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1. INTRODUCTION 

This review deals with an investigation into the architecture and features of distributed 

communication models that are based on the event paradigm. 

A variety of event-based communication models are used in different application domains, 

including real-time, mobile and large-scale environments. To fulfil the needs of their 

application domain, event models differ in their architecture and in the features they support. 

Although several event models are available supporting a variety of features, non of them 

suffices the requirements of a event-based system running in a large-scale environment that 

supports application component mobility and real-time event delivery. 

1.1 Motivation 

In the traditional client/server [Maf00] computing model, the means of communication is 

typically synchronous and logically one-to-one. Clients invoke a method on the remote server 

and wait for the response to return. This requires that client and server need to have some 

knowledge1 of each other. With the use of mobile or large-scale distributed systems, the need 

for asynchronous, anonymous one-to-many communication pattern arises. Event Models are 

application independent infrastructures that allow event-based communication, where an 

Event Supplier asynchronously communicates Event Data to a group of Event Consumers, 

ideally without knowledge of the number and location of the event consumers. Figure 1.1 

shows the difference between the traditional client/server computing model and the event-

based computing model. 

Distributed Event Models are used in a number of application domains, including real-time, 

mobile and large-scale environments. To fulfil the needs of their application domain, event 

models differ in their architecture and in the features they provide. In this paper, we review a 

number of distributed event models and one centralised event model from different 

application domains. To our knowledge, this has not been presented in this form yet. Thus, 

each event model is reviewed by presenting background information, such as its history, 

terminology and application domain, and by describing its architecture and the supported 

features. By doing this, we outline the approaches taken to provide event-based 

communication in different application domains. This enables us to reflect on the architecture 

and the features needed to support event-based communication in our application domain, 

                                                      
1 The client needs to know the server on which to invoke the method and the server needs to 

know the client to which to return the response. 
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which requires application component mobility and real-time event delivery in a large-scale 

environment. 

 

Fig. 1.1. Client/Server and Event-based Computing Models. 

1.2 Roadmap 

In the remainder of this Section, we introduce the general terminology of event models and 

the most important event model features, which are supported by several of the reviewed 

event models. 

We then review the chosen event models in the following Sections. Each reviewed model 

is introduced by presenting general background information, such as the event model’s 

history, the event model’s application domain and the event model’s specific terminology. The 

model is described by outlining its architecture and by determining the features supported. 

Finally, we conclude this review by summarising and comparing the event models in 

Section 9. 

1.3 Event-based Communication 

In order to provide event-based communication pattern, an event model defines two roles for 

application components. The role of an event supplier which produces event data (events) 

and the role of an event consumer which processes event data. The event model’s 

infrastructure allows event suppliers2 to anonymously communicate events to a group of 

event consumers. To receive events, event consumers have to subscribe to the events they 

                                                      
2 An event-based application may include several event suppliers, each of which 

communicating events to a group of event consumers. 
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are interested in; they are said to register interest in events. As shown in Figure 1.2, once 

consumers have subscribed to events, they receive all events that are produced within the 

scope of the event model until they unsubscribe (de-register). 

 

Fig. 1.2. Event-based Communication. 

Distributed event models, as opposed to centralised event models where suppliers and 

consumers are located in the same address space, allow suppliers and consumers to be 

located on different physical machines. Supplier and consumer are connected via a network, 
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1.4 Event Model Features 

Each of the Sections that reviews an event model includes: 

 
• An introduction to the event model. The history and background to the event model are 

presented along with a description of the specific terminology of the event model. 

• A description of the architecture of the event model. The components of the event 

model are introduced as well as the relationships among them. 

• A presentation of the features of the event model. Special capabilities, such as Event 

Filters, Real-Time Constraints and Quality of Service (QoS) Properties, featured by the 

event model are presented. 

• An event model summary. 

 
In the remainder of this Section we present a general introduction of the most important 

event model features and issues. These features represent valuable capabilities of event 

models and thus, are addressed, although by different means, by many of the reviewed event 

models. 

1.4.1 Typed Events 

The main purpose of an event model is to provide a means for delivering event messages 

(events) from an event producer to one or more event consumers. The structure of the 

propagated events varies considerably depending on the chosen model and the intended 

application domain. Generally, events are said to be either generic or typed. The information 

that describes a generic event is a data blob without an expressive structure of the likes of 

type any, e.g. as supported by the Java programming language. Typed events on the other 

hand, provide a well-defined and expressive data structure into which a wide variety of event 

types can be mapped. 

The structure of typed events ranges from simple to complex, usually consisting of a name 

(instance name) and additional, user-definable data (parameters). Examples of typed events 

structures are: 

 
• A single string representing the event name, without any additional parameters 

• A set of ordered strings, the first string representing the event name and the 

remaining strings representing the event parameters 

• A single string representing the event name preceding a set of ordered numbers 

representing the event parameters 
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• A set of ordered attributes in which each attribute is a triple of name, type and 

value. A predefined set of types is available. The set of available types may or may 

not be limited to a subset of the types supported by the programming language 

used. 

• An programming language specific object including a set of attributes a described 

above and a set of methods 

 
It may be argued that simple forms of typed events are merely generic and not typed. 

However, we consider events that have some sort of structure recognised by the event model 

as typed. Significantly, typed events are not only well-defined and expressive, but also enable 

the utilisation of event filters as introduced in the next Section. 

1.4.2 Event Filters 

An event-based system may consist of a number of suppliers, all of which produce events 

that may contain different information. Thus, the number of events propagated in an event 

based system may be quite large. However, a particular consumer may only be interested in 

a subset of the events propagated in the system. Event filters are a means to control the 

propagation of events. Filters enable a particular consumer to subscribe to the exact set of 

events it is interested in receiving3. Consumers define filters by specifying the type and 

parameters of the events they are interested in. Filters are passed to the event model 

infrastructure during subscription. Before events are propagated, they are matched against 

the filters and are only delivered to consumers that are interested in them, i.e. the matching 

produced a positive result. The expressiveness of event filters depends directly on the 

expressiveness of the event types supported by the event model. 

In this Section, the general idea of event filters was introduced. Filtering capability is an 

important event model feature and is therefore supported by many event models. There are 

several different approaches for defining filters used in a event system and for passing them 

to the event model infrastructure. The approaches taken by the reviewed event models will 

be discussed in the corresponding Sections. 

1.4.3 Quality of Service Constraints 

A system’s non-functional requirements include real-time and Quality of Service (QoS) 

constraints, the former being a subset of the latter. However, in this document we discuss 

                                                      
3 An event that is delivered uses network bandwidth and CPU processing power on the 

consumer side. It is therefore desirable to prevent the delivery of unwanted events. 
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real-time and QoS constraints separately, thus when referring to QoS we exclude real-time 

issues. 

The requirements of a system include functional or non-functional requirements. 

Definitions of functional and non-functional requirements are: 

 

The QoS characteristics of an event system may be influenced by a variety of QoS 

constraints. Many QoS properties are directly built into the event system, without allowing the 

application to influence them. Other QoS properties are configurable by the application, 

hence allowing the application to control the QoS characteristics of the event system and the 

event delivery. We say an event model features QoS when applications can access and 

configure the system’s QoS properties according to their needs. 

[Som95] identifies reliability, response time and memory management as QoS constraints. 

Response time is related to an event model’s real-time constraints which is discussed below. 

Examples of an event model’s reliability properties are event reliability and connection 

reliability. Memory management is addressed by properties like maximum number of 

consumers and producers, queue sizes, order policies and discard policies. 

1.4.4 Real-Time Constraints 

In order to describe the problem domain, we firstly present a simple real-time system 

description and then state a more definite description of a real-time system as defined in the 

Oxford Dictionary of Computing: 

Functional requirements are statements of services the system should 
provide, how the system should react to particular inputs and how the system 
should behave in particular situations. In some cases, the functional 
requirements may also explicitly state what the system should not do 
[Som95, p.118]. 

Non-functional requirements are constraints on the services or functions 
offered by the system. They include timing constraints, constraints in the 
development process, standards and so on. .. Examples are reliability, 
response time and store occupancy [Som95, p.119]. 
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A real-time system that features event-based communication requires the involved event 

model itself provide real-time guarantees. As with other non-functional requirements, namely 

the QoS constraints discussed above, we say an event model features real-time when 

applications can access and configure the system’s real-time properties according to their 

needs. 

Although a distributed event model might not be able to guarantee low latency4, it may 

include real-time constraints that enable predictions on the event delivery behaviour and 

duration, thus allows deterministic event communication. A common real-time feature is a 

priority assigned to an event that allows a dispatcher to pre-empt the delivery of an event in 

order to deliver an event that has a higher priority. Other real-time requirements may include 

delivery deadlines, e.g. earliest and latest delivery time, and delivery timeouts. 

1.4.5 Scalability 

[CDK94] states that distributed systems operate effectively and efficiently at many different 

scales, the smallest practicable distributed system consisting of two clients and a server, 

larger ones consisting of several hundred clients and many servers. Several local-area 

networks are often interconnected forming wide-area networks that may contain thousands of 

clients and servers, enabling resources to be shared between them. Hence, distributed 

systems (of any scale) are typically required to perform in an environment where its scale 

dynamically changes over time. 

                                                      
4 Latency in distributed communication depends on the available bandwidth and the quality of 

the underlying network. Both of which depend on the topology and the traffic of the network 

and may therefore change over time. Thus, “low” latency in a distributed event model is 

relative. 

A real-time system is any information processing activity which has to 
respond to externally generated input stimuli within a finite and specified time 
[BW96, p.2]. 

A system in which the time at which the output is produced is significant. This 
is usually because the input corresponds to some movement in the physical 
world, and the output has to relate to that same movement. The lag from input 
time to output time must be sufficiently small for acceptable timeliness. 
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The term scalability is used to describe a distributed system’s behaviour when changing its 

scale. There is no generally accepted scientific definition of scalability, with textbooks tending 

to rely on examples to explain it and generally providing rather vague definitions. [CDK94] 

uses the London telephone system that run out of numbers and a file server that becomes a 

performance bottleneck with increasing number of accesses as examples of lack of 

scalability. However, the following definition is also provided: 

 

[Mul93] describes the evolution of the Andrew File System (AFS) to present their design 

strategy for scalability, but also provides a more specific definition: 

 

From those examples and definitions, it can be observed that the scalability of a systems 

depends on several factors. With regards to event models, the parameters that may vary are: 

 
• Number of users 

• Number of entities (i.e. event consumers and producers) 

• Number of mediators (i.e. zero or more) 

• Number of nodes (i.e. physical machines) 

• Number of activities (i.e. communications) 

 
In principle, these parameters are independent, but in practice they are likely to increase 

consecutively. For example, increasing the number of entities is likely to amplify the number 

of activities. As suggested in the definitions above, an event system that scales well must 

facilitate increasing the number of entities without other entities or mediators becoming a 

performance bottleneck. Another requirements related to scalability could state that 

application software on entities should not need to change when the scale of the system 

The system and application software should not need to change when the 
scale of the system increases. .. The demand for scalability in distributed 
systems has led to a design philosophy in which no single resource – 
hardware or software – is assumed to be in restricted supply. Rather, as the 
demand for a resource grows, it should be possible to extend the system to 
meet it [CDK94, p.18]. 

A scalable distributed system is one that can easily cope with the addition of 
users and sites, and whose growth involves minimal expense, performance 
degradation, and administrative complexity [Mul93, p.363]. 
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increases. Generally, it can be observed that the importance of scalability increases with the 

complexity of a distributed event system. 
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2. OMG CORBA EVENT MODELS 

The Common Object Request Broker Architecture (CORBA) is an open standard for object 

management specified by the Object Management Group (OMG). The architecture uses 

Object Request Brokers (ORBs) as the middleware to allow application components, which 

are objects, to communicate with each other across boundaries such as the network, different 

operating systems and different programming languages. To extend the ORB core 

capabilities, the CORBA 2.0 specification [Gro95a] defines a wide range of general-purpose 

services, one of which is the CORBA Event Service [Gro95b]. This service allows application 

components to communicate with events in addition to the means of communication provided 

by the bare ORB. In order to extend the Event Service with filtering and quality of service 

(QoS) capabilities, a Request For Proposal [Gro96] to define a CORBA Notification Service 

was issued by the OMG in 1996. The submitted joint revised submission [Cea98] was 

accepted by the end of 1998. The event models used in both services include a mediator 

through which events or notifications respectively are distributed and can be characterised as 

extremely general, to cover the needs of different business domains, and quite complex due 

to the large number of interfaces. We review each of these event models in the following 

sections. 

2.1 CORBA Event Service 

The CORBA Event Service [Gro95b] supports an event model that defines two roles for 

objects. The role of a supplier which produces event data and the role of a consumer which 

processes event data. Suppliers and consumers are collectively addressed as clients. There 

are two approaches to initiate event communication between suppliers and consumers called 

push-model and pull-model. They allow either supplier or consumer to initiate communication. 

The push-model allows the supplier to initiate the transfer of event data to consumers and the 

pull-model allows a consumer to request the event data from a supplier. In the former model, 

the supplier initiates event communication and in the latter model the consumer initiates 

event communication by polling the supplier for event data. A consumer may use either a 

blocking (pull) or a non-blocking (try_pull) mechanism for requesting event data. In a simple 

scenario, where consumers and suppliers invoke directly on each others’ interface methods 

to exchange event data, clients are required to know each others’ object references. 

Therefore, event communication cannot be anonymous. The CORBA Event Service also 

supports the role of an event channel that enables anonymous event communication. 
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2.1.1 The Event Channel Architecture 

The Event Channel is an intervening object between suppliers and consumers, that 

decouples the communication between suppliers and consumers and allows multiple 

suppliers to communicate with multiple consumers anonymously. An event channel therefore 

acts as both supplier and consumer of event data. It can communicate with suppliers and 

consumers using a mix of communication models. E.g. the consumer uses the pull-model to 

obtain the event data from the event channel, whereas the supplier used the push-model to 

transmit the event data to the event channel. 

 

Fig. 2.1. CORBA Event Channel Overview. 

An overview of the Event Channel architecture is shown in Figure 2.1. The architecture 

includes the event channel as well as a group administration and several proxy interfaces on 

each of the two sides of the channel. The supplier side includes all interfaces used by 

suppliers and the consumer side includes all interfaces used by consumers. The group 

administration interfaces, the SupplierAdmin and the ConsumerAdmin, act as factory objects5 

for adding consumers and suppliers respectively. The operations for adding consumers 

return proxy suppliers, the operations for adding suppliers return proxy consumers. The 

obtained proxy interfaces are then used to connect to the push/pull supplier/consumer 

interfaces. 

The ConsumerAdmin interface defines two operations to obtain proxy suppliers. 

I nt er f ace Consumer Admi n {  
   Pr oxyPushSuppl i er  obt ai n_push_suppl i er ( ) ;  
   Pr oxyPul l Suppl i er  obt ai n_pul l _suppl i er ( ) ;  
}  

The SupplierAdmin interface defines two operations to obtain proxy consumers similar to the 

ConsumerAdmin. 

                                                      
5 A factory object is an object that instantiates new objects. 
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I nt er f ace Suppl i er Admi n {  
  Pr oxyPushConsumer  obt ai n_push_consumer ( ) ;  
  Pr oxyPul l Consumer  obt ai n_pul l _consumer ( ) ;  
}  

An event channel may also include build-in filtering capabilities and quality of service 

(QoS) capabilities such as event priority or event delivery guaranty. Such features are not 

defined in the event service specification and depend therefore on the implementation of a 

particular vendor. To combine the features of different event channels, this architecture 

supports the composition of event channels. That is, one event channel may consume the 

events supplied by another. This solution is sufficient, but as a side-effect it increases latency 

and constrains interoperability. The CORBA event service specification does not include a 

policy for clients to locate event channels. There are several means for clients to obtain the 

event channel’s object reference, including making use of a naming service or looking it up in 

a locally stored file or table. 

2.1.2 Generic and Typed Event Channels 

An event channel can be implemented as either generic or typed event channel. Both work 

as described above, but the generic event channel only supports generic event 

communication, whereas the typed event channel supports both typed and generic event 

communication. The information that describes a generic event is of data type any. Thus, it is 

flexible enough to cope with the needs of different applications. Typed event data is 

described in OMG Interface Definition Language (IDL). Suppliers call operations on 

consumers using a mutually agreed IDL interface. A generic event channel can handle 

events supplied and consumed in any combination of the forms push/pull and generic/typed. 

Event data supplied in a typed form can be consumed in a generic form and vice versa6. The 

authors of [Cea98] state that many users have found typed event communication difficult to 

understand and implementers have found it particularly difficult to deal with. 

2.2 CORBA Notification Service 

In December 1996, the OMG issued a Request For Proposal [Gro96] to define a CORBA 

Notification Service. The notification service extends the existing CORBA Event Service 

[Gro95b] described in the last section adding new capabilities such as filtering and quality of 

                                                      
6 Thus, the event channel must support the conversion of a typed event into a generic event, 

i.e. IDL into any, and vice versa. Doing this requires an understanding of the generic event 

channel interfaces and depends on the particular implementation of the event channel. 
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service (QoS). The finally submitted joint revised submission [Cea98], written by a group of 

organisations including Borland International, International Business Machines Corporation, 

Iona Technologies Plc. and NEC Corporation, was accepted by the OMG by the end of 1998. 

2.2.1 The Notification Channel Architecture 

The main design goal of the CORBA Notification Service was to directly extend the existing 

CORBA Event Service enhancing it with important features. This is achieved by inheriting the 

interfaces of the Notification Channel directly from those defined be the Event Channel 

allowing for interoperability between basics event service clients and notification service 

clients. The notification channel therefore contains all the interfaces and functionality 

supported by the event channel. Additionally, the notification channel supports multiple 

instances of the ConsumerAdmin and the SupplierAdmin interfaces as depicted in Figure 2.2. 

 

Fig. 2.2. CORBA Notification Channel Overview. 

This symmetric architecture7 of the notification channel supports capabilities such as 

administration, filtering, quality of service (QoS) and structured event communication, which 

are described in the following sections. It also includes an optional event type repository that 

may be used to perform run-time type checking of the event properties or to discover the 

structure of types of events. 

                                                      
7 The supplier side and the consumer side of the notification channel are symmetric. 
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2.2.2 Administrative Capabilities 

At creation time, a number of administrative properties can be set on a notification channel to 

help in managing memory space. Those properties include the maximum number of suppliers 

and consumers, as well as the maximum number of events that will be queued by the 

notification channel before the notification channel begins discarding them. 

Starting from any object, clients may discover all objects that comprise a notification 

channel. Whenever a factory object creates a new object, a unique numeric identifier is 

assigned to it. Factories also support operations to query the identifiers created by it, to 

convert them into object references and to return the reference of its parent object. These 

identifiers are unique among all objects created by a particular notification channel, but unlike 

Interoperable Object References (IOR), they are not globally unique. Globally unique 

identifiers are required by systems that use federated Notification Channels. 

The offer_change and subscription_change operation are available on interfaces 

supported by notification channels. The former is used by suppliers to indicate changes in the 

supplied event types, the latter is used by consumers to inform suppliers of the event types 

they require. Consequently, suppliers know which events are being consumed and which are 

not. This knowledge can be used to produce notifications on demand and therefore optimise 

network traffic. 

2.2.3 Filtering Capabilities 

The most important enhancement introduced by the notification service is the support of filter 

objects. Filter objects can be assigned to individual proxy objects (proxy supplier and proxy 

consumer), to admin objects (supplier admin and consumer admin) and to the notification 

channel itself. This results in hierarchical filtering on each side8 of the notification channel, 

where the filter object assigned to an admin object applies to all its proxy objects and 

therefore to its clients, whereas the filter object assigned to a proxy object applies only to the 

group of clients connected to itself. Filter objects encapsulate a set of constraints which are 

text strings containing a boolean filtering expression. All filter objects belonging to an event, 

i.e. defined at proxy, admin and channel level, are evaluated at the proxy level when an event 

is received, resulting in a decision whether or not to forward an event. The filter object shown 

below forwards events of domain type “Finance” and type name “ExchangeRateUpdate” or of 

domain type “Health” and type name “PulseLow” that contain an attribute “office” whose value 

                                                      
8 As opposed to other event models, filtering can take place on the supplier side as well as on 

the consumer side. 
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is equal to seven. The domain type, type name and the attributes of events are further 

described in section 2.2.5. 

( ( $domai n_t ype == “ Fi nance”  and $t ype_name == “ ExchangeRat eUpdat e” )  
or  ( $domai n_t ype == “ Heal t h”  and $t ype_name == “ Pul seLow” ) )  
and of f i ce == 7 

The syntax of the constraint expression conforms to a constraint grammar defined in a 

constraint language. The notification service specifies a default constraint language that is an 

extension of the Trader Constraint Language [Gro97]. Other constraint languages can be 

defined and can co-exist in the notification service. 

The notification service defines two types of filter objects. The first, called forwarding filter, 

affects the event forwarding decision as described above. The second, called mapping filter, 

influences the delivery policy applied to an event. Mapping filter objects change the 

characteristics of an event. Constraints can de defined which, when matched, dynamically 

assign a different priority to an event or set a changed expiration time, i.e. lifeline. 

2.2.4 Quality of Service Capabilities 

Another extension to the event service introduced by the notification service is the definition 

of interfaces for influencing the Quality of Service (QoS) characteristics of event delivery. A 

variety of QoS properties, such as reliability and priority, may be set to control the delivery 

characteristics of event messages. Operations for setting QoS properties are specified at 

various levels of scope throughout the notification service architecture. QoS properties can 

be accessed on: 

 
• The notification channel (per-channel) 

• Supplier and consumer group administration (per-admin) 

• Proxy suppliers and consumers (per-proxy) 

• Individual event messages (per-event) 

 
Table 2.1. shows the supported QoS properties and their level of scope. A detailed 

discussion of these QoS properties may be found in [Cea98]. 
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QoS property Per-Event Per-Proxy Per-Admin Per-Channel 

EventReliability 
�

   
�

 
ConnectionReliability  

�
 �  �  

Priority �  �  �  �  
StartTime 	     
StopTime 
     
Timeout �  �  
  �  
StartTimeSupported  

�
 �  �  

StopTimeSupported  
�

 �  �  
MaxEventPerConsumer  

�
 �  �  

OrderPolicy  
�

 �  �  
DiscardPolicy  

�
 �  �  

MaximumBatchSize  
�

 �    
PacingInterval  

!
 "  #  

Tab. 2.1. Notification Service QoS properties. 

The list of supported QoS properties, along with the levels of scope where settings can be 

made, provides a very flexible QoS configuration of a notification channel. However, 

meaningless QoS settings are not prevented. An event message is transmitted through three 

conceptual points; the supplier side, the consumer side and the notification channel. End-to-

end QoS requirements can only be guaranteed with the co-operation of all three parties. 

Although event delivery can be assured by setting persistent reliability and assign high 

priority and long lifetime to a message, no predictions can be made regarding delivery 

latency. 

2.2.5 Structured Event Communication 

To provide an easy-to-use but strongly typed event communication an new event message 

style, the structured event message, is introduced by the notification service. Structured 

events provide a well-defined data structure into which a wide variety of event types can be 

mapped. As depicted in Figure 2.3, structured events compose of a header and a body. 
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Fig. 2.3.The General Structure of a Structured Event. 

The fixed event header contains event type and instance identifier and the variable event 

header may contain QoS requirement name-value pairs, e.g. message priority. The event 

body contains the filterable event data also name-value pairs and a remainder that may be 

used to transmit additional large data blobs, e.g. files. 

2.3 Summary 

Both, the CORBA Event Service and the CORBA Notification Service specify an event model 

that defines the role of event suppliers, event consumers and an event channel or a 

notification channel respectively. Event communication may either be initiated directly 

between suppliers and consumers or may be delivered via a channel. The channel acts as a 

mediator between event suppliers and consumers, thus enables anonymous event 

commination. Both CORBA event services feature the push-model and the pull-model for 

delivering event data, whereas the other event models reviewed in this document support the 

push-model only. Event data is propagated in the form of generic events or typed events and, 

with the notification service, in the form of structured events. The notification service directly 
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extends the event service by enhancing it with Filtering Capabilities, QoS Properties and 

Administrative Features. 

Both event models can be characterised as extremely general, covering the needs of a 

variety of business domains, including telecommunications, finance, and medical and 

consequently complex due to the large number of interfaces and properties. Neither of the 

event models addresses federated event communication. To overcome this, the OMG issued 

a Request For Proposals for a service that provides the ability to configure, manage, and 

control a group of event channels connected together in a topology of arbitrary complexity 

[Gro98]. The request for proposal was answered by a consortium that submitted a 

specification for management of event domains in December 1999, the vote for the 

suggested architecture was completed in March 20009. 

                                                      
9 The decision was not available for publication yet. 
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3. JAVA EVENT MODELS 

Java is an object-oriented programming language developed by Sun, that was formally 

announced at a major conference in May 1995. It is suitable for use for the same type of 

development tasks as C and C++, but without the difficulties and source of bugs common to 

those languages. Java generated immediate interest in the business community and became 

increasingly popular because of Internet-related development, such as the World Wide Web. 

The Java architecture includes a Delegation Event Model [SM97] and a Distributed Event 

Model [SM98]. The delegation event model is used for event communication within a single 

Java Virtual Machine (JVM) for small centralised applications such as Graphical User 

Interfaces (GUIs), whereas the distributed event model enables event communication 

between objects located in different JVM’s which may be distributed across virtual, and even 

physical, machines. Both event models are reviewed in the following Sections. 

3.1 Java AWT: Delegation Event Model 

As part of the Java Foundation Classes (JFC), a class library, the Abstract Window Toolkit 

(AWT) is the standard Application Program Interface (API) for providing Graphical User 

Interfaces (GUIs) for Java applications. The Delegation Event Model [SM97] was introduced 

in AWT by Java Development Kit (JDK) 1.1. to catch and process GUI events. It replaces the 

event processing model in version 1.0 of the AWT that is based on inheritance. The 

delegation event model provides a more robust framework to support more complex Java 

applications than the inheritance-based event model and supports filtering of events. A 

number of other Java components also make use of the delegation event model. It has been 

adopted by the JavaBeans component architecture for general event processing and has 

been extended by the Swing component set, a new GUI toolkit. Furthermore, it is supported 

by the EmbeddedJava and PersonalJava application environments. The former is used for 

building embedded applications with dedicated functionality and strictly limited memory. The 

latter is used for building network-connected applications for consumer devices for home, 

office and mobile use. 

3.1.1 Delegation Event Model Architecture 

The delegation event model is the only centralised event model we review. Event suppliers 

are called Event Sources and event consumers are called Event Listeners. An event source, 

typically a GUI component, is said to fire events, when propagating an event of a specific 
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Event Type. Event source, event listener and event types are encapsulated in two JDK 1.1 

interfaces; 

Java. ut i l . Event Obj ect  
Java. ut i l . Event Li st ener  

Java applications can implement simple event-based communication by implementing 

methods defined in the two JDK interfaces in the manner described in [SM97]. In order to 

establish event-based communication, listeners register with the specific event type they are 

interested in by invoking the set<EventType>Listener or add<EventType>Listener methods 

on the source and passing the interface reference of their event handler, as shown in Figure 

3.1. The source provides a set<EventType>Listener and an add<EventType>Listener per 

supported event type. To register a single listener, the single-cast set<EventType>Listener 

method is invoked. The multi-cast add<EventType>Listener method is invoked to register 

several listeners that are interested in the same event type on a source. To fire an event, the 

event source object invokes the handler method on the listener object and passes the 

instance of an event type. 

 

Fig. 3.1. Java Delegation Event Model Overview. 

Events are always delivered synchronously, meaning that the listener’s event handler is 

actually executed by the source thread. Hence, a multi-cast source that fires an event must 

deliver the event to the listeners in sequence. 10 

                                                      
10 No guarantees are made about the order in which the events are delivered to a set of 

registered listeners for a given event on a given source. 
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The delegation event model couples event sources and event listeners very tightly 

together, thus there is no possibility for anonymity. The only way to partially de-couple 

sources and listener is by using so-called Event Adapters. 

3.1.2 Event Adapters 

A Java application may use an Event Adapter component to interpose between event source 

and event listener. An event adapter can be inserted between source and listener to partially 

de-couple the event communication between them as shown in Figure 3.2. As opposed to 

other event models, e.g. CORBA Event/Notification Service, the presented event adapter is 

asymmetric, i.e. it hides the listener form the source, but not vice versa. Thus, an event 

adapter introduces some notion of anonymity, i.e. the listener is anonymous but the source is 

not. 

 

Fig. 3.2. Java Delegation Event Model with an Event Adapter. 

The event adapter is an extremely important component of the delegation event model. 

Besides de-coupling the source from the listener, an event adapter may also introduce 

additional behaviour on event delivery, including event queuing, event filtering and event 

demultiplexing. The demultiplexing adapter technique may be used in applications where a 

given event listener object only implements a given event listener interface once. Thus if the 

listener registers itself with multiple event sources for the same event, the listener has to 

determine for itself which source actually emitted a particular event. An adapter may be used 
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to allow the events fired by different event sources to invoke on different methods on the 

listener object. For example, this technique may be used to have two buttons invoke on two 

different methods in the same listener. 

3.2 Java Distributed Event Model 

Java’s Distributed Event Model [SM98] relies on Java Remote Method Invocation (RMI) that 

enables objects in one JVM to seamlessly invoke methods on objects in a remote JVM. 

Therefore, it allows an object in one JVM to register interest in the occurrence of some event 

occurrence in an object in some other JVM. This is the event model adopted by Jini [SM99], a 

Java technology that provides a simple mechanism which enables devices to plug together to 

form an communication community without any planning or installation. 

3.2.1 Distributed Event Model Architecture 

The architecture of Java’s distributed event model is similar to its delegation event model. It 

specifies the interface that is used to send an event and the information that an event must 

contain and allows various degrees of delivery assurance, different policies of event 

scheduling and an interposing object that may collect, hold, filter and forward events. 

Although it provides an example of an interest registration interface, it does not specify such 

an interface. This is to allow a wide variety of kinds of events. Thus, the way these events 

register interest may vary from object to object. 

 
The entities involved are: 

• The Event Generator is the event supplier that generates events and sends them to 

registered listeners. 

• The Remote Event Listener is the event consumer that registers interest in some kind 

of events in some other objects. 

• The Remote Event is the event object that is passed from generator to listener. It 

contains information about the occurred event kind, a reference to the generator 

object, a sequence number to identify the particular event instance and a handback 

object supplied by the listener. 

 
The event listener registers with the event generator that generates the events it is 

interested in. Such a registration is limited to a given duration using the notation of a lease. 

This is discussed in more details in Java’s Distributed Leasing Specification. The event 

generator sends events to the registered listener by calling the listeners notify method. As 

shown here, 
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publ i c  i nt er f ace Remot eEvent Li st ener  
                     ext ends Remot e,  j ava. ut i l . Event Li st ener  {  
   voi d not i f y( Remot eEvent  t heEvent  
                     t hr ows UnknownEvent Except i on,  Remot eExcept i on;  
}  

the notify method has a single parameter, the event. To know if the call was successful a 

call to the notify method is synchronous. The sequence number included in the event acts as 

a hint to the number of event occurrences and is guaranteed to be strictly increasing. 

3.2.2 Third Party Objects 

As in the Java delegation event model [SM97], the distributed event model may be enhanced 

with third party objects, or agents, so called Distributed Event Adapters. As shown in Figure 

3.3, an event adapter interposes (mediates) between event generator and event listener and 

must support the notify method. Thus it allows enhancements to functionality without 

changing the basic interfaces. 

 

Fig. 3.3. Java Distributed Event Model with an Event Adapter. 

It may act as filter or mailbox and may introduce policies of reliability to the event model. 

The use of event adapters also introduces a notation of anonymity, but increases event 

delivery latency. Since event adapter functionality is not specified, it can be used to provide 

application specific features for a listener or a group of listener while co-existing and co-

operating in a system with other listeners and adapters without affecting them. 
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3.3 Summary 

The Java programming language architecture introduces a delegation event model used for 

processing events in small centralised applications such as GUI’s and a distributed event 

model used for event communication between object located in different JVM’s. Both event 

models are adapted by a number of Java components and environments. 

The delegation and the distributed event model have a similar architecture in that they 

allow the use of adapters. Adapters are objects that interpose between event generator and 

listener, thus enhance the system with application specific functionality, such as filers or QoS, 

without loosing compatibility. The delegation event model can easily be included in 

applications. This is achieved by implementing the specified event listener interface and by 

registering it with an event source. The distributed event model can be described as a thin 

event model specification that does not specify an event registration method, but therefore 

allows event generators, listeners and adapters from different vendors to co-exist and co-

operate within a system. 
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4. THE CAMBRIDGE EVENT MODEL 

Jean Bacon, John Bates, Richard Hayton and Ken Moody developed a Composite Event 

Model at the University of Cambridge Computer Laboratory. As described in [BBHM96], the 

Cambridge event model has a simple architecture, but has a feature that is not commonly 

supported by event models, that of event composition. The approach to event communication 

taken in the Cambridge event model is described below using an example. 

4.1 Cambridge Event Model Architecture 

The Cambridge event model, based on the client-server computing paradigm [Maf00], 

defines the role of an event service11 that supplies event objects (events) and the role of an 

event client that receives events. To include the Cambridge event model architecture, 

applications must extend their clients and services to incorporate: 

 
• Event specification; by services 

• Registration; by clients at services 

• Notification; by services to clients 

 
The model includes an Interface Definition Language (IDL12) for events, which enables 

services to specify (declare) the events they can notify. The IDL also allows clients to see the 

event declarations of the services and to select those of interest, i.e. register with them. The 

for the event model selected IDL is a, in Cambridge developed, high-performance PRC 

system. A pre-processor is used to translate the IDL code. The pre-processor not only 

generates client and service stubs for marshalling and un-marshalling of method invocations 

but also event specific stubs required by event objects. 

The examples below show the use of the Cambridge event model on the service side for 

an active badge system. The IDL declaration of an event class, the instantiation of an event 

object and the notifying of an event object are shown. 

 

                                                      
11 An event service is an event producing entity located on a physical machine that may host 

one or more event services. Hence, an event service corresponds to the server of the client-

server computing paradigm. 
12 The IDL of the event model is different from the IDL specified by the OMG, but has similar 

functionality. 
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• IDL declaration of an event class: 

     Badge :  I NTERFACE = 
        Seen :  EVENTCLASS [ badge  :  BadgeI d;  
                           sensor  :  Sensor I d] ;  
     END.  

 
• Instantiation of an event object that represents badge 17 being detected by sensor 29: 

     e = Badge_Seen( 17,  29) ;  

 
• Sending an event object: 

     Event Ser ver . Si gnal ( e) ;  

 
The examples below show the use of the Cambridge event model on the client side for an 

active badge system. The instantiation of a template, the registration and de-registration of 

interest with an event and the evaluation of an event object are shown. 

 
• Register interest with an event: 

     t empl at e = Badge_Seen( P, R) ;  
     Event Cl i ent . Regi st er ( c l i ent env,  Event Handl er ,  t empl at e) ;  

 
In order to receive the events an event client is interested in, it creates an event template 

and registers with the relevant event service. To do this, an event client invokes on the 

register method and passes a client specific parameter list. The parameter list includes a 

template for event filtering and an event handler which is the method within the client that is 

invoked on event notification. Furthermore, a parameter called clientenv for client specific 

purpose is passed. 

 
• Evaluate a received event object: 

     voi d Event Handl er ( Opaque * c l i ent env,  Event  * event ) ;  

 
Event clients support an event handler method which is invoked when an event is 

delivered. Hence, the actual event data is passed to the client and the clientenv field is 

returned to it. This field can be decoded by the client to retrieve instance specific information 

in addition to the event data. 

 
• De-register interest with an event: 

     Event Cl i ent . DeRegi st er ( t empl at e) ;  
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If a client no longer requires a registration in an event, it cancels its interest by invoking the 

deregistration method. 

4.2 Event Filtering 

Event Filtering is supported by the event model through the use of templates. A client 

specifies a template that describes which events it is interested in. The template is passed to 

the service as a parameter when the client registers with the service. An application 

programmer uses a pre-processor to generate extra code for each event object. This code is 

invoked at run-time to match the template against the actual event. Templates may use 

variables in place of parameters to indicate ‘wild cards’ which match any value in raised 

events. They are of the general form: 

 

t empl at e = Event TypeName( par 1,  par 2,  . . ,  par n) ;  

 
Examples of filter template object instantiations are: 

 
• Notify of every sensor where badge 17 is seen: 

     t empl at eWher e = Seen( 17, R) ;  

 
• Notify of every badge seen at sensor 29: 

     t empl at eWho = Seen( P, 29) ;  

 
• Notify of every badge seen at any sensor: 

     t empl at eGod = Seen( P, R) ;  

 
As discussed in [Haa98], the template approach for event filtering is very limited. Because 

events and templates have the form: 

 

Event TypeName( ar g1,  ar g2,  . . ,  ar gn)  
Event TypeName( par 1,  par 2,  . . ,  par n)  

 
they only allow expressions to be matched one-by-one against actual event parameters, 

i.e. arg1 against par1, arg2 against par2, etc. It is impossible for parameters to be compared 

against each other. Furthermore, a logical conjunction is always implied between template 

expressions. 
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4.3 Event Composition 

Clients may require events from multiple services and may want to detect a specific pattern of 

event occurrences from these different sources. Such a combination of event occurrences, 

where a client is interested in a sequence of event occurrences but not in any of the event 

alone, is called event composition. To address this requirement, the Cambridge event model 

supports the combination of event templates in the general form of: 

 

Event TypeNameA( par 1,  par 2,  . . ,  par n) ;  Event TypeNameB( par 1,  par 2,  
. . ,  par n) ;  . .  

 
A composite event scenario example for an active badge system is to monitor for everyone 

who is in a building when the fire alarm is sounded. The event template sequence for this 

scenario could be: 

 

Fi r eAl ar m( 7) ;  Seen( 7, P, R) ;  

 
This event template sequence traces every badge (worn by a person) seen by any sensor 

in building 7 after the fire alarm went off in that building. 

Such an event template sequence is being checked by a monitor which is busy until it has 

finished that detection. A composite event specification language may be used to define a 

monitor machine that is able to control more complex sequences of composite event 

templates. 

4.4 Summary 

The architecture of the Cambridge event model can be characterised as simple and easy to 

understand. Although, it is less flexible that other event models and does not feature QoS or 

real-time capabilities, it does support event templates that are used for event filtering and 

allows event composition. The approach of using event templates for event filtering is very 

limited. But may be compensated for by using composite events. Composite events are 

currently not commonly supported by event models, but may become more common due to 

their usefulness in constructing complex event filters. 

The model includes an IDL for events, that enables services to specify the events they can 

notify. A pre-processor is used to translate the IDL code into client and service stubs for 

marshalling and un-marshalling of method invocations and event specific stubs required by 

event objects. Using a pre-processor is elegant, but, depending on the actual implementation, 

may not scale well in a distributed application. 



State Of The Art Review of Distributed Event Model 

 

March 2000  Page 29 
 

5. ECO 

The ECO event model, whose architecture and features are described in the following 

Sections, was originally designed to provide the means for event-based communication in the 

VOID shell [CCK+95]. The VOID shell is a system for distributed virtual world support, 

developed at Trinity College Dublin, as a part of the Moonlight [CCK+95] project. The version 

of the ECO event model implemented as a central part of the VOID shell is called ECOlib 

[OCC+95]. ECOlib features event filters called notify constraints and another constraint type 

called pre- and post-constraints. 

So far, the ECO event model was also implemented in [ODC+96] as DECO (Distributed 

ECO) and in [Haa98] as SECO (Scalable ECO)13. Both, DECO and SECO, allow event-

based communication across a distributed system. The features supported by DECO include 

precompiled notify constraints which are not dynamically linkable and an extension to the 

ECO event model called zones, which we will discuss further below. DECO relies on the ISIS 

framework for group communication, whereas SECO is implemented using Kanga [Bur96] as 

the means for synchronous communication across a distributed system. In order to scale 

well, SECO features notify constraints that are dynamically linkable. 

5.1 ECO Event Model Architecture 

The abbreviation ECO stands for Events, Constraints and Objects, which are the three 

central concepts used in the ECO event model. [SCT95a] and [SCT95b] describe the 

rationale of the ECO event model, the three central concepts and ECO’s event application 

interface. In the following Sections, we first explain ECO’s three central concepts, then 

introduce ECO’s event applications interface with its three operations, and finally we present 

ECO’s features, namely constraints and zones. 

5.1.1 Events, Constraints and Objects 

ECO’s basic abstractions are objects that represent entities, events that provide the means 

for entities to interact and constraints that allow the specification of synchronisation and 

notification requirements. 

Objects, also called entities, are instances of classes and have attributes and methods. 

They are encapsulated, thus cannot directly access each other’s attributes or invoke on each 

                                                      
13 SECO has been implemented as uSECO based on unicast communication and as mSECO 

based on multicast communication. Both versions are described in [HMN+00]. 
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other’s methods, but may communicate by announcing and processing events. An object that 

announces events acts as an event supplier and an object that processes event acts as an 

event consumer. An event that is propagated between objects is of a particular type, which 

determines the number and the type of the event’s parameters. Constraints are used to 

specify a condition that controls the propagation of events. ECO specifies different types of 

constraints that may be used for various purposes. Notify constraints act as event filters, 

whereas pre- and post-constraints may be used to implement synchronisation or 

concurrency. 

5.1.2 ECO’s Event Application Interface 

The event API provided by ECO includes the three fundamental operations needed in an 

event based system, which are subscribe, unsubscribe and announce. An event processor 

registers interest in a particular event type by invoking on the subscribe method. To perform 

the opposite of a subscription, i.e. to cancel interest in a particular event type, an event 

processor invokes on the unsubscribe method. Objects that produce events use the 

announce method to communicate them to event processors. 

The subscribe operation has the form: 

Subscr i be( event Type,  event Handl er ,  not i f yConst r ai nt ,  pr eConst r ai nt ,  
post Const r ai nt )  

The eventType is the type of the event the event processor is interested in and the 

eventHandler is a callback that is invoked on by the event announcer when events are to be 

delivered. The event announcer evaluates the notifyConstraint to determine the propagation 

of an event. PreConstraints and postConstraints are executed locally on the event processor 

side to control the delivery of an event as described below. 

The unsubscribe operation has the form: 

Unsubscr i be( event Type,  event Handl er )  

The eventType and the eventHandler are used to identify the subscription previously made 

by the event processor that has to be cancelled. 

The announce operation has the form: 

Announce( event Type,  event Par amet er s)  

The eventType identifies the type of the event to be propagated and the eventParameters 

is the actual event data to be distributed. 
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5.2 Notify Constrains 

Notify constraints are ECO’s means to support event filtering and are therefore evaluated on 

the event announcing side. The ECO event model does not specify how notify constraints be 

defined or implemented, but does define typed events that may include a large number of 

parameters with various types. Thus, it is up to the particular implementation to support notify 

constrains that are sufficient for event filtering on typed events. 

5.3 Pre- and Post-Constraints 

Pre- and post-constraints behave as event processor method wrappers providing a means to 

control the delivery of events. These constraints are evaluated local to the event processor 

and are used to implement: 

 
• Synchronisation within the event processor 

• Control of the concurrency level within a method or within the event processor 

• Timing control, e.g. start time for earliest delivery and end time for latest delivery 

• Method pre- and post-conditions 

 
In addition to this, pre-constraints can be implemented to request that events be discarded, 

enqueued or processed before they are delivered. 

5.4 Zones 

Event filters, i.e. notify constraints, are supported by many event models to provide the 

means of minimising event propagation. However, the ECO event model supports another 

way to further reduce event propagation. Events in ECO may also be scoped. This ensures 

that events are not delivered outside their scope even with a matching notify constraint. 

ECO organises its entities into zones. An entity associated with a particular zone is said to 

be a member of that zone. [ODC+96] and [O’C97] state that members of an ECO zone may 

change dynamically and that zones may overlap allowing entities to become members of 

several zones. This is useful in a scenario where a robot in a smart building is interested in 

events announced within the smart building. The robot subscribes to doorOpenClose and 

generalAlarm events. To scope these events, the robot also joins the zone that consists of 

the floor he is currently moving on14 and the zone that consists of all alarm sensors within the 

                                                      
14 This scenario also shows the dynamic group membership [Bir96] aspect of zones. The 

robot has to dynamically change its group membership when moving from one floor to 
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building. The former type of zone is said to be geographical, the latter is said to be functional. 

Without the zones, the robot would receive doorOpenClose events from the whole building, 

although only the ones close to its position, i.e. on the current floor, are of interest to it. As for 

generalAlarm events, the robot is obviously interested in alarms that are announced 

anywhere in the building, such as a fire alarm event on the ground floor or a power failure 

event on another floor. 

Fig. 5.1. Overlapped and Nested Zones. 

[O’C97] describes several different ECO zone concepts. As already mentioned, 

overlapping zones allow an entity to become a member of several zones simultaneously. 

Whereas nested zones allow large zones that contain many entities to be subdivided. In a 

scenario where the announced event is limited to a particular zone, of which the announcing 

entity is not a member, the zone is said to be targeted. Finally, zones may be created and 

deleted dynamically, and entities may change their zone memberships at run time. These 

zones concepts may also be combined (Figure 5.1 shows zones that are overlapped and 

nested). 

5.5 Summary 

The ECO event model specifies the three basic operations needed to provide event-based 

communication, namely subscribe, unsubscribe and announce. Its architecture does not 

depend on a centralised component for event propagation, such as CORBA’s event channel. 

This removes a single point of failure. ECO’s main features include event filters, called notify 

constraints, pre-constraints and post-constraints that act as wrappers on the event processor 

side and the notion of zones that limit the scope of event propagation. 

                                                                                                                                                       

another. Before joining the new zone, the robot might have to create the new zone and after 

leaving the old zone, the robot might have to delete the old zone respectively. 
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Of ECO’s features, pre-constraints, post-constraints and zones are unique amongst event 

models. Pre- and post-constraints may be used to implement additional subscription-specific 

functionality on the event processor side such as synchronisation, timing control and 

concurrency control. Furthermore, pre-constraints may implement event delivery strategies 

such as enqueuing, pre-processing or discarding. Since pre- and post-constraints are 

subscription specific, they provide a very flexible means of controlling event delivery. Whether 

such a degree of flexibility is efficient15, manageable16 and feasible17 in a large-scale 

distributed system depends on the application domain. 

The notion of geographical and functional zones is used in ECO to limit the scope of the 

propagation of events. Several different concepts of zones, including overlapping, nested, 

targeted and dynamic zones as well as combinations of them, are described in [O’C97]. 

Limiting the scope of event propagation, regardless of matching notify constraints, provides a 

powerful means of minimising network traffic and CPU processing time, particularly in a 

large-scale system. 

                                                      
15 Most event-based systems are likely to have similar delivery strategies on the event 

processor side. Therefore, its is more efficient to have the delivery strategy build in, instead of 

having every event processor defining similar pre and post constraints. 
16 Although synchronisation delivery strategies might be chosen based on a local decision, a 

system that implements a wide range of different strategies may become unmanageable. 
17 A wide range of different delivery strategies may interfere with other system features such 

as event ordering or timely delivery. 
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6. JEDI 

The JEDI (Java Event-based Distributed Infrastructure) is an object-oriented infrastructure 

implemented in the Java programming language that supports the development of event-

based applications. The JEDI architecture, which is described in [CDNF98a] and [CDNF98b], 

has been developed by CEFRIEL – Politecnico di Milano. It has been used to implement a 

workflow management system called OPSS18 and a process support system called 

PROSYT19. 

6.1 JEDI Event Model Architecture 

The architecture of the JEDI event model, which is described in Figure 6.1, is based on the 

notion of active objects (AOs) and event dispatchers (EDs). An AO is an autonomous entity 

that performs the role of an event producer or an event consumer, thus generating or 

notifying events. The ordered delivery of the events is the responsibility of the ED. The ED 

supports an event subscribe and an event unsubscribe operation. These are invoked by the 

AOs to register, or cancel, with the particular event. 

 

Fig. 6.1. A Logical View of the JEDI Architecture. 

In JEDI, events are defined as a set of ordered strings. The first string representing the 

event name and the remaining strings representing the event parameters. This allows the 

                                                      
18 OPSS (ORCHESTRA Process Support System) is introduced in [CDNF98a] and 

[CDNF98b]. 
19 PROSYT is introduced in [CG98]. It uses mobile agents in its design and implementation 

and thus makes use of JEDI’s mobility feature, which is introduced in this Section. 
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definition of an event using a notation similar to function calls in traditional programming. An 

example of an event in JEDI might be 

pr i nt ( MyDocument ,  Our Laser Pr i nt er )  

where print is the event centralised component name and MyDocument and 

OurLaserPrinter are the event parameters. 

As shown in Figure 6.1, the ED is the logically centralsed component of the JEDI 

architecture that must have global knowlegde of the generated events and the subscriptions. 

However, [CDNF98b] statess that a centralised implementation of the ED can become a 

critical bottleneck for a distributed system. Thus, JEDI provides two implementations of the 

ED; a centralised and a distributed version. The centralised version covers the requirements 

of simple, small-scale applications exchanging a limited number of events. Whereas the 

distributed version addresses the needs of large-scale applications, interconnecting several 

AOs running on different nodes of the network. 

The distributed version of the ED consists of a set of dispatching servers (DSs) 

interconnected in a tree structure. As depicted in Figure 6.2, each DS is located on a different 

node and is connected to one parent DS, unless it is the root DS, and to zero or more 

descendants. The AOs are connected to the distributed ED via a DS. 

In the distributed version of the ED a hierarchical strategy is employed for the distribution 

of event, subscription and unsubscription messages amongst the DSs. Each DS that receives 

a subscription or unsubscription request from an AO (or another DS) updates its entry table 

and passes the request on to its parent DS. Hence, all subscription and unsubscription 

requests are propagated upwards the tree until they reach the root. On an AO producing an 

event, it is passed to the local DS where it is forwarded up the tree. Each DS that receives an 

event checks its descendants, passes the event onto any descendant that has requested the 

event and then forwards the event to its parent. Thus, events are also propagated upwards 

the tree until they reach the root. This strategy ensures that all the relevant nodes receive all 

the subscription, unsubscription and event messages. 
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Fig. 6.2. The Structure of Dispatching Servers. 

6.2 Event Pattern 

JEDI allows a very simple form of event filtering through the use of event pattern. When 

subscribing, AOs register interest in a specific event or in an event pattern. Like events, event 

patterns are defined as a set of ordered strings. The first string representing the pattern name 

and the remaining strings representing the pattern parameters. [CDNF98b] states that each 

string of a pattern may end with an asterisk and that an event e matches a pattern p if the 

following conditions hold: 

 
• The name of e is equal to the name of p, if p does not contain the asterisk or both 

names start with the same sequence of characters and the name of p ends with an 

asterisks; 

• e and p have the same number of parameters; and 

• Each parameter of e is equal to the parameter of p having the same position or both 

start with the same sequence of characters and the parameter of p ends with an 

asterisks. 
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6.3 Reactive Objects and Mobility 

The JEDI architecture supports the mobility of objects through the use of reactive objects. 

Reactive objects are a particular type of active object defining an abstract method called 

processMessage. The application programmer has to implement this abstract method which 

is automatically invoked each time an event is delivered to the reactive object. This enables 

an implementation of a reactive object to autonomously move across the nodes of a network 

by invoking JEDI’s move operation. Invoking on the move operation causes the following 

actions to occur: 

 
• The reactive object is disconnected from the ED and the thread of execution 

controlling it is stopped; 

• The reactive object is serialised using the standard Java facilities; 

• The reactive object is moved via the network to its new destination, where it is 

reconnected to the ED; and 

• During the migration, events to be received by the reactive object are stored by the ED 

until the reactive object has successfully moved location and is ready to receive the 

stored events. 

 

6.4 Summary 

The JEDI infrastructure provides a simple, easy to understand architecture for event-based 

communication. Its architecture is based on two components, active objects (AOs) and event 

dispatchers (EDs). In its centralised version, the event dispatcher may become a critical 

bottleneck and is a single point of failure. To overcome this, JEDI also features a distributed 

version of the event dispatcher, which consists of a set of dispatching servers (DSs) 

interconnected in a hierarchical structure. The hierarchical topology improves the robustness 

and scalability of the JEDI architecture. However, in case of a failing DS the JEDI network 

has to deal with segment separation. Furthermore, the fact that all messages are being 

forwarded via several dispatching servers to the root of the tree might cause the overloading 

of the higher-level servers. 

Events in JEDI are defined as a set of ordered strings, limiting the parameter that can be 

defined for an event. Event filtering is supported in a very simple and limited manner through 

the use of event patterns, which are essentially events defined as a set of ordered strings. 

An interesting feature of JEDI is the ability to move objects across the nodes of the 

network. Mobility is supported through the use of a particular type of active objects called 

reactive objects and through the use of a move operation. Mobility is desirable to increase the 
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flexibility and the effectiveness20 of an application and to support event-based communication 

among mobile devices such as Personal Digital Assistants (PDAs). 

                                                      
20 Mobility can be used to implement load balancing and to reduce the network traffic by 

moving applications close to the resources they need. 
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7. SIENA 

Like JEDI [CDNF98a][CDNF98b], SIENA (Scalable Internet Event Notification Architecture) 

has been developed in Politecnico di Milano and features an architecture that is similar to but 

more advanced than JEDI’s. SIENA has been designed to support event based 

communication in wide-area networks such as the Internet and features code mobility. Its 

architecture is introduced in [CRW98] and a detailed description can be found in the Ph.D. 

thesis [Car98]. 

7.1 The SIENA Event Model Architecture 

The SIENA infrastructure implements a scalable general-purpose event model that is based 

on a distributed architecture of event servers. In SIENA’s terminology, events are produced 

by objects of interest and consumed by interested parties. The propagation of events is 

regulated by mechanisms called advertisement, subscription and publication. 

The high-level view of the SIENA architecture, shown in Figure 7.1, includes these event 

propagation mechanisms. While the subscription and the publication mechanism are 

common to most event models, the advertisement mechanism is specific to SIENA. The 

subscribe and unsubscribe operations are used by an interested party to register and cancel 

interest in a certain event type and the publish operation is invoked by an object of interest to 

propagate an event. Also called by an object of interest, the advertise operation indicates an 

objects intention to produce events of a certain type. The unadvertise operation indicates that 

an object of interest no longer wishes to produce such an event. The unadvertise operation 

has the opposite effect to the advertise operation, hence cancelling an advertisement. The 

advertise mechanism provides additional information to the event service, enabling the event 

servers to route subscriptions and publications more effectively. The interfaces of these three 

mechanisms are: 

Subscr i be( i nt er est ed par t y,  pat t er n)  
Unsubscr i be( i nt er est ed par t y,  pat t er n)  
Publ i sh( event )  
Adver t i se( obj ect  of  i nt er est ,  f i l t er )  
Unadver t i se( obj ect  of  i nt er est ,  f i l t er )  

To uniquely identify interested parties, objects of interest and event servers within SIENA, 

and for them to communicate with each other, SIENA uses a naming scheme, referred to as 
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a generic URI naming scheme. This means that every party, object and server has an URI of 

the form mailto:john@cs.edu21 associated with it. 

 

 
 

Fig. 7.1. The High-level View of the SIENA Architecture. 

SIENA supports events in the form of a set of attributes in which each attribute is a triple of 

name, type and value. Each attribute is uniquely identified by its name. A predefined set of 

types is available to define events of the form: 

st r i ng event  = account / debi t  
t i me dat e = 15. 01. 2000 
i nt  number  = 12345 
f l oat  amount  = 215. 31 

7.1.1 Operational Semantics 

The SIENA infrastructure includes two different behaviours for the event service in response 

to advertisement and subscription. [CRW98] argues that the reason for supporting both is to 

find the most appropriate solution for a flexible and scalable event service depending on the 

requirements of the chosen application domain. 

In the subscription-based version of SIENA, only subscriptions determine the semantics of 

the event service. This behaviour is similar to the semantics of other subscription-based 

event models. Advertisements are not required, but can be used to optimise the routing of 

                                                      
21 The URI that identifies and object is both the unique name and the communication method 

of that object. SIENA implements the most common URI schemas, namely mailto and http. 
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subscriptions. This implies that events will be delivered to all interested parties that have 

subscribed to them22. 

In the advertisement-based version of SIENA, both advertisements and subscriptions 

determine the semantics of the event service. The event service will only guarantee the 

delivery of an event if an object of interest advertises an event of a particular type and an 

interested party subscribes to the same type of event23. 

7.1.2 Server Topologies 

The propagation of events is the responsibility of a logically centralised component to which 

objects of interest and interested parties are connected. This component is implemented as a 

set of event servers co-operating with each other to provide a network-wide event service. 

[Car98] describes four different event server topology implementations, namely centralised, 

hierarchical, acyclic peer-to-peer and generic peer-to-peer, as shown in Figure 7.2. [Car98] 

states that each topology was tested for the flexibility and the scalability of the service and 

found that the distributed topologies outperformed the centralised approach, when the 

number of objects of interest and interested parties increased. 

Among the in Figure 7.2 described topologies, the centralised version is the simplest, 

implementing only a client-server protocol for the co-operation between the event server and 

the event clients, i.e. interested parties and objects of interest. It is important to note that this 

is also the case for the hierarchical topology. An event server does not distinguish between 

other event servers and its clients, hence treating servers as clients. In the two peer-to-peer 

topologies, event servers communicate with each other as peers, thus allowing bi-directional 

flow of subscriptions, advertisements and events. 

                                                      
22 Events of a particular type are delivered to all interested parties that have subscribed to the 

type if the pattern matches. 
23 Events are only delivered to an interested party if the event service has received an 

advertisement and a subscription for the particular event type and the event filter and the 

event pattern match. 
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Fig. 7.2. Event Server Topologies. 

[CRW98] presents and discusses two main optimisation strategies for communication and 

computation resources: 

 
• Applying event filters and event pattern physically as close as possible to publishers, 

i.e. objects of interests; and 

• Replicating events, by means of multicast, physically as close as possible to 

subscribers, i.e. interested parties. 

 
SIENA uses IP multicast as the underlying transport mechanism. 
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7.2 Event Filter and Pattern 

An event filter is specified by a set of attribute names and types and some constraints on 

their values, i.e. an operator and a value per constraint. A fixed set of operators are available 

to define event filters of the form: 

st r i ng event  == account / *  
t i me dat e >= 01. 01. 2000 
f l oat  amount  >  100. 00 

This filter selects all account transfers in this millennium that are transferring an amount 

larger than a certain minimum limit. 

An event pattern is specified by combining a set of event filters using filter combinators. 

This allows a pattern to select a combination of events, i.e. several events that together 

match an algebraic combination of filters. The following example shows an event pattern that 

monitors an account and selects it if a large amount of money is transferred more that once, 

e.g. such an account has to become a premium account: 

st r i ng event  == account / *  
i nt  number  == 12345 
f l oat  amount  >= 100000. 00 
 
and then 
 
s t r i ng event  == account / *  
i nt  number  == 56789 
f l oat  amount  <  250. 50 

A description of all the attribute types, filter operators and pattern combinators supported 

by SIENA can be found in [Car98]. 

7.3 Mobility 

SIENA does not support code mobility directly, but supports the integration of mobile objects 

into its infrastructure. [Car98] identifies three different approaches to support mobility, called 

transparent, native and external. The native approach, where mobility is supported through 

the use of a move operation, is adopted by JEDI [CDNF98a][BBHM96] but is not supported 

by SIENA. However, the SIENA architecture supports the remaining two approaches. The 

transparent approach uses network-level mechanisms to transparently manage mobility of 

objects. This is feasible since objects are addressed by URI’s, hence hiding their location. 

The external approach relies on an extension layer that is added externally between the 

event service and the mobile objects. This layer manages the movement of objects by 
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providing a move operation and by handling (buffering, forwarding, synchronising, etc.) all the 

subscriptions, advertisements and events. 

7.4 Summary 

The SIENA infrastructure implements a general-purpose event service that is based on a 

distributed architecture of event servers. It is designed to scale well in wide-area networks 

such as the internet. Although implemented as a set of event servers, the logically centralised 

component responsible for event propagation suffers from overloading of event servers and 

network separation due to event server failure. 

A mechanism introduced by SIENA, besides the quite common subscription and publish 

operations, is called advertisement. Advertisement optimises the routing of subscriptions and 

publications, but requires a logically centralised component, i.e. the event servers, to manage 

advertisements. 

SIENA supports events in the form of a set of attributes in which each attribute is a triple of 

name, type and value. This allows the definition of an event using a notation similar to 

objects24 in object-oriented programming. The definition of event is limited by the set of 

attribute types available. This may be seen as a strict limitation, but we believe that this 

approach usually suffices to cover the needs of applications and that new attribute types can 

be added as needed. The propagation of events is controlled through the use of event filters 

and combinations of filters called event patterns. 

SIENA does not support code mobility directly, but supports the integration of mobile 

objects into its infrastructure through a transparent and a external approach. Code mobility is 

becoming more and more popular in distributed systems and in wide-area networks such as 

the internet. Although SIENA addresses mobility, an integrated support of mobility is 

desirable and thus should be subject to further investigation in a future version. 

                                                      
24 Event are defined as objects that contain attributes but do not contain any methods. 
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8. EVENT MODELS BASED ON THE OMG CORBA EVENT SERVICE 

In the following Sections, we present two event architectures that are based on the OMG 

CORBA event service. Both identify important features required by some applications but 

lacked by CORBA’s event service. The first of the presented event architectures extends the 

CORBA event service to satisfy the quality of service (QoS) needs of real-time applications. 

The second proposes a reliable multicast extension to provide reliable and total ordered 

event delivery. 

8.1 Real-Time Event Service 

As part of the TAO project25 at Washington University, an extension to the CORBA event 

service [Gro95b] was developed called real-time (RT) event service. As described in [HLS97], 

the real-time event service addresses the QoS requirements of real-time applications and 

was designed for an avionics mission control application. 

The CORBA event service provides a flexible model for event-based communication in 

systems based on ORB middleware. However, it lacks important features required by real-

time applications. To address this, the RT event service supports real-time event dispatching 

and scheduling, source based and type based filtering, event correlation and periodic event 

processing. Since we have already reviewed the CORBA event service earlier in this 

document, the following Sections present the extensions proposed by the RT event service 

only. 

8.1.1 RT Event Service Architecture 

The architecture of the RT event service and the CORBA event service are identical with 

regards to the role of event subscriber, event consumer and their mediator, the event 

channel. However, the event channel of the RT event service has been adapted to support 

the added features. The three main features included, namely the support of QoS 

parameters, filtering on typed events and periodic event processing, are described in the 

remainder of this Section. The high-level architecture of the RT event service, including the 

main event channel modules, is depicted in Figure 8.1. 

                                                      
25 TAO is a real-time ORB end-system that provides end-to-end quality QoS guarantees to 

applications. A more detailed description of TAO is presented in [HLS97]. 
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Fig. 8.1. RT Event Channel Overview. 
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filters. However, this increases the number of hops an event must travel when propagated 

from supplier to consumer, hence increasing overhead and latency. To overcome this, the RT 

event service supports event filtering and event correlation mechanisms. The event filtering 

mechanism allows suppliers to specify the type of events they generate. It also allows 

consumers to register interest in events generated by certain suppliers or to register interest 

in events of a particular type. The former being called supplier-based filtering and the latter 

type-based filtering. Any combination of supplier-based and type-based filtering is supported 

as well. The event correlation mechanism allows consumers to specify logical OR and AND 

dependencies among events. The former semantics lets the channel notify the consumer 

when any of the specified events dependencies are satisfied. The latter semantics lets the 

channel notify the consumer when all the specified events dependencies are satisfied. 

8.1.1.3 Periodic Event Processing 

The supplier proxy module allows consumers to specify event dependency timeouts. Priority 

Timers manage those timeouts and notify consumers, i.e. dispatch timeout events, even if 

their dependencies are not satisfied within some time period. This mechanism is well-suited 

for periodic event processing, i.e. a real-time “watchdog”. 

8.1.2 Summary 

[HLS97] identifies important event service features required by real-time applications but 

lacked by the OMG CORBA event service. The presented RT event service addresses these 

requirements by extending CORBA’s event service with QoS parameters, typed event filters 

and periodic event processing. 

The QoS parameters are used by the event channels dispatcher module to determine 

event dispatch ordering and pre-emption. Such a dispatching mechanism is essential for 

predictable end-to-end QoS, required by real-time applications. As we have argued earlier, 

filters are useful to limit the propagation of events, minimising network traffic and CPU 

processing time. The RT event service also supports the combination of events providing a 

powerful means to define dependencies on a group of events using OR and AND semantics. 

Although these features are essential for real-time applications, the major drawback of this 

RT event service is the centralised implementation of the event channel. The event channel 

is the single point of failure of the architecture and may suffer from overloading with 

increasing numbers of event suppliers and consumers. However, it provides the global 

knowledge necessary for “hard” real-time and suffices in small-scale applications like the 

avionics mission control it was designed for. 
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8.2 CONCHA 

In this Section, we present extensions to the OMG CORBA event service that address 

multicasting, reliability and total ordering. These proposals were developed in a prototype 

environment called CONCHA. CONCHA [OFB99] is a conference system developed at 

University of Coimbra, Portugal and its abbreviation stands for CONference system based on 

java and corba event service CHAnnels. 

CONCHA extends CORBA’s event service with reliable multicast communications based 

on the use of the light-weight reliable multicast protocol (LRMP)26, which also features total 

ordered package delivery. Figure 8.2 shows an overview of CONCHA’s event channel with 

the integrated multicast support. 

 

Fig. 8.2. CONCHA Event Channel Overview. 

The multicast extension is implemented by providing a single multicast proxy that deals 

with all the multicast push suppliers and another one that deals with all the multicast push 

consumers27. Hence, this architecture provides an alternative mechanism to propagate 

events using reliable multicast28, besides the standard mechanism that uses IIOP. The 

propagation of events is not limited to either the standard or the multicast mechanism, but 

allows the combination of the two, allowing a multicast push supplier to propagate events to 

both multicast and standard consumer. This approach does not require multicast group 

management since all events are delivered to all consumers and thus only one multicast 

group is used. 

                                                      
26 LRMP is a reliable general-purpose transport protocol based on unreliable underlying 

network transport protocols such as UDP/IP. It features loss repair, ordered package delivery, 

flow control and ensures reliability using a NACK semantics. 
27 The multicast extension has only been implemented for the push model, but has not been 

adapted by the pull model. 
28 When using the multicast mechanism, event propagation will also benefit from other LRMP 

features such as ordered package delivery. 
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9. SYNTHESIS 

This document has reviewed a variety of infrastructures that provide event-based 

communication in distributed systems. The described event models were selected to cover a 

range of architectures and features required by different application domains in order to 

present the state-of-the-art in event-based technology. Although we are aware of other event 

models, i.e. Yeast [KR95], GEM [MSS97] and COBEA [CB98] to name some of them, they 

were not presented in this document because none of them elucidate new features. Based on 

this review, we describe the rationale of a proposed event model that answers the 

requirements of a system providing a means for reliable event-based communication in a 

large-scale environment that supports application component mobility. 

9.1 Event Model Architectures 

The architecture of event models can be categorised according to one of their features, that 

of application component mobility, and according to the presence of a mediator component. 

Fig. 9.1. Taxonomy for Event Model Architectures. 
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Our taxonomy for event model architectures, as depicted in Figure 9.1, distinguishes 

between mediator components that are implemented either in a centralised or in a distributed 

manner. We call the distributed version “logically” centralised because, alike the physically 

centralised version, the mediator component maintains global knowledge of the event system 

and it’s entities. The identified types A to D of event model architectures are described in 

more detail in Figure 9.2 to Figure 9.7. 

Fig. 9.2. Event Model Architecture Taxonomy Type A1. 

 

Fig. 9.3. Event Model Architecture Taxonomy Type A2. 
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component is responsible for propagating event messages among entities and hence must 

have global knowledge of all entities, i.e. all event producers and event consumers, and their 

subscriptions. Mediator components allow a centralised management of events and their 
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subscriptions, thus a relatively simple implementation of non-functional requirements such as 

reliability and QoS. However, a physically centralised mediator, i.e. architecture type A1, 

represents a single point of failure, may become a critical performance bottleneck and hence 

will not scale well in a distributed environment. The approach of a distributed mediator 

topology, i.e. architecture type A2, improves the robustness and scalability of a event model’s 

architecture. However, such an architecture has still to deal with network segment separation, 

possible bottlenecks and scalability in large-scale distributed systems. 

 

Fig. 9.4. Event Model Architecture Taxonomy Type B. 

An architecture of type B does not depend on a mediator component. Its entities 

communicate directly with each other in a one-to-many manner, thus improving overall 

robustness and scalability of the system. [Haa98] determines that this architecture type 

scales well even in large-scale distributed systems. However, because of the lack of a 

component that has global knowledge, the system’s entities are required to manage and 

propagate event messages based on a local decision and the implementation of non-

functional features will become more complex. 

Fig. 9.5. Event Model Architecture Taxonomy Type C1. 
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Fig. 9.6. Event Model Architecture Taxonomy Type C2. 

Architecture types C1, C2 and D, as shown in Figure 9.5, Figure 9.6 and Figure 9.7, do 

support mobile entities. With regards to the mediator component, they can be characterised 

as described above analogous the types A1, A2 and B respectively. For the event system to 

communicate with mobile entities, a new entity type, called event gateway, is introduced. 

Event gateways act as proxies between fixed and mobile entities and are responsible for 

managing the propagation of subscriptions and events from and to mobile entities. Generally, 

it can be said that supporting mobile entities increases the complexity of the event model 

implementation significantly due to the management (synchronisation, buffering, forwarding, 

etc.) of entities, subscriptions and events. 

 

Fig. 9.7. Event Model Architecture Taxonomy Type D. 
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An overview of the architecture types of the reviewed event models is shown in Table 9.1. 

Additionally, the table includes a brief description of the event models’ application domains 

and a classification according to their use. 

 
Event Model Application Domain Dis-

tribution 
Architecture 

Type 
Academic or 
Commercial 

OMG CORBA: 
Event Service 

General-purpose, 
middleware 
applications 

 
A1, 

i.e. event channel 
Commercial 

OMG CORBA: 
Notification Service 

General-purpose, 
middleware 
applications 

 A1, 
i.e. notification channel 

Commercial 

Java AWT:  
Delegation Event Model 

Small-scale, 
centralised 

GUI applications 
 B Commercial 

Java: 
Distributed Event Model 

Ad-hoc, wide-area 
applications  

B Commercial 

Cambridge Event Model General-purpose 
applications  

B Academic 

ECO General-purpose, 
large-scale 
applications 

 
B Academic 

JEDI General-purpose, 
mobile 

applications 
 

C1 & C2, 
i.e. event dispatcher & 

dispatching servers 

Academic 

SIENA Mobile, wide-area 
applications  

C1 & C2, 
i.e. event server(s) 

Academic 

RT Event Service (TAO) 
(CORBA ES extension) 

Small-scale, real-time 
middleware applications  

A1, 
i.e. event channel 

Academic & 
commercial 

CONCHA 
(CORBA ES extension) 

Reliable, 
general-purpose, 

middleware applications 
 

A1, 
i.e. event channel 

Academic 

Tab. 9.1. An Overview of the Reviewed Event Model Architectures. 

CORBA based event models, namely the Event Service [Gro95b], the Notification Service 

[Cea98], the RT Event Service [HLS97] and CONCHA [OFB99], are examples of 

architectures including a centralised mediator, thus are of architecture type A1. The 

limitations due to the use of a centralised mediator may be improved by adapting mediator 

federation as suggested in [Gro96], which results in an architecture of type A2. Furthermore, 

CORBA based event systems entities may invoke directly on each others event interfaces, as 

proposed in [Gro95b], therefore being of architecture type B. However, this approach requires 

the application to maintain information on the location of the event system’s entities that are 

active at any given time and the event consumers to subscribe to every event producer 

separately. This approach is not sufficient in systems where entities dynamically join and 

leave. 
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Event models that do not rely on a mediator component, i.e. of architecture type B, are the 

ECO [Haa98], the Cambridge [BBHM96] and the distributed Java [SM98] event model. 

An event model architecture of type C1 or C2, i.e. that supports entity mobility and 

implements either a centralised or a distributed mediator topology, is investigated and 

adapted in JEDI [CDNF98a] [CDNF98b] and SIENA [CRW98] [Car98]. 

Trinity College Dublin is currently investigating the design and the implementation of an 

event model of type D. However, no publications are available yet by the time this document 

was written. 

9.2 Event Model Features 

Besides its architecture, an event model is characterised by the features it supports. A 

summary of the features supported by the reviewed event models can be found in Table 9.2. 

 
Event Model Typed 

Events 
Event 
Filter 

Real-
Time 

QoS Mobility Other Features & 
Remarks 

OMG CORBA: 
Event Service  

     

OMG CORBA: 
Notification Service     

  

Java AWT:  
Delegation Event Model  

See 
remarks 

See 
remarks 

See 
remarks 

 User definable 
adapters may 

feature filters, real-
time and QoS 

Java: 
Distributed Event Model  

See 
remarks 

See 
remarks 

See 
remarks 

 User definable 
adapters may 

feature filters, real-
time and QoS 

Cambridge Event Model 
 

Templates    Event composition 

ECO 
  

   Pre-constraints, 
post- constraints, 

zones 

JEDI 
 

Pattern   
 

Event are defined 
as a set of ordered 
strings, based on 

IP multicast 

SIENA 
  

  
 

Advertisement, 
event combination, 

based on IP 
multicast 

RT Event Service (TAO) 
(CORBA ES extension)     

 Event correlation, 
periodic event 

processing 

CONCHA 
(CORBA ES extension)  

  See 
remarks 

 Total ordering, 
based on reliable 

IP multicast 

Tab. 9.2. A Summary of the Reviewed Event Model Features. 
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Among event model features, the ability to control the propagation of event messages, i.e. 

to filter them, is the most important one. [Haa98] shows that filters are a powerful means to 

significantly reduce the number of event messages propagated in a system. Fewer copies of 

each specific event message are propagated, preventing event storming and hence, 

minimising network traffic and CPU processing time. This results in improved overall system 

stability and scalability, which is particularly important in large-scale environments. 

The implementation of event filters depends on the implementation of event messages. 

Well-structured, i.e. typed, event messages are required for the implementation of expressive 

and thus powerful event filters. Although the CORBA Event Service [Gro95b] supports 

generic and typed events, filters are not supported due to the fact that generic events, 

implemented as of type any, are hard to filter. As an improvement on this, JEDI [CDNF98a] 

features event as a set of ordered strings on which filters, so called patterns, can be 

matched; the Cambridge event model [BBHM96] supports filters in the form of templates. 

Both approaches allow a simple form of filtering but are limited in their expressive power. In 

order to support flexible and expressive filters, events are defines as a set of attributes in 

several event models including CORBA Notification [Cea98], ECO [Haa98], SIENA [Car98] 

and RT [HLS97]. Other means to control the propagation of event messages are event 

composition, also called combination or correlation, pre- and post-constraints and zones. We 

consider event composition a useful feature in some applications. However, its 

implementation depends on event monitors that are difficult to manage and resource 

intensive. ECO [Haa98] suggest the use of pre-constraints and post-constraints as a very 

flexible mechanism to control event delivery. Whether such a degree of flexibility is efficient, 

manageable and feasible in a large-scale distributed system depends on the application 

domain. ECO also proposes the use of zones to limit the scope of the event propagation. An 

addition to filters, this feature can be very useful, especially in a large-scale system, to further 

improve scalability, limit network traffic and reduce CPU processing time. 

Many application domains require timed delivery of event messages. These real-time 

requirements are addressed by the CORBA Notification Service [Cea98] and by the RT Event 

Service [HLS97] by assigning priorities to event messages and using a dispatching 

mechanism as the means to control event delivery. Both solutions depend on a centralised 

mediator that implements the dispatching mechanism. From an applications point of view, it is 

preferable to rather assign a delivery deadline than a delivery priority to an event message. 

Hence, to have a prediction on the event delivery time. This is partly addressed by the 

CORBA Notification Service, but unfortunately depends on the centralised mediator. Ideally, 

a real-time event delivery mechanism should support the denotation of delivery deadlines, 

provide delivery predictions and should not depend on a centralised mediator. 

Quality of Service (QoS) requirements, other than real-time, include the reliability of events 

and connections, the delivery order of events and the memory management of the event 
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model, the latter being addressed by queue sizes and event discard policies. As for real-time 

requirements, QoS requirements are desired by many application domains, but are often 

omitted since they are difficult to support, especially without a centralised mediator. 

Application component mobility is becoming more and more popular in distributed systems 

and in wide-area networks. The integration of mobile application components, e.g. of 

Personal Digital Assistants (PDAs), in event-based systems is supported by JEDI [CDNF98a] 

[CDNF98b] and SIENA [Car98]. Mobility is desirable not only to integrate addition 

functionality, but also to increase the flexibility and the effectiveness of a system. However, 

integrating mobile components into a system where entities are added and removed 

dynamically, is by definition hard. Combining mobility with real-time or QoS features is even 

harder due to the changing connection characteristic, e.g. bandwidth and reliability, among 

mobile and fixed components. 

An advertisement mechanism and the use of multicast-based communication are 

supported by some event models to further optimise event propagation, thus further limiting 

network traffic and reducing CPU processing time. Advertisement is not only a clever way to 

optimise the routing of subscriptions and event messages, but may also sustain the 

management of mobile application components. However, to coordinate themselves, 

advertisements may depend on a logically centralised component, i.e. the event models 

mediator. The use of a multicast-based communication provides an means of one-to-many 

event messages propagation. Thus, the propagation of an event message by means of 

distributing a copy of that message to each receiver is optimised by distributing a single 

multicast message instead. However, commonly used multicast mechanisms, such as IP 

multicast, are connectionless best-effort (unreliable) services. Furthermore, the management 

of multicast groups requires global knowledge of the system. Thus, a logically centralised 

means must be available. 

9.3 Conclusion 

In conclusions, in can be said that the architecture and the features of an event model 

strongly depend on its application domain. However, scalability is a main issue in every 

distributed system and hence in an event model and thus, becomes more important with the 

increasing scale of the system. Surprisingly, many event model architectures depend on the 

use of a, at least logically, centralised mediator component. Such a mediator may be a single 

point of failure, can become a critical performance bottleneck, and does not scale well and 

should therefore be avoided. Scalability is commonly address by event models through the 

use of event filters as a means of controlling and thus limiting the propagation of events. 

Although other mechanisms, such as zones and pre-constraints, were proposed, filters are 

the most powerful means used in event models to improve scalability. Other event models 
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features include the support of real-time, QoS and application component mobility, but as 

already mentioned, whether or not they are required depends strongly on the event model’s 

application domain. 
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