University of Cambridge Computer Laboratory. As described in [BBHM96], the

Cambridge event model has a simple architecture, but has a feature that is not commonly

supported by event models, that of event composition. The approach to event communication

taken in the Cambridge event model is described below using an example.

4.1 Cambridge Event Model Architecture

The Cambridge event model, based on the client-server computing paradigm [Maf00],

defines the role of an event service11 that supplies event objects (events) and the role of an

event client that receives events. To include the Cambridge event model architecture,

applications must extend their clients and services to incorporate:

• Event specification; by services

• Registration; by clients at services

• Notification; by services to clients

The model includes an Interface Definition Language (IDL12) for events, which enables

services to specify (declare) the events they can notify. The IDL also allows clients to see the

event declarations of the services and to select those of interest, i.e. register with them. The

for the event model selected IDL is a, in Cambridge developed, high-performance PRC

system. A pre-processor is used to translate the IDL code. The pre-processor not only

generates client and service stubs for marshalling and un-marshalling of method invocations

but also event specific stubs required by event objects.

The examples below show the use of the Cambridge event model on the service side for

an active badge system. The IDL declaration of an event class, the instantiation of an event

object and the notifying of an event object are shown.

11 An event service is an event producing entity located on a physical machine that may host

one or more event services. Hence, an event service corresponds to the server of the client-

server computing paradigm.
12 The IDL of the event model is different from the IDL specified by the OMG, but has similar

functionality.

State Of The Art Review of Distributed Event Model

March 2000 Page 26

• IDL declaration of an event class:

 Badge : I NTERFACE =
 Seen : EVENTCLASS [badge : BadgeI d;
 sensor : Sensor I d] ;
 END.

• Instantiation of an event object that represents badge 17 being detected by sensor 29:

 e = Badge_Seen(17, 29) ;

• Sending an event object:

 Event Ser ver . Si gnal (e) ;

The examples below show the use of the Cambridge event model on the client side for an

active badge system. The instantiation of a template, the registration and de-registration of

interest with an event and the evaluation of an event object are shown.

• Register interest with an event:

 t empl at e = Badge_Seen(P, R) ;
 Event Cl i ent . Regi st er (c l i ent env, Event Handl er , t empl at e) ;

In order to receive the events an event client is interested in, it creates an event template

and registers with the relevant event service. To do this, an event client invokes on the

register method and passes a client specific parameter list. The parameter list includes a

template for event filtering and an event handler which is the method within the client that is

invoked on event notification. Furthermore, a parameter called clientenv for client specific

purpose is passed.

• Evaluate a received event object:

 voi d Event Handl er (Opaque * c l i ent env, Event * event) ;

Event clients support an event handler method which is invoked when an event is

delivered. Hence, the actual event data is passed to the client and the clientenv field is

returned to it. This field can be decoded by the client to retrieve instance specific information

in addition to the event data.

• De-register interest with an event:

 Event Cl i ent . DeRegi st er (t empl at e) ;

State Of The Art Review of Distributed Event Model

March 2000 Page 27

If a client no longer requires a registration in an event, it cancels its interest by invoking the

deregistration method.

4.2 Event Filtering

Event Filtering is supported by the event model through the use of templates. A client

specifies a template that describes which events it is interested in. The template is passed to

the service as a parameter when the client registers with the service. An application

programmer uses a pre-processor to generate extra code for each event object. This code is

invoked at run-time to match the template against the actual event. Templates may use

variables in place of parameters to indicate ‘wild cards’ which match any value in raised

events. They are of the general form:

t empl at e = Event TypeName(par 1, par 2, . . , par n) ;

Examples of filter template object instantiations are:

• Notify of every sensor where badge 17 is seen:

 t empl at eWher e = Seen(17, R) ;

• Notify of every badge seen at sensor 29:

 t empl at eWho = Seen(P, 29) ;

• Notify of every badge seen at any sensor:

 t empl at eGod = Seen(P, R) ;

As discussed in [Haa98], the template approach for event filtering is very limited. Because

events and templates have the form:

Event TypeName(ar g1, ar g2, . . , ar gn)
Event TypeName(par 1, par 2, . . , par n)

they only allow expressions to be matched one-by-one against actual event parameters,

i.e. arg1 against par1, arg2 against par2, etc. It is impossible for parameters to be compared

against each other. Furthermore, a logical conjunction is always implied between template

expressions.

State Of The Art Review of Distributed Event Model

March 2000 Page 28

4.3 Event Composition

Clients may require events from multiple services and may want to detect a specific pattern of

event occurrences from these different sources. Such a combination of event occurrences,

where a client is interested in a sequence of event occurrences but not in any of the event

alone, is called event composition. To address this requirement, the Cambridge event model

supports the combination of event templates in the general form of:

Event TypeNameA(par 1, par 2, . . , par n) ; Event TypeNameB(par 1, par 2,
. . , par n) ; . .

A composite event scenario example for an active badge system is to monitor for everyone

who is in a building when the fire alarm is sounded. The event template sequence for this

scenario could be:

Fi r eAl ar m(7) ; Seen(7, P, R) ;

This event template sequence traces every badge (worn by a person) seen by any sensor

in building 7 after the fire alarm went off in that building.

Such an event template sequence is being checked by a monitor which is busy until it has

finished that detection. A composite event specification language may be used to define a

monitor machine that is able to control more complex sequences of composite event

templates.

4.4 Summary

The architecture of the Cambridge event model can be characterised as simple and easy to

understand. Although, it is less flexible that other event models and does not feature QoS or

real-time capabilities, it does support event templates that are used for event filtering and

allows event composition. The approach of using event templates for event filtering is very

limited. But may be compensated for by using composite events. Composite events are

currently not commonly supported by event models, but may become more common due to

their usefulness in constructing complex event filters.

The model includes an IDL for events, that enables services to specify the events they can

notify. A pre-processor is used to translate the IDL code into client and service stubs for

marshalling and un-marshalling of method invocations and event specific stubs required by

event objects. Using a pre-processor is elegant, but, depending on the actual implementation,

may not scale well in a distributed application.

State Of The Art Review of Distributed Event Model

March 2000 Page 29

5. ECO

The ECO event model, whose architecture and features are described in the following

Sections, was originally designed to provide the means for event-based communication in the

VOID shell [CCK+95]. The VOID shell is a system for distributed virtual world support,

developed at Trinity College Dublin, as a part of the Moonlight [CCK+95] project. The version

of the ECO event model implemented as a central part of the VOID shell is called ECOlib

[OCC+95]. ECOlib features event filters called notify constraints and another constraint type

called pre- and post-constraints.

So far, the ECO event model was also implemented in [ODC+96] as DECO (Distributed

ECO) and in [Haa98] as SECO (Scalable ECO)13. Both, DECO and SECO, allow event-

based communication across a distributed system. The features supported by DECO include

precompiled notify constraints which are not dynamically linkable and an extension to the

ECO event model called zones, which we will discuss further below. DECO relies on the ISIS

framework for group communication, whereas SECO is implemented using Kanga [Bur96] as

the means for synchronous communication across a distributed system. In order to scale

well, SECO features notify constraints that are dynamically linkable.

5.1 ECO Event Model Architecture

The abbreviation ECO stands for Events, Constraints and Objects, which are the three

central concepts used in the ECO event model. [SCT95a] and [SCT95b] describe the

rationale of the ECO event model, the three central concepts and ECO’s event application

interface. In the following Sections, we first explain ECO’s three central concepts, then

introduce ECO’s event applications interface with its three operations, and finally we present

ECO’s features, namely constraints and zones.

5.1.1 Events, Constraints and Objects

ECO’s basic abstractions are objects that represent entities, events that provide the means

for entities to interact and constraints that allow the specification of synchronisation and

notification requirements.

Objects, also called entities, are instances of classes and have attributes and methods.

They are encapsulated, thus cannot directly access each other’s attributes or invoke on each

13 SECO has been implemented as uSECO based on unicast communication and as mSECO

based on multicast communication. Both versions are described in [HMN+00].

State Of The Art Review of Distributed Event Model

March 2000 Page 30

other’s methods, but may communicate by announcing and processing events. An object that

announces events acts as an event supplier and an object that processes event acts as an

event consumer. An event that is propagated between objects is of a particular type, which

determines the number and the type of the event’s parameters. Constraints are used to

specify a condition that controls the propagation of events. ECO specifies different types of

constraints that may be used for various purposes. Notify constraints act as event filters,

whereas pre- and post-constraints may be used to implement synchronisation or

concurrency.

5.1.2 ECO’s Event Application Interface

The event API provided by ECO includes the three fundamental operations needed in an

event based system, which are subscribe, unsubscribe and announce. An event processor

registers interest in a particular event type by invoking on the subscribe method. To perform

the opposite of a subscription, i.e. to cancel interest in a particular event type, an event

processor invokes on the unsubscribe method. Objects that produce events use the

announce method to communicate them to event processors.

The subscribe operation has the form:

Subscr i be(event Type, event Handl er , not i f yConst r ai nt , pr eConst r ai nt ,
post Const r ai nt)

The eventType is the type of the event the event processor is interested in and the

eventHandler is a callback that is invoked on by the event announcer when events are to be

delivered. The event announcer evaluates the notifyConstraint to determine the propagation

of an event. PreConstraints and postConstraints are executed locally on the event processor

side to control the delivery of an event as described below.

The unsubscribe operation has the form:

Unsubscr i be(event Type, event Handl er)

The eventType and the eventHandler are used to identify the subscription previously made

by the event processor that has to be cancelled.

The announce operation has the form:

Announce(event Type, event Par amet er s)

The eventType identifies the type of the event to be propagated and the eventParameters

is the actual event data to be distributed.

State Of The Art Review of Distributed Event Model

March 2000 Page 31

5.2 Notify Constrains

Notify constraints are ECO’s means to support event filtering and are therefore evaluated on

the event announcing side. The ECO event model does not specify how notify constraints be

defined or implemented, but does define typed events that may include a large number of

parameters with various types. Thus, it is up to the particular implementation to support notify

constrains that are sufficient for event filtering on typed events.

5.3 Pre- and Post-Constraints

Pre- and post-constraints behave as event processor method wrappers providing a means to

control the delivery of events. These constraints are evaluated local to the event processor

and are used to implement:

• Synchronisation within the event processor

• Control of the concurrency level within a method or within the event processor

• Timing control, e.g. start time for earliest delivery and end time for latest delivery

• Method pre- and post-conditions

In addition to this, pre-constraints can be implemented to request that events be discarded,

enqueued or processed before they are delivered.

5.4 Zones

Event filters, i.e. notify constraints, are supported by many event models to provide the

means of minimising event propagation. However, the ECO event model supports another

way to further reduce event propagation. Events in ECO may also be scoped. This ensures

that events are not delivered outside their scope even with a matching notify constraint.

ECO organises its entities into zones. An entity associated with a particular zone is said to

be a member of that zone. [ODC+96] and [O’C97] state that members of an ECO zone may

change dynamically and that zones may overlap allowing entities to become members of

several zones. This is useful in a scenario where a robot in a smart building is interested in

events announced within the smart building. The robot subscribes to doorOpenClose and

generalAlarm events. To scope these events, the robot also joins the zone that consists of

the floor he is currently moving on14 and the zone that consists of all alarm sensors within the

14 This scenario also shows the dynamic group membership [Bir96] aspect of zones. The

robot has to dynamically change its group membership when moving from one floor to

State Of The Art Review of Distributed Event Model

March 2000 Page 32

building. The former type of zone is said to be geographical, the latter is said to be functional.

Without the zones, the robot would receive doorOpenClose events from the whole building,

although only the ones close to its position, i.e. on the current floor, are of interest to it. As for

generalAlarm events, the robot is obviously interested in alarms that are announced

anywhere in the building, such as a fire alarm event on the ground floor or a power failure

event on another floor.

Fig. 5.1. Overlapped and Nested Zones.

[O’C97] describes several different ECO zone concepts. As already mentioned,

overlapping zones allow an entity to become a member of several zones simultaneously.

Whereas nested zones allow large zones that contain many entities to be subdivided. In a

scenario where the announced event is limited to a particular zone, of which the announcing

entity is not a member, the zone is said to be targeted. Finally, zones may be created and

deleted dynamically, and entities may change their zone memberships at run time. These

zones concepts may also be combined (Figure 5.1 shows zones that are overlapped and

nested).

5.5 Summary

The ECO event model specifies the three basic operations needed to provide event-based

communication, namely subscribe, unsubscribe and announce. Its architecture does not

depend on a centralised component for event propagation, such as CORBA’s event channel.

This removes a single point of failure. ECO’s main features include event filters, called notify

constraints, pre-constraints and post-constraints that act as wrappers on the event processor

side and the notion of zones that limit the scope of event propagation.

another. Before joining the new zone, the robot might have to create the new zone and after

leaving the old zone, the robot might have to delete the old zone respectively.

Zone 1

Zone 2

Zone 3

E6

E5

E4
E3

E2

E1

E7

State Of The Art Review of Distributed Event Model

March 2000 Page 33

Of ECO’s features, pre-constraints, post-constraints and zones are unique amongst event

models. Pre- and post-constraints may be used to implement additional subscription-specific

functionality on the event processor side such as synchronisation, timing control and

concurrency control. Furthermore, pre-constraints may implement event delivery strategies

such as enqueuing, pre-processing or discarding. Since pre- and post-constraints are

subscription specific, they provide a very flexible means of controlling event delivery. Whether

such a degree of flexibility is efficient15, manageable16 and feasible17 in a large-scale

distributed system depends on the application domain.

The notion of geographical and functional zones is used in ECO to limit the scope of the

propagation of events. Several different concepts of zones, including overlapping, nested,

targeted and dynamic zones as well as combinations of them, are described in [O’C97].

Limiting the scope of event propagation, regardless of matching notify constraints, provides a

powerful means of minimising network traffic and CPU processing time, particularly in a

large-scale system.

15 Most event-based systems are likely to have similar delivery strategies on the event

processor side. Therefore, its is more efficient to have the delivery strategy build in, instead of

having every event processor defining similar pre and post constraints.
16 Although synchronisation delivery strategies might be chosen based on a local decision, a

system that implements a wide range of different strategies may become unmanageable.
17 A wide range of different delivery strategies may interfere with other system features such

as event ordering or timely delivery.

State Of The Art Review of Distributed Event Model

March 2000 Page 34

6. JEDI

The JEDI (Java Event-based Distributed Infrastructure) is an object-oriented infrastructure

implemented in the Java programming language that supports the development of event-

based applications. The JEDI architecture, which is described in [CDNF98a] and [CDNF98b],

has been developed by CEFRIEL – Politecnico di Milano. It has been used to implement a

workflow management system called OPSS18 and a process support system called

PROSYT19.

6.1 JEDI Event Model Architecture

The architecture of the JEDI event model, which is described in Figure 6.1, is based on the

notion of active objects (AOs) and event dispatchers (EDs). An AO is an autonomous entity

that performs the role of an event producer or an event consumer, thus generating or

notifying events. The ordered delivery of the events is the responsibility of the ED. The ED

supports an event subscribe and an event unsubscribe operation. These are invoked by the

AOs to register, or cancel, with the particular event.

Fig. 6.1. A Logical View of the JEDI Architecture.

In JEDI, events are defined as a set of ordered strings. The first string representing the

event name and the remaining strings representing the event parameters. This allows the

18 OPSS (ORCHESTRA Process Support System) is introduced in [CDNF98a] and

[CDNF98b].
19 PROSYT is introduced in [CG98]. It uses mobile agents in its design and implementation

and thus makes use of JEDI’s mobility feature, which is introduced in this Section.

Event Dispatcher

AO AO

AO AO

AO

Event

State Of The Art Review of Distributed Event Model

March 2000 Page 35

definition of an event using a notation similar to function calls in traditional programming. An

example of an event in JEDI might be

pr i nt (MyDocument , Our Laser Pr i nt er)

where print is the event centralised component name and MyDocument and

OurLaserPrinter are the event parameters.

As shown in Figure 6.1, the ED is the logically centralsed component of the JEDI

architecture that must have global knowlegde of the generated events and the subscriptions.

However, [CDNF98b] statess that a centralised implementation of the ED can become a

critical bottleneck for a distributed system. Thus, JEDI provides two implementations of the

ED; a centralised and a distributed version. The centralised version covers the requirements

of simple, small-scale applications exchanging a limited number of events. Whereas the

distributed version addresses the needs of large-scale applications, interconnecting several

AOs running on different nodes of the network.

The distributed version of the ED consists of a set of dispatching servers (DSs)

interconnected in a tree structure. As depicted in Figure 6.2, each DS is located on a different

node and is connected to one parent DS, unless it is the root DS, and to zero or more

descendants. The AOs are connected to the distributed ED via a DS.

In the distributed version of the ED a hierarchical strategy is employed for the distribution

of event, subscription and unsubscription messages amongst the DSs. Each DS that receives

a subscription or unsubscription request from an AO (or another DS) updates its entry table

and passes the request on to its parent DS. Hence, all subscription and unsubscription

requests are propagated upwards the tree until they reach the root. On an AO producing an

event, it is passed to the local DS where it is forwarded up the tree. Each DS that receives an

event checks its descendants, passes the event onto any descendant that has requested the

event and then forwards the event to its parent. Thus, events are also propagated upwards

the tree until they reach the root. This strategy ensures that all the relevant nodes receive all

the subscription, unsubscription and event messages.

State Of The Art Review of Distributed Event Model

March 2000 Page 36

Fig. 6.2. The Structure of Dispatching Servers.

6.2 Event Pattern

JEDI allows a very simple form of event filtering through the use of event pattern. When

subscribing, AOs register interest in a specific event or in an event pattern. Like events, event

patterns are defined as a set of ordered strings. The first string representing the pattern name

and the remaining strings representing the pattern parameters. [CDNF98b] states that each

string of a pattern may end with an asterisk and that an event e matches a pattern p if the

following conditions hold:

• The name of e is equal to the name of p, if p does not contain the asterisk or both

names start with the same sequence of characters and the name of p ends with an

asterisks;

• e and p have the same number of parameters; and

• Each parameter of e is equal to the parameter of p having the same position or both

start with the same sequence of characters and the parameter of p ends with an

asterisks.

DS

AO AO AO

Event

DS DS

DS DS DS

Subscription / unsubscription

State Of The Art Review of Distributed Event Model

March 2000 Page 37

6.3 Reactive Objects and Mobility

The JEDI architecture supports the mobility of objects through the use of reactive objects.

Reactive objects are a particular type of active object defining an abstract method called

processMessage. The application programmer has to implement this abstract method which

is automatically invoked each time an event is delivered to the reactive object. This enables

an implementation of a reactive object to autonomously move across the nodes of a network

by invoking JEDI’s move operation. Invoking on the move operation causes the following

actions to occur:

• The reactive object is disconnected from the ED and the thread of execution

controlling it is stopped;

• The reactive object is serialised using the standard Java facilities;

• The reactive object is moved via the network to its new destination, where it is

reconnected to the ED; and

• During the migration, events to be received by the reactive object are stored by the ED

until the reactive object has successfully moved location and is ready to receive the

stored events.

6.4 Summary

The JEDI infrastructure provides a simple, easy to understand architecture for event-based

communication. Its architecture is based on two components, active objects (AOs) and event

dispatchers (EDs). In its centralised version, the event dispatcher may become a critical

bottleneck and is a single point of failure. To overcome this, JEDI also features a distributed

version of the event dispatcher, which consists of a set of dispatching servers (DSs)

interconnected in a hierarchical structure. The hierarchical topology improves the robustness

and scalability of the JEDI architecture. However, in case of a failing DS the JEDI network

has to deal with segment separation. Furthermore, the fact that all messages are being

forwarded via several dispatching servers to the root of the tree might cause the overloading

of the higher-level servers.

Events in JEDI are defined as a set of ordered strings, limiting the parameter that can be

defined for an event. Event filtering is supported in a very simple and limited manner through

the use of event patterns, which are essentially events defined as a set of ordered strings.

An interesting feature of JEDI is the ability to move objects across the nodes of the

network. Mobility is supported through the use of a particular type of active objects called

reactive objects and through the use of a move operation. Mobility is desirable to increase the

State Of The Art Review of Distributed Event Model

March 2000 Page 38

flexibility and the effectiveness20 of an application and to support event-based communication

among mobile devices such as Personal Digital Assistants (PDAs).

20 Mobility can be used to implement load balancing and to reduce the network traffic by

moving applications close to the resources they need.

State Of The Art Review of Distributed Event Model

March 2000 Page 39

7. SIENA

Like JEDI [CDNF98a][CDNF98b], SIENA (Scalable Internet Event Notification Architecture)

has been developed in Politecnico di Milano and features an architecture that is similar to but

more advanced than JEDI’s. SIENA has been designed to support event based

communication in wide-area networks such as the Internet and features code mobility. Its

architecture is introduced in [CRW98] and a detailed description can be found in the Ph.D.

thesis [Car98].

7.1 The SIENA Event Model Architecture

The SIENA infrastructure implements a scalable general-purpose event model that is based

on a distributed architecture of event servers. In SIENA’s terminology, events are produced

by objects of interest and consumed by interested parties. The propagation of events is

regulated by mechanisms called advertisement, subscription and publication.

The high-level view of the SIENA architecture, shown in Figure 7.1, includes these event

propagation mechanisms. While the subscription and the publication mechanism are

common to most event models, the advertisement mechanism is specific to SIENA. The

subscribe and unsubscribe operations are used by an interested party to register and cancel

interest in a certain event type and the publish operation is invoked by an object of interest to

propagate an event. Also called by an object of interest, the advertise operation indicates an

objects intention to produce events of a certain type. The unadvertise operation indicates that

an object of interest no longer wishes to produce such an event. The unadvertise operation

has the opposite effect to the advertise operation, hence cancelling an advertisement. The

advertise mechanism provides additional information to the event service, enabling the event

servers to route subscriptions and publications more effectively. The interfaces of these three

mechanisms are:

Subscr i be(i nt er est ed par t y, pat t er n)
Unsubscr i be(i nt er est ed par t y, pat t er n)
Publ i sh(event)
Adver t i se(obj ect of i nt er est , f i l t er)
Unadver t i se(obj ect of i nt er est , f i l t er)

To uniquely identify interested parties, objects of interest and event servers within SIENA,

and for them to communicate with each other, SIENA uses a naming scheme, referred to as

State Of The Art Review of Distributed Event Model

March 2000 Page 40

a generic URI naming scheme. This means that every party, object and server has an URI of

the form mailto:john@cs.edu21 associated with it.

Fig. 7.1. The High-level View of the SIENA Architecture.

SIENA supports events in the form of a set of attributes in which each attribute is a triple of

name, type and value. Each attribute is uniquely identified by its name. A predefined set of

types is available to define events of the form:

st r i ng event = account / debi t
t i me dat e = 15. 01. 2000
i nt number = 12345
f l oat amount = 215. 31

7.1.1 Operational Semantics

The SIENA infrastructure includes two different behaviours for the event service in response

to advertisement and subscription. [CRW98] argues that the reason for supporting both is to

find the most appropriate solution for a flexible and scalable event service depending on the

requirements of the chosen application domain.

In the subscription-based version of SIENA, only subscriptions determine the semantics of

the event service. This behaviour is similar to the semantics of other subscription-based

event models. Advertisements are not required, but can be used to optimise the routing of

21 The URI that identifies and object is both the unique name and the communication method

of that object. SIENA implements the most common URI schemas, namely mailto and http.

advertise

publish

subscribe

notify

Event Service

OI

OI

OI

OI

IP

IP

IP

IP

OI: Object of Interest
IP: Interested Party

State Of The Art Review of Distributed Event Model

March 2000 Page 41

subscriptions. This implies that events will be delivered to all interested parties that have

subscribed to them22.

In the advertisement-based version of SIENA, both advertisements and subscriptions

determine the semantics of the event service. The event service will only guarantee the

delivery of an event if an object of interest advertises an event of a particular type and an

interested party subscribes to the same type of event23.

7.1.2 Server Topologies

The propagation of events is the responsibility of a logically centralised component to which

objects of interest and interested parties are connected. This component is implemented as a

set of event servers co-operating with each other to provide a network-wide event service.

[Car98] describes four different event server topology implementations, namely centralised,

hierarchical, acyclic peer-to-peer and generic peer-to-peer, as shown in Figure 7.2. [Car98]

states that each topology was tested for the flexibility and the scalability of the service and

found that the distributed topologies outperformed the centralised approach, when the

number of objects of interest and interested parties increased.

Among the in Figure 7.2 described topologies, the centralised version is the simplest,

implementing only a client-server protocol for the co-operation between the event server and

the event clients, i.e. interested parties and objects of interest. It is important to note that this

is also the case for the hierarchical topology. An event server does not distinguish between

other event servers and its clients, hence treating servers as clients. In the two peer-to-peer

topologies, event servers communicate with each other as peers, thus allowing bi-directional

flow of subscriptions, advertisements and events.

22 Events of a particular type are delivered to all interested parties that have subscribed to the

type if the pattern matches.
23 Events are only delivered to an interested party if the event service has received an

advertisement and a subscription for the particular event type and the event filter and the

event pattern match.

State Of The Art Review of Distributed Event Model

March 2000 Page 42

Fig. 7.2. Event Server Topologies.

[CRW98] presents and discusses two main optimisation strategies for communication and

computation resources:

• Applying event filters and event pattern physically as close as possible to publishers,

i.e. objects of interests; and

• Replicating events, by means of multicast, physically as close as possible to

subscribers, i.e. interested parties.

SIENA uses IP multicast as the underlying transport mechanism.

ES

Centralised

EC

EC

EC

EC

Hierarchical

ES ES

ES

EC EC

EC EC

EC

ES ES

EC

Generic peer-to-peer

ES ES

ES

EC ES

ES

EC EC

EC EC EC EC

ES

EC

Event Server

Event Client

Server-server protocol

Client-server protocol

Acyclic peer-to-peer

ES ES

ES

EC ES

ES

EC EC

EC EC EC EC

State Of The Art Review of Distributed Event Model

March 2000 Page 43

7.2 Event Filter and Pattern

An event filter is specified by a set of attribute names and types and some constraints on

their values, i.e. an operator and a value per constraint. A fixed set of operators are available

to define event filters of the form:

st r i ng event == account / *
t i me dat e >= 01. 01. 2000
f l oat amount > 100. 00

This filter selects all account transfers in this millennium that are transferring an amount

larger than a certain minimum limit.

An event pattern is specified by combining a set of event filters using filter combinators.

This allows a pattern to select a combination of events, i.e. several events that together

match an algebraic combination of filters. The following example shows an event pattern that

monitors an account and selects it if a large amount of money is transferred more that once,

e.g. such an account has to become a premium account:

st r i ng event == account / *
i nt number == 12345
f l oat amount >= 100000. 00

and then

s t r i ng event == account / *
i nt number == 56789
f l oat amount < 250. 50

A description of all the attribute types, filter operators and pattern combinators supported

by SIENA can be found in [Car98].

7.3 Mobility

SIENA does not support code mobility directly, but supports the integration of mobile objects

into its infrastructure. [Car98] identifies three different approaches to support mobility, called

transparent, native and external. The native approach, where mobility is supported through

the use of a move operation, is adopted by JEDI [CDNF98a][BBHM96] but is not supported

by SIENA. However, the SIENA architecture supports the remaining two approaches. The

transparent approach uses network-level mechanisms to transparently manage mobility of

objects. This is feasible since objects are addressed by URI’s, hence hiding their location.

The external approach relies on an extension layer that is added externally between the

event service and the mobile objects. This layer manages the movement of objects by

State Of The Art Review of Distributed Event Model

March 2000 Page 44

providing a move operation and by handling (buffering, forwarding, synchronising, etc.) all the

subscriptions, advertisements and events.

7.4 Summary

The SIENA infrastructure implements a general-purpose event service that is based on a

distributed architecture of event servers. It is designed to scale well in wide-area networks

such as the internet. Although implemented as a set of event servers, the logically centralised

component responsible for event propagation suffers from overloading of event servers and

network separation due to event server failure.

A mechanism introduced by SIENA, besides the quite common subscription and publish

operations, is called advertisement. Advertisement optimises the routing of subscriptions and

publications, but requires a logically centralised component, i.e. the event servers, to manage

advertisements.

SIENA supports events in the form of a set of attributes in which each attribute is a triple of

name, type and value. This allows the definition of an event using a notation similar to

objects24 in object-oriented programming. The definition of event is limited by the set of

attribute types available. This may be seen as a strict limitation, but we believe that this

approach usually suffices to cover the needs of applications and that new attribute types can

be added as needed. The propagation of events is controlled through the use of event filters

and combinations of filters called event patterns.

SIENA does not support code mobility directly, but supports the integration of mobile

objects into its infrastructure through a transparent and a external approach. Code mobility is

becoming more and more popular in distributed systems and in wide-area networks such as

the internet. Although SIENA addresses mobility, an integrated support of mobility is

desirable and thus should be subject to further investigation in a future version.

24 Event are defined as objects that contain attributes but do not contain any methods.

State Of The Art Review of Distributed Event Model

March 2000 Page 45

8. EVENT MODELS BASED ON THE OMG CORBA EVENT SERVICE

In the following Sections, we present two event architectures that are based on the OMG

CORBA event service. Both identify important features required by some applications but

lacked by CORBA’s event service. The first of the presented event architectures extends the

CORBA event service to satisfy the quality of service (QoS) needs of real-time applications.

The second proposes a reliable multicast extension to provide reliable and total ordered

event delivery.

8.1 Real-Time Event Service

As part of the TAO project25 at Washington University, an extension to the CORBA event

service [Gro95b] was developed called real-time (RT) event service. As described in [HLS97],

the real-time event service addresses the QoS requirements of real-time applications and

was designed for an avionics mission control application.

The CORBA event service provides a flexible model for event-based communication in

systems based on ORB middleware. However, it lacks important features required by real-

time applications. To address this, the RT event service supports real-time event dispatching

and scheduling, source based and type based filtering, event correlation and periodic event

processing. Since we have already reviewed the CORBA event service earlier in this

document, the following Sections present the extensions proposed by the RT event service

only.

8.1.1 RT Event Service Architecture

The architecture of the RT event service and the CORBA event service are identical with

regards to the role of event subscriber, event consumer and their mediator, the event

channel. However, the event channel of the RT event service has been adapted to support

the added features. The three main features included, namely the support of QoS

parameters, filtering on typed events and periodic event processing, are described in the

remainder of this Section. The high-level architecture of the RT event service, including the

main event channel modules, is depicted in Figure 8.1.

25 TAO is a real-time ORB end-system that provides end-to-end quality QoS guarantees to

applications. A more detailed description of TAO is presented in [HLS97].

State Of The Art Review of Distributed Event Model

March 2000 Page 46

Fig. 8.1. RT Event Channel Overview.

8.1.1.1 QoS Parameter

The event channel’s standard proxy interfaces have been extended to allow consumers

and suppliers to register their execution requirements and characteristics with the event

channel, using QoS parameter. These parameters are used by the event channel’s

dispatching mechanism to determine event dispatch ordering and pre-emption strategies.

The dispatching module implements priority-based event dispatching and pre-emption using

priority queues. [HLS97] describes the three different pre-emption strategies supported by the

event channel. The strategies supported are; real-time upcall (RTU) dispatching, real-time

pre-emptive thread dispatching and single-threaded priority-based dispatching.

8.1.1.2 Event Filter

In an event-based infrastructure implemented using the CORBA event service, event

channels featuring different event dispatching strategies may be chained to create event

Dispatching Module

Consumer Proxy

Event Correlation

Subscription &
Filtering

Supplier
Proxy

Proxy
Timers

Event Channel

Consumer Consumer
Consumer

Supplier Supplier
Supplier

State Of The Art Review of Distributed Event Model

March 2000 Page 47

filters. However, this increases the number of hops an event must travel when propagated

from supplier to consumer, hence increasing overhead and latency. To overcome this, the RT

event service supports event filtering and event correlation mechanisms. The event filtering

mechanism allows suppliers to specify the type of events they generate. It also allows

consumers to register interest in events generated by certain suppliers or to register interest

in events of a particular type. The former being called supplier-based filtering and the latter

type-based filtering. Any combination of supplier-based and type-based filtering is supported

as well. The event correlation mechanism allows consumers to specify logical OR and AND

dependencies among events. The former semantics lets the channel notify the consumer

when any of the specified events dependencies are satisfied. The latter semantics lets the

channel notify the consumer when all the specified events dependencies are satisfied.

8.1.1.3 Periodic Event Processing

The supplier proxy module allows consumers to specify event dependency timeouts. Priority

Timers manage those timeouts and notify consumers, i.e. dispatch timeout events, even if

their dependencies are not satisfied within some time period. This mechanism is well-suited

for periodic event processing, i.e. a real-time “watchdog”.

8.1.2 Summary

[HLS97] identifies important event service features required by real-time applications but

lacked by the OMG CORBA event service. The presented RT event service addresses these

requirements by extending CORBA’s event service with QoS parameters, typed event filters

and periodic event processing.

The QoS parameters are used by the event channels dispatcher module to determine

event dispatch ordering and pre-emption. Such a dispatching mechanism is essential for

predictable end-to-end QoS, required by real-time applications. As we have argued earlier,

filters are useful to limit the propagation of events, minimising network traffic and CPU

processing time. The RT event service also supports the combination of events providing a

powerful means to define dependencies on a group of events using OR and AND semantics.

Although these features are essential for real-time applications, the major drawback of this

RT event service is the centralised implementation of the event channel. The event channel

is the single point of failure of the architecture and may suffer from overloading with

increasing numbers of event suppliers and consumers. However, it provides the global

knowledge necessary for “hard” real-time and suffices in small-scale applications like the

avionics mission control it was designed for.

State Of The Art Review of Distributed Event Model

March 2000 Page 48

8.2 CONCHA

In this Section, we present extensions to the OMG CORBA event service that address

multicasting, reliability and total ordering. These proposals were developed in a prototype

environment called CONCHA. CONCHA [OFB99] is a conference system developed at

University of Coimbra, Portugal and its abbreviation stands for CONference system based on

java and corba event service CHAnnels.

CONCHA extends CORBA’s event service with reliable multicast communications based

on the use of the light-weight reliable multicast protocol (LRMP)26, which also features total

ordered package delivery. Figure 8.2 shows an overview of CONCHA’s event channel with

the integrated multicast support.

Fig. 8.2. CONCHA Event Channel Overview.

The multicast extension is implemented by providing a single multicast proxy that deals

with all the multicast push suppliers and another one that deals with all the multicast push

consumers27. Hence, this architecture provides an alternative mechanism to propagate

events using reliable multicast28, besides the standard mechanism that uses IIOP. The

propagation of events is not limited to either the standard or the multicast mechanism, but

allows the combination of the two, allowing a multicast push supplier to propagate events to

both multicast and standard consumer. This approach does not require multicast group

management since all events are delivered to all consumers and thus only one multicast

group is used.

26 LRMP is a reliable general-purpose transport protocol based on unreliable underlying

network transport protocols such as UDP/IP. It features loss repair, ordered package delivery,

flow control and ensures reliability using a NACK semantics.
27 The multicast extension has only been implemented for the push model, but has not been

adapted by the pull model.
28 When using the multicast mechanism, event propagation will also benefit from other LRMP

features such as ordered package delivery.

Event
Channel

Consumer
Admin

Supplier
Admin

Consumer Side Supplier Side

Proxy
Multicast

Push
Supplier

Proxy
Push

Supplier

Proxy
Multicast

Push
Consumer

Proxy
Push

Consumer

Multicast
Push

Supplier

Multicast
Push

Consumer

Push
Supplier

Push
Consumer

State Of The Art Review of Distributed Event Model

March 2000 Page 49

9. SYNTHESIS

This document has reviewed a variety of infrastructures that provide event-based

communication in distributed systems. The described event models were selected to cover a

range of architectures and features required by different application domains in order to

present the state-of-the-art in event-based technology. Although we are aware of other event

models, i.e. Yeast [KR95], GEM [MSS97] and COBEA [CB98] to name some of them, they

were not presented in this document because none of them elucidate new features. Based on

this review, we describe the rationale of a proposed event model that answers the

requirements of a system providing a means for reliable event-based communication in a

large-scale environment that supports application component mobility.

9.1 Event Model Architectures

The architecture of event models can be categorised according to one of their features, that

of application component mobility, and according to the presence of a mediator component.

Fig. 9.1. Taxonomy for Event Model Architectures.

Event Model
Architecture

Fixed Entities
Only

Fixed and
Mobile Entities

No Mediator
Component(s) that
has / have global

knowledge

No Mediator
Component(s) that
has / have global

knowledge

Mediator
Component(s) that
has / have global

knowledge

Mediator
Component(s) that
has / have global

knowledge

Distributed
Mediator

Centralised
Mediator

Centralised
Mediator

Distributed
Mediator

A1 A2 B C2 D C1

State Of The Art Review of Distributed Event Model

March 2000 Page 50

Our taxonomy for event model architectures, as depicted in Figure 9.1, distinguishes

between mediator components that are implemented either in a centralised or in a distributed

manner. We call the distributed version “logically” centralised because, alike the physically

centralised version, the mediator component maintains global knowledge of the event system

and it’s entities. The identified types A to D of event model architectures are described in

more detail in Figure 9.2 to Figure 9.7.

Fig. 9.2. Event Model Architecture Taxonomy Type A1.

Fig. 9.3. Event Model Architecture Taxonomy Type A2.

Architecture types A1, A2 and B, as shown in Figure 9.2, Figure 9.3 and Figure 9.4, do not

support mobile application components (entities). A1 features a centralised implementation of

the mediator component, whereas A2 supports a distributed version. Such a mediator

component is responsible for propagating event messages among entities and hence must

have global knowledge of all entities, i.e. all event producers and event consumers, and their

subscriptions. Mediator components allow a centralised management of events and their

Mediator EP

EP

EP

EP

EC

EC

EC

EP: Event Producer
EC: Event Consumer

Mediator EP

EP

EP

EP

EC

EC

EC

EP: Event Producer
EC: Event Consumer

State Of The Art Review of Distributed Event Model

March 2000 Page 51

subscriptions, thus a relatively simple implementation of non-functional requirements such as

reliability and QoS. However, a physically centralised mediator, i.e. architecture type A1,

represents a single point of failure, may become a critical performance bottleneck and hence

will not scale well in a distributed environment. The approach of a distributed mediator

topology, i.e. architecture type A2, improves the robustness and scalability of a event model’s

architecture. However, such an architecture has still to deal with network segment separation,

possible bottlenecks and scalability in large-scale distributed systems.

Fig. 9.4. Event Model Architecture Taxonomy Type B.

An architecture of type B does not depend on a mediator component. Its entities

communicate directly with each other in a one-to-many manner, thus improving overall

robustness and scalability of the system. [Haa98] determines that this architecture type

scales well even in large-scale distributed systems. However, because of the lack of a

component that has global knowledge, the system’s entities are required to manage and

propagate event messages based on a local decision and the implementation of non-

functional features will become more complex.

Fig. 9.5. Event Model Architecture Taxonomy Type C1.

Mediator EG

EP

EG

EP

EC

EG

EC

(M)EP: (Mobile) Event Producer
(M)EC: (Mobile) Event Consumer
EG: Event Gateway
 : Event Bus

MEP

MEP

MEC

EP

EP

EP

EP

EC

EC

EC

EP: Event Producer
EC: Event Consumer

State Of The Art Review of Distributed Event Model

March 2000 Page 52

Fig. 9.6. Event Model Architecture Taxonomy Type C2.

Architecture types C1, C2 and D, as shown in Figure 9.5, Figure 9.6 and Figure 9.7, do

support mobile entities. With regards to the mediator component, they can be characterised

as described above analogous the types A1, A2 and B respectively. For the event system to

communicate with mobile entities, a new entity type, called event gateway, is introduced.

Event gateways act as proxies between fixed and mobile entities and are responsible for

managing the propagation of subscriptions and events from and to mobile entities. Generally,

it can be said that supporting mobile entities increases the complexity of the event model

implementation significantly due to the management (synchronisation, buffering, forwarding,

etc.) of entities, subscriptions and events.

Fig. 9.7. Event Model Architecture Taxonomy Type D.

EP

EP

EC

EC

EG

EG

EG

(M)EP: (Mobile) Event Producer
(M)EC: (Mobile) Event Consumer
EG: Event Gateway
 : Event Bus

MEP

MEP
MEC

Mediator EG

EP

EG

EP

EC

EG

EC

(M)EP: (Mobile) Event Producer
(M)EC: (Mobile) Event Consumer
EG: Event Gateway
 : Event Bus

MEP

MEP

MEC

State Of The Art Review of Distributed Event Model

March 2000 Page 53

An overview of the architecture types of the reviewed event models is shown in Table 9.1.

Additionally, the table includes a brief description of the event models’ application domains

and a classification according to their use.

Event Model Application Domain Dis-

tribution
Architecture

Type
Academic or
Commercial

OMG CORBA:
Event Service

General-purpose,
middleware
applications

A1,

i.e. event channel
Commercial

OMG CORBA:
Notification Service

General-purpose,
middleware
applications

 A1,
i.e. notification channel

Commercial

Java AWT:
Delegation Event Model

Small-scale,
centralised

GUI applications
 B Commercial

Java:
Distributed Event Model

Ad-hoc, wide-area
applications

B Commercial

Cambridge Event Model General-purpose
applications

B Academic

ECO General-purpose,
large-scale
applications

B Academic

JEDI General-purpose,
mobile

applications

C1 & C2,
i.e. event dispatcher &

dispatching servers

Academic

SIENA Mobile, wide-area
applications

C1 & C2,
i.e. event server(s)

Academic

RT Event Service (TAO)
(CORBA ES extension)

Small-scale, real-time
middleware applications

A1,
i.e. event channel

Academic &
commercial

CONCHA
(CORBA ES extension)

Reliable,
general-purpose,

middleware applications

A1,
i.e. event channel

Academic

Tab. 9.1. An Overview of the Reviewed Event Model Architectures.

CORBA based event models, namely the Event Service [Gro95b], the Notification Service

[Cea98], the RT Event Service [HLS97] and CONCHA [OFB99], are examples of

architectures including a centralised mediator, thus are of architecture type A1. The

limitations due to the use of a centralised mediator may be improved by adapting mediator

federation as suggested in [Gro96], which results in an architecture of type A2. Furthermore,

CORBA based event systems entities may invoke directly on each others event interfaces, as

proposed in [Gro95b], therefore being of architecture type B. However, this approach requires

the application to maintain information on the location of the event system’s entities that are

active at any given time and the event consumers to subscribe to every event producer

separately. This approach is not sufficient in systems where entities dynamically join and

leave.

State Of The Art Review of Distributed Event Model

March 2000 Page 54

Event models that do not rely on a mediator component, i.e. of architecture type B, are the

ECO [Haa98], the Cambridge [BBHM96] and the distributed Java [SM98] event model.

An event model architecture of type C1 or C2, i.e. that supports entity mobility and

implements either a centralised or a distributed mediator topology, is investigated and

adapted in JEDI [CDNF98a] [CDNF98b] and SIENA [CRW98] [Car98].

Trinity College Dublin is currently investigating the design and the implementation of an

event model of type D. However, no publications are available yet by the time this document

was written.

9.2 Event Model Features

Besides its architecture, an event model is characterised by the features it supports. A

summary of the features supported by the reviewed event models can be found in Table 9.2.

Event Model Typed

Events
Event
Filter

Real-
Time

QoS Mobility Other Features &
Remarks

OMG CORBA:
Event Service

OMG CORBA:
Notification Service

Java AWT:
Delegation Event Model

See
remarks

See
remarks

See
remarks

 User definable
adapters may

feature filters, real-
time and QoS

Java:
Distributed Event Model

See
remarks

See
remarks

See
remarks

 User definable
adapters may

feature filters, real-
time and QoS

Cambridge Event Model

Templates Event composition

ECO

 Pre-constraints,
post- constraints,

zones

JEDI

Pattern

Event are defined
as a set of ordered
strings, based on

IP multicast

SIENA

Advertisement,
event combination,

based on IP
multicast

RT Event Service (TAO)
(CORBA ES extension)

 Event correlation,
periodic event

processing

CONCHA
(CORBA ES extension)

 See
remarks

 Total ordering,
based on reliable

IP multicast

Tab. 9.2. A Summary of the Reviewed Event Model Features.

State Of The Art Review of Distributed Event Model

March 2000 Page 55

Among event model features, the ability to control the propagation of event messages, i.e.

to filter them, is the most important one. [Haa98] shows that filters are a powerful means to

significantly reduce the number of event messages propagated in a system. Fewer copies of

each specific event message are propagated, preventing event storming and hence,

minimising network traffic and CPU processing time. This results in improved overall system

stability and scalability, which is particularly important in large-scale environments.

The implementation of event filters depends on the implementation of event messages.

Well-structured, i.e. typed, event messages are required for the implementation of expressive

and thus powerful event filters. Although the CORBA Event Service [Gro95b] supports

generic and typed events, filters are not supported due to the fact that generic events,

implemented as of type any, are hard to filter. As an improvement on this, JEDI [CDNF98a]

features event as a set of ordered strings on which filters, so called patterns, can be

matched; the Cambridge event model [BBHM96] supports filters in the form of templates.

Both approaches allow a simple form of filtering but are limited in their expressive power. In

order to support flexible and expressive filters, events are defines as a set of attributes in

several event models including CORBA Notification [Cea98], ECO [Haa98], SIENA [Car98]

and RT [HLS97]. Other means to control the propagation of event messages are event

composition, also called combination or correlation, pre- and post-constraints and zones. We

consider event composition a useful feature in some applications. However, its

implementation depends on event monitors that are difficult to manage and resource

intensive. ECO [Haa98] suggest the use of pre-constraints and post-constraints as a very

flexible mechanism to control event delivery. Whether such a degree of flexibility is efficient,

manageable and feasible in a large-scale distributed system depends on the application

domain. ECO also proposes the use of zones to limit the scope of the event propagation. An

addition to filters, this feature can be very useful, especially in a large-scale system, to further

improve scalability, limit network traffic and reduce CPU processing time.

Many application domains require timed delivery of event messages. These real-time

requirements are addressed by the CORBA Notification Service [Cea98] and by the RT Event

Service [HLS97] by assigning priorities to event messages and using a dispatching

mechanism as the means to control event delivery. Both solutions depend on a centralised

mediator that implements the dispatching mechanism. From an applications point of view, it is

preferable to rather assign a delivery deadline than a delivery priority to an event message.

Hence, to have a prediction on the event delivery time. This is partly addressed by the

CORBA Notification Service, but unfortunately depends on the centralised mediator. Ideally,

a real-time event delivery mechanism should support the denotation of delivery deadlines,

provide delivery predictions and should not depend on a centralised mediator.

Quality of Service (QoS) requirements, other than real-time, include the reliability of events

and connections, the delivery order of events and the memory management of the event

State Of The Art Review of Distributed Event Model

March 2000 Page 56

model, the latter being addressed by queue sizes and event discard policies. As for real-time

requirements, QoS requirements are desired by many application domains, but are often

omitted since they are difficult to support, especially without a centralised mediator.

Application component mobility is becoming more and more popular in distributed systems

and in wide-area networks. The integration of mobile application components, e.g. of

Personal Digital Assistants (PDAs), in event-based systems is supported by JEDI [CDNF98a]

[CDNF98b] and SIENA [Car98]. Mobility is desirable not only to integrate addition

functionality, but also to increase the flexibility and the effectiveness of a system. However,

integrating mobile components into a system where entities are added and removed

dynamically, is by definition hard. Combining mobility with real-time or QoS features is even

harder due to the changing connection characteristic, e.g. bandwidth and reliability, among

mobile and fixed components.

An advertisement mechanism and the use of multicast-based communication are

supported by some event models to further optimise event propagation, thus further limiting

network traffic and reducing CPU processing time. Advertisement is not only a clever way to

optimise the routing of subscriptions and event messages, but may also sustain the

management of mobile application components. However, to coordinate themselves,

advertisements may depend on a logically centralised component, i.e. the event models

mediator. The use of a multicast-based communication provides an means of one-to-many

event messages propagation. Thus, the propagation of an event message by means of

distributing a copy of that message to each receiver is optimised by distributing a single

multicast message instead. However, commonly used multicast mechanisms, such as IP

multicast, are connectionless best-effort (unreliable) services. Furthermore, the management

of multicast groups requires global knowledge of the system. Thus, a logically centralised

means must be available.

9.3 Conclusion

In conclusions, in can be said that the architecture and the features of an event model

strongly depend on its application domain. However, scalability is a main issue in every

distributed system and hence in an event model and thus, becomes more important with the

increasing scale of the system. Surprisingly, many event model architectures depend on the

use of a, at least logically, centralised mediator component. Such a mediator may be a single

point of failure, can become a critical performance bottleneck, and does not scale well and

should therefore be avoided. Scalability is commonly address by event models through the

use of event filters as a means of controlling and thus limiting the propagation of events.

Although other mechanisms, such as zones and pre-constraints, were proposed, filters are

the most powerful means used in event models to improve scalability. Other event models

State Of The Art Review of Distributed Event Model

March 2000 Page 57

features include the support of real-time, QoS and application component mobility, but as

already mentioned, whether or not they are required depends strongly on the event model’s

application domain.

State Of The Art Review of Distributed Event Model

March 2000 Page 58

10. REFERENCES

[BBHM96] J. Bacon, J. Bates, R. Hayton, and K. Moody. Using events to build distributed

applications. In Proceedings of the Seventh ACM SIGOPS European Workshop,

pages 9-16, Connemara, Ireland, September 1996.

[Bir96] K. Birman. Building Secure and Reliable Network Applications, chapter 13.9 and

13.10. Manning Publishing Co., 1996.

[Bur96] G. Burke. Kanga: a framework for building application specific communication

protocols. Master’s thesis, Dept. of Computer Science, Trinity College Dublin,

Ireland, September 1996.

[BW96] A. Burns and A. Wellings. Real-Time Systems and Programming Languages.

Addison Wesley Longman Limited, second edition, 1996.

[Car98] A. Carzaniga. Architectures for an Event Notification Service Scalable to Wide-

area Networks. PhD thesis, Politecnico di Milano, Italy, December 1998.

[CB98] M. Chaoying and J. Bacon. COBEA: A CORBA-based event architecture. In

Proceedings of the 4th USENIX Conference on Object-Oriented Technologies

and Systems (COOTS), pages 117-131, Santa Fe, New Mexico, USA, April

1998.

[CCK+95] V. Cahill, A. Condon, D. Kelly, S. McGerty, K. O’Connell, G. Starovic, and B.

Tangney. MOONLIGHT: VOID shell specification. Technical report, Dept. of

Computer Science, Trinity College Dublin, Ireland, May 1995. Technical report

TCD-CS-95-15.

[CDK94] G. Coulouris, J. Dollimore, and T Kindberg. Distributed Systems, Concepts and

Design. Addison Wesley, second edition, 1994.

[CDNF98a] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an event-based infrastructure

to develop complex distributed systems. In Proceedings of the 20th International

Conference on Software Engineering (ICSE 98), Kyoto, Japan, April 1998.

[CDNF98b] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastructure and

its application to the development of the OPSS WFMS. Technical report,

CEFRIEL - Politecnico di Milano, Italy, August 1998. To appear in IEEE

Transaction of Software Engineering (TSE).

State Of The Art Review of Distributed Event Model

March 2000 Page 59

[Cea98] NEC Corporation and Iona Technologies PLC et al. CORBAservices: Notification

service specification - joint revised submission. Technical Report OMG

Document telecom/98-11-01, Object Management Group, November 1998.

http://www.omg.org/techprocess/meetings/schedule/Notification_Service_RTF.ht

ml.

[CG98] G. Cugola and C. Ghezzi. The design and implementation of PROSYT: an

experience in developing an event-based, mobile application. In Proceeding of

the IEEE 8th International Workshop on Enabling Technologies: Infrastructures

for Collaborative Enterprises (IEEE WET ICE ’99), Stanford University, Stanford,

California, USA, June 1999.

[CRW98] A. Carzaniga, D. Rosenblum, and A. Wolf. Design of a scalable event notification

service: Interface and architecture. Technical report, Dept. of Computer Science,

University of Colorado, USA, August 1998. Technical report CU-CS-863-98.

[Gro95a] Object Management Group. The Common Object Request Broker: Architecture

and Specification, revision 2.2. Object Management Group, 1995.

http://www.omg.org/library/c2indx.html.

[Gro95b] Object Management Group. CORBAservices: Common Object Services

Specification - chapter 4, Event Service Specification. Object Management

Group, March 1995. http://www.omg.org/library/csindx.html.

[Gro96] Object Management Group. CORBAservices: Notification Service Specification -

Request For Proposal. Object Management Group, December 1996.

http://www.omg.org/techprocess/meetings/schedule/Notification_Service_RFP.ht

ml.

[Gro97] Object Management Group. CORBAservices: Common Object Services

Specification - chapter 16, Trading Object Service Specification. Object

Management Group, March 1997. http://www.omg.org/library/csindx.html.

[Gro98] Object Management Group. CORBAservices: Management of Event Networks -

Request For Proposal. Object Management Group, September 1998.

http://www.omg.org/techprocess/meetings/schedule/Mgmt._of_Event_Networks_

RFP.html.

[Haa98] M. Haahr. Implementation and evaluation of scalability techniques in the ECO

model. Master’s thesis, Dept. of Computer Science, Trinity College Dublin,

Ireland, August 1998. Also technical report TCD-CS-1999-42.

State Of The Art Review of Distributed Event Model

March 2000 Page 60

[HLS97] T. Harrison, D. Levine, and D. Schmidt. The design and performance of a real-

time CORBA event service. In Proceedings of the 1997 Conference on Object-

Oriented Programming Systems, Languages and Applications (OOPSLA), pages

184-200, Atlanta, Georgia, USA, October 1997. ACM, New York, USA. Also

technical report #WUCS-97-31, Dept. of Computer Science, Washington

University, St.Louis, USA.

[HMN+00] M. Haahr, R. Meier, P. Nixon, V. Cahill, and E. Jul. Filtering and scalability in the

ECO distributed event model. In Proceedings of the 5th International Symposium

on Software Engineering for Parallel and Distributed Systems (PDSE-2000),

Limerick, Ireland, June 2000. Also technical report TCD-CS-00-??, Dept. of

Computer Science, Trinity College Dublin, Ireland.

[KR95] B. Krishnamurthy and D. Rosenblum. Yeast: A general purpose event-action

system. IEEE Transactions on Software Engineering, 21(10):845-857, October

1995.

[Maf00] S. Maffeis. Client/server term definition. In A. Ralston, D. Hemmendinger, and E.

Reilly, editors, Encyclopedia of Computer Science, 4th edition. International

Thomson Computer Publishing, March 2000.

[MSS97] M. Mansouri-Samani and M. Sloman. GEM: A generalized event monitoring

language for distributed systems. IEE/IOP/BCS Distributed Systems Engineering

Journal, 4(2):96-108, June 1997.

[Mul93] S. Mullender. Distributed Systems. Addison Wesley, second edition, 1993.

[O’C97] K. O'Connell. System Support for Distributed Multi-User Virtual Worlds. PhD

thesis, Dept. of Computer Science, Trinity College Dublin, Ireland, October 1997.

[OCC+95] K. O'Connell, V. Cahill, A. Condon, S. McGerty, G. Starovic, and B. Tangney.

The VOID shell: A toolkit for the development of distributed video games and

virtual worlds. In Proceedings of the Workshop on Simulation and Interaction in

Virtual Environments, pages 172-177, University of Iowa, Iowa City, USA, July

1995. Also technical report TCD-CS-95-27, Dept. of Computer Science, Trinity

College Dublin, Ireland.

[ODC+96] K. O'Connell, T. Dinneen, S. Collins, B. Tangney, N. Harris, and V. Cahill.

Techniques for handling scale and distribution in virtual worlds. In Proceedings of

the Seventh ACM SIGOPS European Workshop, pages 17-24, Connemara,

Ireland, September 1996. Also technical report TCD-CS-96-14, Dept. of

Computer Science, Trinity College Dublin, Ireland.

State Of The Art Review of Distributed Event Model

March 2000 Page 61

[OFB99] J. Orvalho, L. Figueiredo, and F. Boavida. Evaluating light-weight reliable

multicast protocol extensions to the CORBA event service. In Proceedings of the

3rd International Enterprise Distributed Object Computing Conference

(EDOC’99), University of Mannheim, Germany, September 1999.

[SCT95a] G. Starovic, V. Cahill, and B. Tangney. The ECO model: Events + constraints +

objects. Technical report, Dept. of Computer Science, Trinity College Dublin,

Ireland, February 1995. Technical report TCD-CS-95-05.

[SCT95b] G. Starovic, V. Cahill, and B. Tangney. An event based object model for

distributed programming. In Proceedings of the 1995 International Conference on

Object Oriented Information System, pages 72-86, London, UK, December 1995.

Springer-Verlag. Also technical report TCD-CS-95-28, Dept. of Computer

Science, Trinity College Dublin, Ireland.

[SM97] Inc. Sun Microsystems. Java AWT: Delegation event model.

http://java.sun.com/products/jdk/1.1/docs/guide/awt/designspec/events.html,

January 1997.

[SM98] Inc. Sun Microsystems. Java Distributed Event Specification. Sun Microsystems,

Inc., July 1998. http://www.javasoft.com/products/javaspaces/specs.

[SM99] Inc. Sun Microsystems. Jini: Distributed Event Specification. Sun Microsystems,

Inc., January 1999. http://www.sun.com/jini/specs.

[Som95] I. Sommerville. Software Engineering. Addison Wesley, fifth edition, 1995.

