Efficient and Flexible Fault Tolerance and Migration
of Scientific Simulations Using CUMULVS

James Arthur Kohl kohl@msr.epm.ornl.gov *
Philip M. Papadopoulos phil@msr.epm.ornl.gov
Computer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6367

Abstract

Many practical scientific computer applications would ben-
efit from a simple checkpointing mechanism that provides
automatic restart or recovery in response to faults and fail-
ures, and enables dynamic load balancing and improved
resource utilization using task migration. However, de-
veloping applications with such capabilities, especially in
distributed, heterogeneous operating environments, is very
challenging. CUMULVS is a middleware infrastructure for
interacting with parallel scientific simulation programs and
supports online visualization and computational steering.
Using semantic information provided by user-level specifi-
cations of selected program variables, CUMULVS interprets
distributed data decompositions across heterogeneous col-
lections of computing resources. It extracts and assembles
subsets of local decomposed application data to form global
views of the data. The base CUMULVS system has been
extended to provide a user-level mechanism that assists in
the collection of checkpoints for parallel simulations or other
calculations. Via the same semantic interface used to iden-
tify and describe data fields for visualization and parameters
for steering, the user application selects the minimal pro-
gram state necessary to restart or migrate an application
task. The CUMULVS run-time system utilizes this infor-
mation to efficiently recover fault-tolerant applications by
restarting failed tasks. Application tasks can also be mi-
grated — even across heterogeneous architecture boundaries
— to achieve load balancing or to improve a task’s local-
ity with a required resource. CUMULVS handles the te-
dious and error-prone tasks involved, leaving the developer
of fault-tolerant or migrating applications to focus on the
application-specific design details. This paper describes the
CUMULVS interface for checkpointing, the issues faced in
utilizing this interface when developing fault-tolerant and
migrating applications, and the direction of future research
in this area.

*Research supported by the Applied Mathematical Sciences Re-
search Program, Office of Energy Research, U. S. Department of En-
ergy, under contract No. DE-AC05-960R22464 with Lockheed Martin
Energy Research Corporation.

1 Introduction

Next-generation scientific software applications will be sig-
nificantly more dynamic and complex than today’s tradi-
tional, statically configured programs. High levels of inter-
activity, interoperability, fault-tolerance and mobility will be
required to fit into wide-area collaboration and large-scale
computational grid resources. Two key enabling technolo-
gies required for this flexibility are the capability of scientific
applications to present a semantic and functional interface
to their internal information and services, respectively, and
migration from one computational resource to another.

The CUMULVS project [1, 2, 3, 4] takes an important
step towards this goal by providing a middleware infras-
tructure for interacting with an ongoing parallel computa-
tion through online visualization and computational steer-
ing. Within this scope, CUMULVS provides protocols and
APIs that allow an independent “viewer” application to dy-
namically attach to, interact with and detach from a running
calculation or simulation. Using CUMULVS user-level li-
brary calls (in C/C++ or Fortran), the application describes
its data fields and their decompositions (if any) across the
parallel application tasks and identifies any steerable pa-
rameters. This semantic interface is sufficient to support
transparent, interactive connections to the application, po-
tentially across heterogeneous architecture boundaries, for
extracting desired visualization data, and for manipulating
the values of algorithmic or model parameters.

CUMULVS interprets the user-supplied information on
distributed data decompositions to extract and assemble
global views of decomposed application data. Unlike sys-
tems such as DICE [5], where whole copies of each data
field are placed in a globally shared file structure using
DDD [6] and HDF [7], in CUMULVS the data movement
is demand-driven and the viewers dynamically extract only
requested subregions of data fields from each application
task. This reduces the application overhead in most cases
and provides more flexible multi-viewer collaboration sce-
narios. CUMULVS has been integrated with parallel appli-
cations written using PVM [8], MPI [9] and InDEPS [10],
and can be applied to applications with other arbitrary com-
munication substrates.

The simple model of interaction in CUMULVS can be
generalized and extended to encompass more elaborate func-
tionality. CUMULVS can be applied to assist in the develop-
ment of applications that support automatic fault recovery
and on-the-fly migration. Fault recovery is clearly an im-
portant feature for any long-running application. An auto-
matic response, that recovers or restarts failed tasks, 1s also

essential to keep the application running indefinitely with-
out continuous user monitoring. Task migration is useful
for load balancing and resource utilization. Often execution
time would decrease if tasks could be efficiently relocated
to less-loaded resources. Moving tasks closer to necessary
resources also improves locality and decreases communica-
tion overheads, thereby boosting resource utilization and ef-
ficiency.

1.1 CUMULVS Checkpointing Overview

The CUMULVS checkpointing facility capitalizes on the se-
mantic interface used to identify and describe data fields for
visualization and parameters for steering. These same data
descriptions can be marked by the user to identify which el-
ements contribute to the minimal program state, as needed
for recovering or restarting each given task. The application
can periodically direct CUMULVS to dump the selected pro-
gram variables and save them as a checkpoint. Then, when
a task fails it can be restarted, using this checkpoint data
to reset its program state. In conjunction with the recov-
ery of failed tasks, any other cooperating tasks can either
be restarted or rolled back to the same saved state using
their checkpoint data, so the application as a whole can
continue from a common point. Any computation that oc-
curred since the last checkpoint will be lost, therefore the
frequency of checkpoint collection requested by the applica-
tion is often adjusted to hedge against failures, and balance
this loss against the periodic checkpoint overhead.

CUMULVS’ user-level approach to checkpointing is con-
sidered “non-transparent” because it requires the program-
mer to modify the application source to coordinate the
checkpointing activity [11]. In this case, the application
defines the point(s) in its computation where checkpoints
can be “consistently” collected, across concurrent sets of
tasks, and which data should be included in checkpoints.
Consistency here relates to identifying a global state for all
tasks such that the computation can continue without error
if recovered to this state (see below). It is the application’s
responsibility to coordinate the consistency of the saved pro-
gram state so that all tasks can be correctly reset to some
uniform state in the event of a failure. The application as
a whole must correctly restart and continue on from this
state, as if the application had never failed.

Creating these checkpointing specifications, especially
determining the consistent global state, can be quite chal-
lenging. However the benefit gained for this effort is that
CUMULVS can oversee the tedious and error-prone tasks
involved in actually checkpointing the application. CU-
MULVS extracts the checkpoint data from each task and
assembles it into globally committed checkpoints. It handles
the automatic fault-notification and recovery procedures, to
spawn replacements for failed application tasks and direct
the remaining tasks to be restarted. CUMULVS determines
the last completed checkpoint, sends it to the application
tasks, and loads the checkpoint data into the program vari-
ables.

To accomplish all of this, the application must select the
necessary program state to save, and the proper point in
each application task to save the checkpoint data, so that
the overall global state can be reproduced to some degree of
synchronization. The consistent global state must include
the program state of each task, any external (file) state, and
the state of the communication channels among the tasks.
Because CUMULVS is a user-level system that does not con-
trol operating system state, the communication substrate

can be considered to be memoryless. Therefore, it is suffi-
cient to insure that all tasks’ states are checkpointed either
after all sent messages have been received, or equivalently
before any new pending messages are sent.

Typically, this is a straightforward task in iterative com-
putations where there is a distinct logical “end” to each
iterative stage, at which point all tasks can assume an ap-
propriate synchronization state. In this case there is already
a loose synchrony among the iterating tasks, implicit in their
dependence on messages from cooperating tasks. If a task
were to fail before receiving one or more messages for a given
iteration, then the application could be rolled back to the
end of the previous completed iteration. Any messages that
were sent but not received would be re-sent as the tasks
re-execute the failed iteration.

For applications which do not fit algorithmically into an
iterative model, the communication must be synchronized
before checkpoint data can be consistently collected. This
could be done periodically using a variety of distributed al-
gorithms, such as that presented by Chandy and Lamport
that uses “message markers” to indicate a locally consistent
task state [12]. Tt is the application programmer’s responsi-
bility to determine and implement the proper synchroniza-
tion algorithm for this stabilization of an application’s global
state.

In all cases, any external state implicit in file pointers
or other system services must be manually reproduced by
the application. CUMULVS can assist in this task by sav-
ing and restoring any user-defined variables that mimic or
record the external state. But, in the current prototype im-
plementation, it is up to the application to re-open files and
seek to the correct location, etc.

In addition to fault tolerance, CUMULVS checkpoint
data can be used to migrate tasks to different computational
resources. This is accomplished by collecting a checkpoint
(or deferring to the last saved checkpoint), killing off the
tasks to be migrated, moving the checkpoint data to the new
resource(s), and then restarting the migrated tasks using the
checkpoint. There is little functional difference between this
operation and standard failure recovery. Any subset of the
application tasks might be migrated at one time, including
the entire set.

1.2 Benefits of Approach

Because the checkpoints in CUMULVS contain user-
supplied semantic information, including the name, type,
storage allocation and any decomposition of data fields, it is
possible to translate checkpoint data from one system archi-
tecture’s format to another. This means that a task can be
checkpointed on one system and then restarted or migrated
heterogeneously to a different architecture. Also, because
the user application has selected only the relevant portions
of the computational stack for checkpointing, the resulting
CUMULVS checkpoints can be significantly smaller than an
entire core image. This can increase the efficiency of restart-
ing a task after a failure, and can make load balancing via
task migration a more feasible option. The current release of
CUMULVS checkpointing has already been used to demon-
strate on-the-fly cross-platform fault-tolerance and migra-
tion of several production parallel codes.

CUMULVS is not intended for fine-grained checkpoint-
ing, at the level of individual program statements or mes-
sages. By only saving checkpoint data periodically (at the
user’s discretion), CUMULVS is an appropriate choice for
most scientific applications where the desire is typically to

limit the loss of computing cycles in response to failures.
CUMULVS checkpointing is often done at a coarse level, e.g.
every so many iterations in the main computational loop, or
between the high-level phases of a multi-phase computation.

The remainder of this paper compares CUMULVS to
existing checkpointing systems, describes the details of the
CUMULVS interface for checkpointing, and further explores
some of the issues faced when utilizing this interface to actu-
ally develop a fault-tolerant or migrating application. Spe-
cific plans for future research in this area will also be dis-
cussed.

2 Background

The CUMULVS approach to checkpointing has several ad-
vantages over traditional core-image checkpointing. Many
transparent checkpointing environments, such as CoCheck
[13], MPVM/MIST [14, 15], CLIP [16], Fail-Safe PVM [17],
Isis [18], Totem [19], Condor [20] and others [21], are de-
signed for single architecture programs. CoCheck works
with PVM and MPI to save the entire binary image of a
program and move it to another similar machine. While
this system works well for fault recovery, the size of these
binary dumps make CoCheck impractical for migrating tasks
to achieve medium- or fine-grained load balancing, and the
binary nature of the data prevents movement across archi-
tecture boundaries. MPVM and MIST have similar capabil-
ities for PVM-based applications. CLIP performs special-
purpose semi-transparent checkpointing on parallel appli-
cations written for Intel Paragons. Fail-Safe PVM uses a
global synchronization to coordinate consistent checkpoints
in a parallel application, but saves checkpoint data trans-
parently in architecture-specific formats, precluding hetero-
geneous restart or migration. Isis and Totem use the concept
of “virtual synchrony” to greatly simplify the logic of writ-
ing fault-tolerant programs, but require either a partial or
total ordering of all messages in the parallel program. While
this ordering supports a very fine granularity of checkpoint-
ing, at the level of individual message synchronizations or
transactions, it carries a high overhead and is impractical for
applications that execute on large numbers of nodes. Con-
dor, a distributed batch processing system that schedules
jobs for execution on UNIX systems, can arbitrarily check-
point single processes and migrate them to other machines,
but does not support groups of tasks that communicate.
These transparent checkpointing systems explore a
wealth of different checkpointing issues, especially those re-
lated to parallel or distributed applications and environ-
ments, but they all limit their focus to checkpoints that can
be automatically extracted and used for restart or migration
on systems of the same architecture. To allow migration or
restart across architecture boundaries, or other powerful ca-
pabilities, the checkpointing system must have additional in-
formation from the user application to semantically identify
the program state data. Several “non-transparent” check-
pointing systems exist that provide user constructs and li-
braries for user-directed checkpointing, including Dome [22],
CHIMP/MPI [23], Calypso [24], Libft [25] and COSMOS
[26]. The Dome system provides a mechanism to instru-
ment C++ applications, written on top of PVM, for check-
pointing and heterogeneous migration. Using user-inserted
checkpointing directives and special program variable dec-
larations, potentially with the assistance of compiler pre-
processing, C++4 objects in Dome can be checkpointed and
migrated to heterogeneous resources. CHIMP instruments
the MPI message-passing library for fault-tolerance. Ca-

lypso supports its own source language (CSL) that extends
C++ to create a powerful, fault-tolerant software system.
Libft is a part of the Software-implemented Fault Tolerance
(SwiFT) system, and is a C library that provides a variety
of programming constructs for fault tolerance and recov-
ery mechanisms. COSMOS is a special-purpose operating
system for spacecraft that provides software-implemented
fault-tolerance on distributed memory multiprocessors for
long-life interplanetary missions.

While all of these systems provide useful and elabo-
rate checkpointing capabilities for fault-tolerance and mi-
gration, each relies on a specific set of languages or oper-
ating environments. The CUMULVS checkpointing facility
is a simple prototype, perhaps without some of the more
elegant functionality and optimizations of these other sys-
tems, but is generally applicable to applications developed
using a variety of programming languages, message-passing
and communication systems, and operating environments.
While CUMULVS requires certain features from its underly-
ing message-passing substrate (for communication between
CUMULVS daemons and the application tasks), there are no
restrictions on the nature of the communication systems or
languages which the application itself can utilize internally.

3 CUMULVS Checkpointing

The fundamental premise in CUMULVS checkpointing is
that the application program can best direct when check-
pointing should occur and what essential data is needed for
restart and migration. The user can indicate the proper
point within each application task for collecting checkpoint
data, so that the resulting checkpoints represent consistent
states across the entire application. The application can
direct how often the state needs to be saved, thereby con-
trolling how much overhead is incurred and how much com-
putation is lost when a task restarts. This so-called user-
directed checkpointing requires some work by the program-
mer, but is essential to provide the additional efficiency and
flexibility in CUMULVS. The library infrastructure can han-
dle the low-level details, by coordinating the data extraction
from within application tasks, and by processing the logic
in the run-time system to organize and “commit” consistent
checkpoints from the individual task data. Committing a
checkpoint involves synchronizing the CUMULVS run-time
system to insure that all tasks have submitted their data
for a particular checkpoint. Given the user’s checkpointing
specification, CUMULVS can do the actual work in restart-
ing or migrating application tasks.

There is, of course, a price to pay for the automatic han-
dling that CUMULVS provides. The user must instrument
the application to include some semantic details, and the
program initialization must be modified to optionally allow
a restart from a checkpoint. The amount of additional code
required for this is not immense — typically on the order of
tens of lines of code — and requires mostly knowledge of data
field decompositions and the high level program initializa-
tion which, hopefully, should already be well understood.
Generally speaking, if the user requires the fault-tolerance
and/or migration capabilities then the effort involved is eas-
ily justified, especially if the application in question has
already been partially instrumented for visualization and
steering using CUMULVS. Nonetheless, making any appli-
cation fault tolerant is a complex and challenging ordeal.
CUMULVS strives to ease this task by transparently and
automatically handling many of the arcane portions. This
leaves the application developer to focus on the more impor-

tant aspects of selecting the program state and coordinating
the consistency of checkpoint submissions. In any case, it
is hoped that as part of future CUMULVS research some
assistance may be provided to alleviate the burden of appli-
cation instrumentation, perhaps in the form of a graphical
user interface (GUI) or CUMULVS compiler directives and
preprocessing (see [27, 28]).

To enable automatic checkpoint handling in CUMULVS;,
the programmer must specify what variables need to be
saved, and must provide an alternate program initialization
for restarting from a checkpoint. During such a restart,
CUMULVS commits and retrieves the most recent coherent
checkpoint, and then sends each application task its portion
of the checkpoint data and loads this data into the user’s
variables. For this to be possible, CUMULVS must be told
the location in memory and the storage size of all check-
pointed variables. This information is provided by the user
via semantic data field declarations in each application task.
The user application must also, if so instructed, pass over
the default initialization of these program variables and in-
stead allow CUMULVS to set them to the desired restart
state.

With respect to efficiency, CUMULVS operates under
the assumption that fault recovery and task migration are
sparsely applied operations, and so design choices have been
made to minimize steady state overhead. While checkpoint-
ing in any system is relatively time consuming, care is taken
in CUMULVS to avoid undue perturbation to the applica-
tion. It is assumed that machines are generally fairly stable
and that a program should only suffer significant overhead
when there is an actual failure or migration. FEach task
executes with only the synchrony required by the user ap-
plication, and each task checkpoints its data independently.
The interactions involved in collecting checkpoints from ap-
plication tasks are not themselves synchronizing operations,
but rather are controlled by a simple flow control protocol.
Tasks are not held back unless the run-time system is un-
able to keep up with the rate of application checkpoint data
submissions. A full checkpoint commitment synchroniza-
tion i1s not done unless explicitly required for a migration
or fault recovery. Otherwise, such commitment is done in
a “lazy” manner, as messages flow through the run-time
system to propagate notification or replication of the latest
checkpoint submissions. When all tasks’ submissions for a
particular checkpoint are globally known to have completed,
the checkpoint may be considered committed.

The following two subsections describe more details of
the CUMULVS checkpointing run-time system and its de-
sign issues, respectively.

3.1 Run-Time System Architecture
In CUMULVS, much of the logic needed to rehably and

correctly restart failed parallel application tasks has been
moved to a separate process called a “checkpointing dae-
mon” (CPD). The current CUMULVS design has a separate
checkpointing daemon on each machine where application
tasks are running. Figure 1 illustrates the basic organization
of the CPDs. The set of daemons works together as a sep-
arate, dynamic, fault-tolerant program, independent from
any user’s code. CPDs monitor the user application and its
computational resources for failures, and oversee any check-
pointing, restarting or migrating of application tasks. CPDs
are also responsible for adding spare hosts (where possible)
in response to resource failures.

From an application’s perspective, the CPD provides two

Virtual Machine

Physical hosts

=

Replacement
host added on

failure Spare Host

Figure 1: Checkpointing Daemon (CPD) Organization

basic checkpointing functions, saving a checkpoint for the
application and loading a checkpoint for restart. Logically,
however, the CPDs can be utilized in several modes. They
can serve as a background run-time monitor to keep the ap-
plication running without user intervention. Instead of the
user periodically checking to see that the application is pro-
ceeding, the CPDs can continuously oversee the tasks using
fault notification features of the underlying messaging sys-
tem. Any failed tasks are restarted automatically, in coordi-
nation with restarting or rolling back any cooperating tasks,
even if the user is not present. Given a user-supplied list of
alternate computing resources, the CPDs can even add new
hosts when others crash, subsequently replacing any tasks
that were executing on the failed hosts.

The user can invoke a CPD “console” at any time to
manually direct the CPD group in restarting or migrat-
ing a subset of application tasks, for improved load bal-
ance or better resource utilization. The CPDs will deter-
mine the most recently saved complete checkpoint, termi-
nate the tasks which are to be migrated and then restart
the given tasks on their new resources. Any cooperating
tasks are also rolled back or restarted using the same check-
point. At present there is no built-in CUMULVS mechanism
for automatic load balancing. However, the user can, with
some effort, construct their own CPD console for automat-
ically controlling CPD migration operations using various
load balancing algorithms.

Additional operations can be initiated using the default
CPD console, such as restarting an entire application, as
saved in some earlier checkpoint, on an arbitrary set of new
resources. This capability raises many interesting possibili-
ties, especially if the new resources are of a different system
architecture or utilize a different number of compute nodes.
Using the data field description information in the check-
point data, it is straightforward for the CPDs to restart
the application on a different architecture by translating
the data format of the checkpoint (typically done using

XDR and the underlying message-passing system). How-
ever, many issues arise when the number of available com-
putational nodes changes and the decompositions of the data
fields must be redistributed. Such elaborate reconfigurations
of applications using CUMULVS checkpoints have been ex-
plored in [29], and to date several on-the-fly reconfiguration
experiments have been successfully applied using both toy
and production parallel simulations.

3.2 Run-Time System lIssues

The most time-critical operation in CUMULVS checkpoint-
ing is collecting the checkpoint data. The CPDs use an asyn-
chronous scheme, such that each task sends its checkpoint
data when the user code makes a call to stv_checkpoint ()
(see Section 4.2). The application code does not explicitly
synchronize at each checkpoint. However, a task will block
on the subsequent stv_checkpoint () invocation if the pre-
vious checkpoint has not been received and fully processed
by the checkpointing daemon. A simple flow control pro-
tocol is employed to release the application task when the
previous checkpoint is finished. When the CPD completes
the checkpoint processing it immediately sends an “XON”
release message to the application task. If the release is re-
ceived in time, then the task will not wait before proceeding.

It is the responsibility of the CPDs to make sure that
a parallel task is restarted from a coherent checkpoint that
corresponds to the same logical time step, or point in the
computation, for all tasks. Because application programs
are not explicitly synchronized, it is possible for the most
recent checkpoint to be incomplete, missing one or more
tasks’ checkpoint data for that invocation or epoch. If a
failure occurs while in this state, then the CPDs must col-
lectively revert to the last complete checkpoint. This agree-
ment, or commitment, to a particular checkpoint epoch is
done only as needed during a restart or migration, to avoid
unnecessary overhead or synchronization of the CPDs while
collecting checkpoint data. The CPDs can also commit a
checkpoint periodically to free up file system resources by
deleting old checkpoints.

The predominant overhead in checkpointing is the time
taken to write data to disk or other non-volatile storage. If
replication of checkpoint data is desired to allow recovery
from multiple simultaneous failures within the system, then
inter-machine network bandwidth is consumed to copy data
from one machine to another and verify consistency. The
CPDs therefore can also impose a small additional compu-
tational overhead to coordinate and synchronize this data
replication. To reduce this overhead the CPDs are orga-
nized in a logical ring, where each CPD need only coordinate
replicated data from several “buddy” CPDs. For example,
if the user requests a level of redundancy of 2, such that it
can recover from 2 simultaneous failures, then 3 copies of
each task’s checkpoint data are needed at any given time.
In this case each CPD would coordinate with 2 other CPDs
to insure replication of a task’s checkpoint.

An important issue is the level of data replication that
should be supported in checkpoints. In the case of small
checkpoint files and a small number of machines, it is feasi-
ble to replicate the entire checkpoint data on each machine.
This gives the highest degree of fault-tolerance because only
one machine’s data need be retrievable to restart the entire
program. On the other hand, if the amount of checkpoint
data or the number of application tasks is very large, then
full checkpoint replication, especially using standard low-
speed networks, is clearly impractical. For this reason, the

coordination protocols of the CPDsin CUMULVS have been
generalized to support a spectrum of redundancy options.

Another issue relates to scalability and 1/O. In the cur-
rent version, tasks pack and send checkpoint data to the
local CPD in messages, and the CPD saves the data on be-
half of the tasks. While this communication time can be
significantly less than the corresponding file system access
time for each task, this method is too slow for large-scale
applications. The CPD can quickly become a serial bottle-
neck if it must manage too many tasks with checkpoint data
of sufficient size. An alternate scheme employs the CPD as
a coordination mechanism only, and tasks write their own
checkpoint data to their local filesystem. This new scheme
will allow the use of parallel file I/O on systems that support
it.

4 Application Interface

To use CUMULVS for checkpointing, the user must man-
ually specify information about each relevant variable, in-
cluding an appropriate reference name, the data storage al-
location details, the data type, and any distributed data
decomposition. Ultimately, using CUMULVS checkpointing
should be more automatic by integrating it with a parallel
development environment or with compiler cooperation. It
is certainly feasible and desirable to build CUMULVS on
such systems. Yet the current reality is that the user must
use a traditional library interface to define data field seman-
tics and decompositions, and to identify essential program
state for restart.

There are several alternatives to this manual annotation,
from elaborate graphical user interfaces (GUls) that guide
and assist users through the process, to simple compiler di-
rectives to incorporate the missing information. Everything
except the data decomposition could be made available by
conventional compilers, and in some systems like HPF [30]
even decomposition information could be extracted auto-
matically. But until such interfaces are developed, the user
must make several CUMULVS library calls to describe the
internal application structure.

There is some benefit to this direct instrumentation ap-
proach versus automatic techniques, in that subsets of de-
sired variables can be described for CUMULVS. In auto-
matic instrumentation potentially all variables would be in-
cluded, and it could be hard to exclude loop indices and
other temporary storage. If, however, there are hundreds or
even thousands of variables to annotate, as is true for some
production software, then an automatic system would not
only be beneficial but strictly necessary.

The CUMULVS library for defining data field semantics
uses HPF-like semantics, such as standard Block-Cyclic, to
define data decompositions. These decompositions are sub-
sequently used to define individual data fields. The same
decomposition can be reused for multiple data field decla-
rations, and each field can map the decomposition to a dis-
tinct logical processor organization. For example, if several
data arrays of different sizes were decomposed onto various
subgroups of processors, but all were of the same dimen-
sion and had the same Block-Cyclic structure, then a single
CUMULVS decomposition could be used to describe all the
arrays. The only difference from array to array would be
the data type, and the number and logical topology of the
processors to which it was assigned. In addition to this
semantic information for the data fields, each data field def-
inition can be flagged to have that variable included in the
saved checkpoint state. Other scalar parameters can also be

defined and flagged in this way, if they contribute a portion
of the program state.

Besides selecting the essential program variables, the
user must also make some changes to the program flow.
The more trivial portion of this is merely inserting the sin-
gle library call needed to request the saving of a checkpoint,
stv_checkpoint (). This one call initiates the extraction of
all user-specified variables, as flagged for checkpointing, in
the local task, and packs them into a message for the local
CPD. The local CPD in turn coordinates with any remote
CPDs to commit a full checkpoint for the application, as
formed by the union of each tasks’ individual checkpoint
data for the same “epoch” or logical time step.

The call to stv_checkpoint() within each local task
must be made periodically when all data is in a “consis-
tent” state. As discussed in Section 1.1, a consistent state is
one such that the global state is known and reproducible; in-
cluding program variables in the task, messages in the com-
munication substrate and any other external state, such as
in files. For CUMULVS checkpointing, the underlying mes-
sage state 1s inaccessible except from the task endpoints,
therefore it is sufficient to save the local checkpoint either
before or after a particular “well-known” message is sent or
received in the algorithm. Again, this is all at the user’s
discretion.

In most iterative scientific computations there is a natu-
ral choice for this message, either at the end or the beginning
of the main computational loop. Typically, at some point
in iterative algorithms some data is exchanged, either in
a nearest-neighbor or broadcast communication, to coordi-
nate (synchronize) the computational state across the par-
allel tasks. The checkpoint data, and therefore the global
state, can reliably be saved either before or after this set
of messages is sent and received. If the checkpoint is com-
pleted (committed) before a failure occurs, then all tasks can
be restarted in unison before or after this synchronization
phase, and no messages will be left “dangling.” Similarly, if
a task failed before submitting its checkpoint data, then the
committed checkpoint from the previous iteration could be
used for consistent recovery. If, however, two tasks were to
save their local checkpoint data in the middle of this type of
message synchronization, or anywhere else where one task
had sent a message but the other had yet to receive it, then
the state implied by the pending message would be lost,
and the message would not be correctly reproduced if the
sending task were to restart from the checkpoint.

In applications with non-iterative algorithms there may
not be an obvious logical “stopping place” where the mes-
sage state is reliably known. In this case, the application
must force a synchronization of some sort to guarantee the
global messaging state before checkpointing any tasks lo-
cally. Alternately, for fully independent (embarrassingly)
parallel algorithms, where no synchronization of any kind is
required among tasks, determining the global state is trivial,
and checkpoints can be collected at arbitrary points among
the different tasks.

Other than the message state, any other external state
must also be identified and saved, including files or services
on which the application tasks depend. CUMULVS could
eventually provide better support for certain aspects of this
external state, such as handling open file pointers if the user
specified the proper variables and corresponding file name,
etc. For now, however, CUMULVS does not provide any
extra support for saving this external state. The best that
can be done is to define simple user variables that hold, for
example, the file name and current file pointer location, and

let CUMULVS reproduce those values in recovered tasks.
It is then up to the application itself to actually apply the
reconstruction of state, e.g. reopen the file and seek to the
correct location.

Perhaps the most invasive part of the user instrumen-
tation involves modifying the control flow of the applica-
tion for recovery from a checkpoint. When a failed task is
restarted, it must be able to accept the loading of checkpoint
data to set its starting program state. The application must
circumvent the default variable initialization for those vari-
ables that are to be set from the checkpoint data. The return
value of the call to stv_cpInit() that sets up CUMULVS
checkpointing (see below) will inform the user of the restart
case. Based on that return value, the application task must
select between initializing its program state as usual or using
an alternate checkpoint restart initialization.

Typically, the default code or routine for initializing the
program state can be conditionally swapped out in favor of
a call to the stv_loadFromCP() routine, which will fill in
the program variables with checkpoint data. If the default
initialization requires the allocation of dynamic storage for
these variables, then that allocation must be separated out
from the rest of the initialization so it can be executed for
both the default and restart cases. In the worst case, the
allocation or initialization of one variable could depend di-
rectly on the initial value of another. In this case, some
variables may need to be selectively initialized, by inter-
spersing several calls to stv_loadFromCP() along with the
library calls for CUMULVS data field declarations, to incre-
mentally bootstrap the program state (see the example in
Section 4.1, Figure 2 below).

In the simplest scenario, the user could theoretically do
nothing, proceeding with the usual initialization, and just
let the checkpoint data overwrite the default initial state. If
this approach would carry a high overhead or be undesirable
algorithmically, then development of one of the aforemen-
tioned initialization procedures is necessary.

Aside from failed tasks, any remaining tasks must also
be reset to the checkpointed state to continue executing in
cooperation with the restarted tasks. CUMULVS supports
two distinct alternatives for this recovery of non-failed tasks:
restart and rollback. If there is not significant overhead as-
sociated with restarting a new process and initializing its
program state, then clearly the easiest option is to simply
kill off and restart any non-failed tasks, precisely as would
have been done if they had in fact failed. This approach
does not require any additional special handling in the user
application, beyond the checkpoint restart initialization de-
scribed above.

If, however, it is cumbersome or costly to restart new
tasks, or the initialization overhead (whether default or
restart) is prohibitive, then it may be necessary to use “roll-
back” within the non-failed tasks. Rollback means that
these tasks must reset their internal program state, using
their existing local process space, to continue executing with
any restarted tasks. This will likely require the development
of a special re-initialization procedure to allow downloading
of checkpoint data. This approach also requires substan-
tial instrumentation of the user application to place “watch
points” for restart notification wherever messages are re-
ceived. The application tasks must check for restarts and
be capable of unrolling the program call stack at any point
to recover using a checkpoint. More details and issues of
this procedure are described in the following example and
in Section 4.3.

The next three subsections describe the user instrumen-

tation process in more detail, including an example instru-
mentation, the actual library interface and some issues that
the application programmer must face, respectively.

4.1 Example Instrumentation

To illustrate the usage of the CUMULVS user library
for checkpointing, consider Figure 2 which shows a pseudo-
code example. While CUMULVS provides both C and For-
tran bindings for its user library, only the C bindings are
shown here for brevity. In this example, the application
initializes the standard CUMULVS visualization and steer-
ing system using the stv_init() call. It selects “solver”
as 1ts logical name for external viewer lookup, provides
CUMULVS with message tag 100 for all of its internal
communication', and indicates that the application has
ntasks tasks, with this specific task being logical instance
number myinst. The checkpointing stvOptCpRecovery op-
tion is set to stvOptCpRollback, so that application tasks
will be rolled back rather than being killed and restarted in
response to a failure. Checkpointing is then initialized us-
ing stv_cpInit(), which indicates that the executable file
for restarting failed tasks in this application is “parsolv”
and that message tag 101 should be used for messages to
notify the application of restarts. The &ntasks reference is
passed to allow CUMULVS to make adjustments if restart-
ing from a checkpoint using a different number of tasks. The
restart value returned also equals this ntasks value if the
task 1s restarting from a checkpoint.

Application solver defines several parameters and a 3-
dimensional data field pressure. These are all marked with
stvVisCp, indicating that they are viewable/steerable and
also selected as part of the program state for checkpointing.
In a restart, solver must incrementally bootstrap itself by
defining several fields and parameters for CUMULVS, fill-
ing these in with checkpoint data, and then using the val-
ues of these variables to define the remaining parameters
for their checkpoint data update. Specifically, the size of
the integer vector ix depends on the value for del, which
is a checkpointed variable. Therefore, to correctly allocate
the ix vector during restart from a checkpoint, a call to
stv_loadFromCp() must first be made to set the restart value
for del.

At the end of the main work loop, solver passes
control to the CUMULVS stv_sendToFE() routine for vi-
sualization and steering handling. Every 10 iterations
stv_checkpoint() is called to request that a checkpoint
be saved. If a failure occurs while in work(), then
restart from the last checkpoint is initiated using a call to
stv_loadFromCP(). When the application’s work is com-
plete, a single call to stv_cpFinished() is made to discon-
nect from the CUMULVS checkpointing daemon. Without
this call, the application could not exit normally without the
CPD continuing to try and restart it from the last check-
point!

4.2 Library Calls

This section details the calls to the various CUMULVS user
library routines.
The stv_init () routine must be invoked before any of

the other CUMULVS library routines:

int status = stv_init(char *app_name,
int msgtag, int ntasks, int myinst)

1ignored if the underlying message-passing substrate supports
context.

main()

{

/* Initialize CUMULVS Vis & Steering System */

stv_init(“solver”, 100, ntasks, myinst);

/* Set CUMULVS Recovery Option to Rollback */

stv_setopt(stvDefault, stvOptCpRecovery,
stvOptCpRollback);

/* Initialize CUMULVS Checkpointing for this Task */

/* - executable for restart is “parsolv” */

/* - use message tag 101 for fault notification */

/* - application has “ntasks” tasks total */

restart = stv_cpInit(“parsolv”, 101, &ntasks);

/* Define Decomposition for Main Data Array */
did = stv_decompDefine(3,
{ stvBlock, stvCyclic, stvCollapse },
(global bounds), ...);
/* Define Main Data Array “pressure” for CUMULVS */
/* - flag for Vis & Checkpointing (stvVisCp) */
fid = stv_fieldDefine(p1[][][], “pressure”,
did, (declared bounds), stvFloat,
(index in decomp), stvVisCp);

/* Define Scalar Parameter “delta” */
/* - flag for Vis & Checkpointing (stvVisCp) */
stv_paramDefine(“delta”, &del, stvDouble, stvVisCp);
/* Check Restart Status... (returned by stv_cpInit()) */
if (restart)
/* Load Program Vars from Checkpoint Data */
stv1loadFromCP();
/* Allocate “indices” Vector, Using “del” as Size */
/* (“del” could have been set from checkpoint data...) */
ix = (int *) malloc((100.0 / del) * sizeof(int));
/* Define “indices” Parameter for CUMULVS */
stv_paramDefine(“indices”, ix[], stvInt, stvVisCp);
/* Load Newly-Defined Program Vars from Checkpoint */
/* (like “ix” which depended on “del”...) */
if (restart)
stvloadFromCP();
/* Otherwise, Default Initialization of Program Vars */
else
init_data();

/* Main Work Loop */
do
{
/* Execute Computation for Current Time Step */
cc = work(×tep);
/* If Failure Notification Received in work(), */
/* Reset State by Loading it from Checkpoint */
if (lcc)
stv1loadFromCP();
/* Otherwise, Proceed... */
else {
/* Pass Control to CUMULVS, Vis & Steer */
/* (“new_params” = # of steer updates) */
new_params = stv_sendToFE();
/* Checkpoint Every 10 Time Steps */
if ((!(timestep % 10))
stv_checkpoint();

}
}
while (!done);
/* Tell CUMULVS to Stop Checkpoint Recovery */

/* So Task Can Exit Normally... */
stv_cpFinished();

Figure 2: Example CUMULVS Instrumentation

This routine initializes the base CUMULVS visualization
and steering system, and creates an entry for the application
in a database for viewer lookup. The appname argument
provides a logical name for the application. When a user
wishes to connect a viewer to the application, this is the
name that will be used to look up and identify the desired
application tasks. The ntasks argument tells CUMULVS
how many tasks will initially be started for the application,
so viewer programs will know when the application tasks
have all registered with CUMULVS. The myinst argument
indicates a logical task number for the given task in the
application, as needed for internal bookkeeping.

There are several run-time options which can be set for
CUMULVS using the stv_setopt () routine:

int oldvalue = stv_setopt(int what,
int option, int value)

For checkpointing, the stvOptCpRecovery option (with
what left as stvDefault) can be set to have the application
tasks either rolled back (stvOptCpRollback) or killed off and
restarted (stvOptCpRestart)in response to a fault or fail-
ure. These are the two primary checkpointing modes that
the application programmer can select from when develop-
ing a fault-tolerant application. Setting stvOptCpRollback
requires the user to implement on-the-fly handling of restart
notification messages throughout the application. In re-
sponse to each such restart message, the application must
“unroll” its program stack, reload its state from a check-
point, and then continue on using the same system process.
By default, the simpler stvOptCpRestart mode is selected.
When using this mode, CUMULVS will simply kill off and
restart the entire application in response to any failure. This
does not require significant modification of the application’s
program flow, aside from handling the alternate program
startup initialization when restarting from a checkpoint.

At the start of each checkpointed application task there
must be a call to stv_cpInit():

int restart = stv_cpInit(char *aoutname,
int notifytag, int *ntasks)

This call should always be made after the main CU-
MULVS initialization routine, stv_init(), as well as
the selection of the checkpointing recovery mode using
stv_setopt (). The aout name argument is the name of the
executable file that is to be used when restarting the task
in the event of a failure. This need not be the same file
as was used to originally run the task. Allowing a different
executable for restart can potentially alleviate some of the
“restart vs. default” startup initialization issues mentioned
above. For a given application it might be easier to define
two different versions of a task’s executable - one for nor-
mal startup and one for checkpoint restart. The notifytag
argument is used by applications that wish to be “rolled
back” rather than killed off and restarted when a failure has
occurred. In this mode, the local CPD will send an error
notification message to any remaining tasks using the given
notifytag message tag, to inform the tasks that they need
to roll back and recover using a checkpoint. The ntasks
argument to stv_cpInit () passes in the number of tasks to
be coordinated for this application, and on restart will re-
turn the number of tasks that are actually being used for
a given restart. The call to stv_cpInit () will start a CPD
process on the local machine if one is not already running,
and will set up communication between the task and the lo-
cal CPD. The return value of stv_cpInit (), if greater than
zero, indicates that the application is being restarted from

a checkpoint. In this case the restart value returned is
the number of application tasks involved in the particular
restart incarnation, the same as is returned in ntasks.

The application tasks can invoke stv_isCpRestart () di-
rectly at any time after initializing checkpointing with CU-
MULVS (i.e., after the call to stv_cpInit()) to determine
if the current instance of the task needs to restart from a
checkpoint:

int restart = stv_isCpRestart()

As with stv_cpInit (), if restart is greater than zero in-
dicating a restart in progress, then the restart return value
is the number of tasks in the restarted application.

To define a contiguous data field in CUMULVS and mark
it as part of the program state to be checkpointed, the aflag
argument to the stv_fieldDefine () routine is used:

stvfieldDefine(..., int aflag)

Similarly, the corresponding aflag argument to
stv_particleFieldDefine () or stv_paramDefine() can be
set to include particle fields or parameters, respectively, in
the checkpoint data. (The full specifications for these rou-
tines are described in [31].) To include a given data field or
parameter for visualization and steering only, the value of
aflag should be set to stvVisOnly. To checkpoint the value
of the data field or parameter without making it available for
visualization and steering, aflag should set to stvCpOnly.
To allow visualization and steering, and to include the given
variable in the collected checkpoint data, aflag should be
set to stvVisCp (or equivalently “stvVisOnly|stvCpOnly”).

At the point in the application task where the data fields
are “consistent” (Section 1.1) and the user wants to save a
checkpoint, a call is made to the stv_checkpoint () routine:

int info = stv_checkpoint ()

The info value returned will equal stvStatusOk if the
checkpoint submission proceeded correctly, meaning that
the checkpoint data is en route to the local CPD. If
some fault or failure occurred during the checkpoint, then
stvRestart is returned to indicate that the task should roll
back and restart from the last coherent checkpoint (or the
task may simply wait to be killed at this point, if configured
for stvOptCpRestart).

When an application task is restarting from a checkpoint,
the loading of the checkpoint data into the desired program
variables is done using the stv_loadFromCP() routine:

int nleft = stv_loadFromCP()

This routine requests the latest coherent checkpoint from
the local CPD and then waits for the incoming checkpoint
data to arrive and be loaded into user variables. Any data
fields and parameters that have been defined for CUMULVS
before this routine is invoked, such that CUMULVS knows
where the proper variable storage resides, will be filled in
using the available checkpoint data. The nleft value indi-
cates the number of program variables and parameters that
have yet to be updated using checkpoint data. If all down-
loaded checkpoint data has been inserted into user variables
then nleft will be zero. Incremental CUMULVS data field
and parameter declarations can be interspersed with check-
point updates, if required for data fields that depend on
the values of other parameters which are being updated by
the checkpoint. For these cases, data field and parameter
declarations (stv_decompDefine(), stv_fieldDefine() and
stv_paramDefine()) can be made between repeated calls to

stv_loadFromCP(), until all checkpoint data has been up-
dated.
The last CUMULVS routine that each checkpointed ap-

plication needs to invoke is stv_cpFinished():
int restart = stv_cpFinished()

This routine informs the CPD that the given application
task has completed its work and would like to exit normally
(without being restarted, or triggering any other actions).
The call to stv_cpFinished() is a blocking call that syn-
chronizes all checkpointing tasks, to insure that all of these
tasks finish checkpointing in unison. Without this synchro-
nization, a variety of unrecoverable race conditions could
occur.

4.3 Application Issues

The user must select between the two ways in which CU-
MULVS can respond to a failure, killing all tasks and per-
forming a complete restart, or spawning only the required
replacement tasks and signaling the remaining active tasks
to roll back and reload from a checkpoint. The first method
requires no significant changes to the program flow, aside
from the inevitable initialization handling to either start up
normally or restart from a checkpoint. The second method
requires the programmer to check at every message receipt
for a restart notification from the local CPD, and on restart
to manually unroll the current program stack. Each message
must be checked for restarts because the failure of any co-
operating task might preempt an expected message, leaving
the given task potentially blocked.

If the overhead to restart an application task is pro-
hibitive, or the initialization of non-checkpointed data fields
requires significant computation by the application tasks,
then the rollback option may be a necessity. In this case, no
matter where in the subroutine hierarchy the given applica-
tion task is executing, it must stop and return the failure
notification up through the call stack. This requires check-
ing the restart status not only after every receive call, but
after each call to a subroutine that posts receives. At the
top level, the application must then clean out any pend-
ing message queues and reset any open file pointers, so that
execution can correctly continue from the point of the last
checkpoint. Any messages left over from before the recov-
ery could lead to erroneous behavior, and similarly with any
hidden state implicit in open file pointers. For user appli-
cations written in C++, this ordeal can be handled sub-
stantially easier using trapping to unroll the program stack
(see [27, 28]). In any case, CUMULVS can only handle the
details of loading the checkpoint data into the application’s
variable storage - the rest is up to the user to coordinate.

An additional issue regarding the rollback scenario in-
volves the identification of fault notification messages ver-
sus regular user messages. All notify messages will be tagged
from the CPD using the notifytag as provided by the user
application in its call to stv_cpInit(). Yet it is not neces-
sarily a trivial matter to post a single blocking receive for
two different message tags at once... The task cannot sim-
ply check for fault notifies before blocking on the regular
expected messages, because a failure could occur between
those actions. Continuously polling between the two dif-
ferent message tags is inefficient and not clean coding style.
MPI supports a mechanism for handling this problem, using
MPI Irecv() and MPI Waitany() to asynchronously check
for multiple incoming messages. Note, however, that such
a mechanism must be utilized everywhere that a task would
block waiting to receive a message.

Figure 3: Finite Difference Example - Seismic Simulation

4.4 Case Study

CUMULVS checkpointing has been applied to instrument
two production scientific applications, for fault tolerance and
heterogeneous migration. The first application generates a
synthetic seismic dataset by simulating the propagation of
an acoustic signal through a layered media, using a finite
difference approximation (see Figure 3). The second is a
computational fluid dynamics (CFD) simulation that com-
putes the pressure of the air flowing around a wing (see
Figure 4). Both applications are written in Fortran using
PVM as an underlying message-passing substrate. To de-
termine the usefulness of the CUMULVS approach, several
analyses were performed using these two applications.
First, the number of additional source code statements
required to instrument the applications for CUMULVS was
examined, including declarations of program variable se-
mantics, initialization code for restarting from a check-
point, and program flow changes (for both restart and roll-
back). All necessary statements were counted, including
CUMULVS library calls and their surrounding code (such
as if, else, endif). The results are presented in Table 5.
For the seismic simulation, there were a total of 51 state-
ments to initialize the base CUMULVS visualization and
steering system and instrument the main data field and 4
steering parameters. This counts all header file includes,
temporary variable declarations, the call to stv_init (), and
the decomposition, data field and parameter descriptions.
(The code necessary to handle steering parameter updates,
as utilized to introduce seismic “thumps” into the simula-
tion, required 37 extra statements not counted here.) To add
basic fault-tolerant restart capabilities and collect check-
points every N iterations, an additional 21 statements were
required. These statements described a second data array, 7
data vectors, and 5 additional scalar parameters to be check-
pointed, and modified the default program initialization to
handle restart from a checkpoint. To implement “rollback-
capable” restarts, an additional 41 statements were added or
modified to catch notify messages and unroll the program

Figure 4: CFD Example - Air Flow Around a Wing

stack. Overall, the full visualization, steering, and fault-
tolerant rollback instrumentation accounted for less than
1% of the resulting code - only 204 extra lines of code out
of 20,836.

For the simulation of flow over the wing, there were
a total of 76 statements to initialize the base CUMULVS
visualization and steering system and instrument 13 data
fields, with 2 decomposition types, and 6 steering parame-
ters. (The code necessary to handle steering parameter up-
dates for this application amounted to 28 extra statements
not counted here.) To add basic fault-tolerant restart capa-
bilities and collect checkpoints every Niterations, only an ad-
ditional 12 statements were required. These statements de-
scribed one additional scalar parameter to be checkpointed,
in addition to the data fields and parameters previously de-
fined for visualization that were also to be checkpointed.
The 12 additional checkpointing statements included all nec-
essary modifications to the default program initialization for
handling restart recovery from a checkpoint. To implement
rollback recovery, an additional 34 statements were added
or modified around messaging routines, and to unroll the
program stack. Overall, the full CUMULVS instrumenta-
tion for this application totaled a bit more than the seismic,
at just under 8% of the total instrumented code - 188 extra
lines of code out of 2438. However, the checkpointing por-
tion of the instrumentation for this application was signifi-
cantly smaller, primarily due to the extensive visualization
and steering instrumentation that had already been applied.

The other analysis for this case study involved the collec-
tion of some basic application execution timings, to evaluate
the efficiency of the CUMULVS checkpoint collection and re-
covery system. The experiments were run using several dif-
ferent sets of resources, specifically on 4 nodes of an 8 node
233 MHz dual-Pentium Linux cluster, a 4-R10000 node SGI
Onyx2 multiprocessor, and on a heterogeneous collection of
Sun Sparch, IBM RS6000, SGI R10000 Octane and Pentium
Linux machines. Timings were collected to show applica-
tion performance without any CUMULVS instrumentation
(baseline), and then with checkpoints collected every 20 iter-
ations, using both restart and rollback recovery modes. The
impact to application performance can be seen in Table 6

Seismic:
Vis / Steer System Init 3
Vis / Steer Var Decls 48
CP Restart Initialization | 21
CP Rollback Handling 41

Flow Around Wing:
Vis / Steer System Init 3
Vis / Steer Var Decls 73
CP Restart Initialization | 12
CP Rollback Handling 34

Figure 5: Additional Source Code Statements

Experiment SGI | Cluster | Hetero
Seismic - No Checkpointing 2.83 6.23 9.46
Seismic - Checkpoint Restart 2.99 6.50 10.76
Seismic - Checkpoint Rollback | 3.03 6.66 10.90
Wing - No Checkpointing 0.69 1.58 6.14
Wing - Checkpoint Restart 0.77 1.71 7.10
Wing - Checkpoint Rollback 0.79 1.71 7.30

Figure 6: Checkpointing’s Impact on Performance

which shows seconds per application iteration, as averaged
over 100 iterations.

For the Seismic simulation, adding simple restart check-
pointing recovery incurred from 4% to 14% overhead com-
pared to the baseline without any checkpointing. Further
instrumentation of the application messaging for rollback
recovery added an extra 1% to 3% overhead. The size of
a full checkpoint for this application was approximately 14
Megabytes. For the Wing Flow simulation, the basic restart
checkpointing added between 8% and 15% overhead, and
applying rollback recovery added from 0% to 2.5% over-
head. The checkpoints for this application were only about
6 Megabytes each.

Both of these simulations use communication only to ex-
change data at the end of iterative computational phases,
with the Seismic code exchanging data twice per iteration
using 100 Kilobyte messages, and the Flow code exchanging
data once per iteration using smaller 13 Kilobyte messages.
This accounts for the minor additional overhead experienced
when the application’s communication is instrumented for
rollback recovery. More communication-bound applications
would expect a more significant slowdown for this rollback
instrumentation.

In general, for homogeneous systems with faster commu-
nication hardware, the basic restart checkpointing impacts
performance by only 5% to 8%. On heterogeneous collec-
tions of machines, with varying levels of CPU performance
and only standard Ethernet connectivity, the degradation
due to checkpointing increases slightly. This is likely due to
network loading that delays the application tasks in sending
out their checkpoint data, and could be an effect of processor
load imbalance. It should be noted that, even on homoge-
neous systems, CUMULVS checkpoints are collected using a
default data encoding to allow heterogeneous migration and
restart, so no additional performance is directly gained from
homogeneity.

5 Future Work and Status

In terms of checkpointing capabilities, CUMULVS is really
still in its infancy. There are many extensions that could
be made to the prototype system to improve its usability,
automation and performance. For example, many of the
elaborate techniques and mechanisms applied to optimize
traditional checkpointing systems [32] could be applied to
the CUMULVS model. Improved user interfaces or GUIs, as
well as integrated development environments, could be used
to expedite the user specification of program state variables
and consistent checkpoint collection. Also, additional assis-
tance could be provided for manipulating various external
state, including files.

CUMULVS presently supports only serial “viewer” pro-
grams that connect to potentially parallel application pro-
grams. And although the CUMULVS CPD tasks make up
a parallel application, currently user processes contact only
their local CPD task. A powerful generalization would be
to allow parallel programs to connect to and interact with
other parallel programs. The CUMULVS-style connection
protocols, with the underlying library handling all of the de-
tails, would allow development of parallel-to-parallel agents
for steering, visualization, checkpointing or other types of
coupling or interaction. It will take significant analysis to
keep these connection protocols reliable and recoverable in
the parallel-to-parallel case. However, the resulting inter-
connectivity could open the door to a large number of new
coupled applications.

One important requirement for this capability is a set
of efficient routines to transform and redistribute decom-
posed data. For example, a simulation program may store
a data field in a Block-Cyclic distribution across 16 proces-
sors, while a parallel visualization program may desire some
subset of this data in a 4 processor Block distribution. The
existing one-to-one and parallel-to-serial transformations for
collecting distributed data must be extended to support new
parallel-to-parallel transformations.

CUMULVS version 1.1 supports the preliminary check-
pointing interface. It is now available, including
source and wuser’s guide, via the CUMULVS home
page at “http://www.epm.ornl.gov/cs/cumulvs.html”. On-
line support is available by sending email to “cu-
mulvs@msr.epm.ornl.gov”. Future releases may include im-
proved user interface tools to expedite the CUMULVS in-
strumentation process for new and existing user applica-
tions.

References

[1] G. A. Geist, J. A. Kohl, P. M. Papadopoulos, “CU-
MULVS: Providing Fault-Tolerance, Visualization and
Steering of Parallel Applications,” International Jour-
nal of Supercomputing Applications, also available via
http://wuw.epm.ornl.gov/cs/cunulvs96.ps.

[2] P. M. Papadopoulos, J. A. Kohl, “CUMULVS: an
Infrastructure for Steering, Visualization and Check-
pointing for Parallel Applications,” 1996 PVM User’s
Group Meeting, Santa Fe, NM.

[3] J. A. Kohl, P. M. Papadopoulos, “The Design of CU-
MULVS: Philosophy and Implementation,” 1996 PVM
User’s Group Meeting, Santa Fe, NM.

[4] J. A. Kohl, P. M. Papadopoulos, “A Library for Visu-

alization and Steering of Distributed Simulations using

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

PVM and AVS,” Proceedings of the High Performance
Computing Symposium, Montreal, Canada, 1995, pp.
243-254.

J. A. Clarke, J. J. Hare, C. E. Schmitt, “Distributed In-
teractive Computing Environment (DICE),” Army Re-
search Laboratory, Major Shared Resource Center, see
http://frontier.arl.mil/clarke/dice.html.

J. A. Clarke, J. J. Hare, C. E. Schmitt, “Dice Data
Directory (DDD),” Army
Research Laboratory, Major Shared Resource Center,
see http://frontier.arl.mil/clarke/Dd.html.

“Hierarchical Data Format (HDF),” National Center
for Supercomputing Applications, see
http://hdf .ncsa.uiuc.edu/.

G. A. Geist, A. Beguelin, J. Dongarra, W. lJiang,
R. Manchek, V. Sunderam, PVM: Parallel Virtual Ma-
chine, A User’s Guide and Tutorial for Networked Par-
allel Computing, MIT Press, Cambridge, MA, 1994.

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Don-
garra. MPI: The Complete Reference, MIT Press, Cam-
bridge, MA, 1996.

R. Armstrong,
P. Wyckoff, C. Yam, M. Bui-Pham, N. Brown, “Frame-
Based Components for Generalized Particle Methods,”
High Performance Distributed Computing (HPDC ’97),
Portland, OR, August 1997 (formerly “POET,” see
http://glass-slipper.ca.sandia.gov/ rob/poet/).

J. S. Plank, “An Overview of Checkpointing in Unipro-
cessor and Distributed Systems, Focusing on Implemen-
tation and Performance,” Technical Report UT-CS-97-
372, Department of Computer Science, University of
Tennessee, Knoxville, TN, July 1997.

K. M. Chandy, L. Lamport, “Distributed Snapshots:
Determining Global States of Distributed Systems,”
ACM Transactions on Computer Systems, Vol. 3, No.
1, February 1985, pp. 63-75.

G. Stellner, J. Pruyne, “Providing Resource Manage-
ment and Consistent Checkpointing for PVM,” 1995
PVM User’s Group Meeting, Pittsburgh, PA.

J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, J.
Walpole, “MPVM: A Migration Transparent Version of
PVM” Computing Systems, Vol. 8, No. 2, Spring 1995,
pp. 171-216.

J. Casas, D. Clark, P. Galbiati, R. Konuru, S. Otto,
R. Prouty, J. Walpole, “MIST: PVM with Transpar-
ent Migration and Checkpointing,” 1995 PVM Users’
Group Meeting, Pittsburgh, PA.

Y. Chen, J. Plank, K. L1, “CLIP: A Checkpointing Tool
for Message-Passing Parallel Programs,” SC97: High
Performance Computing & Networking, San Jose, CA,
November 1997.

J. Leon, A. Fisher, P. Steenkiste, “Fail-Safe PVM: A
Portable Package for Distributed Programming with
Transparent Recovery,” Technical Report CMU-CS-93-
124, School of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, PA | February 1993.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

K. P. Birman, R. Van Rennesse, Reliable Distributed
Computing Using the Isis Toolkit, IEEE Computer So-
ciety Press, 1994.

L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal,
R. K. Budhia, C. A. Lingley-Papadopoulos, “Totem: A
Fault-Tolerant Multicast Group Communication Sys-
tem,” Communications of the ACM, Vol. 39, No. 4,
April 1996, pp. 54-63.

M. Litzkow, T. Tannenbaum, J. Basney, M. Livny,
“Checkpoint and Migration of UNIX Processes in
the Condor Distributed Processing System,” Com-
puter Sciences Technical Report #1346, University of
Wisconsin-Madison, April 1997.

K. Li, J. Naughton, J. Plank, “Low-Latency, Con-
current Checkpointing for Parallel Programs,” [FEF
Transactions on Parallel and Distributed Systems, Vol.
5, No. 8, August 1994, pp. 874-879.

A. Beguelin, E. Seligman, P. Stephan, “Application
Level Fault Tolerance in Heterogeneous Networks of
Workstations,” Journal of Parallel and Distributed
Computing, Special Issue on Workstation Clusters and
Network-based Computing, June 1997.

L. Silva, J. Silva, S. Chapple, L. Clarke, “Portable
Checkpointing and Recovery,” Proceedings of the
Fourth TEEE International Symposium on High-
Performance Distributed Computing (HPDC ’95),
Washington, D.C., August 1995.

A. Baratloo, P. Dasgupta, 7. Kedem, “Calypso:
A Novel Software System for Fault-Tolerant Paral-
lel Processing on Distributed Platforms,” Proceed-
ings of the Fourth IEEE International Symposium on
High-Performance Distributed Computing (HPDC 95),
Washington, D.C., August 1995.

Y. Huang, C. Kintala, Y-M. Wang, “Software Tools and
Libraries for Fault Tolerance,” IEEE Technical Com-
mittee on Operating Systems and Application Environ-
ments, Vol. 7, No. 4, Winter 1995, pp. 5-9.

D. Cummings, L. Alkalaj, “Checkpoint / Rollback in a
Distributed System Using Coarse-Grained Dataflow,”
Proceedings of the 24th International Symposium on
Fault-Tolerant Computing, Austin, TX, June 1994, pp.
424-433.

A. J. Ferrari, S. J. Chapin, A. S. Grimshaw, “Process
Introspection: A Heterogeneous Checkpoint/Restart
Mechanism Based on Automatic Code Modification,”
Technical Report CS-97-05, Department of Computer
Science, University of Virginia, Charlottesville, VA,
March 25, 1997.

A. J. Ferrari, “Process Introspection: A Checkpoint
Mechanism for High Performance Heterogeneous Dis-
tributed Systems,” Technical Report CS-96-15, De-
partment of Computer Science, University of Virginia,
Charlottesville, VA, October 10, 1996.

J. A. Kohl, P. M. Papadopoulos, “Fault-Tolerance and
Reconfigurability Using CUMULVS;” Cluster Comput-
ing Conference, Emory University, Atlanta, GA, March
9-11, 1997.

[30]

[31]

[32]

C. Koebel, D. Loveman, R. Schreiber, G. Steele Jr.,
M. Zosel, The High Performance Fortran Handbook,
MIT Press, Cambridge, MA, 1994.

J. A. Kohl, P. M. Papadopoulos, “CUMULVS User’s
Guide: Computational Steering and Interactive Visual-
ization in Distributed Applications,” Technical Report
ORNL/TM-13299, Computer Science and Mathematics
Division, Oak Ridge National Laboratory, Oak Ridge,
TN, August 1996.

J. Plank, M. Beck, G. Kingsley, K. Li, “Libckpt: Trans-
parent Checkpointing under Unix,” Conference Pro-
ceedings, Usenix Winter 1995 Technical Conference,
New Orleans, LA, January 1995.

