
Contents

1 Deploying a High Throughput Computing Cluster 1

1.1 Introduction 1

1.2 Condor Overview 2

1.3 Software Development 3

1.3.1 Layered Software Architecture 4

1.3.2 Layered Resource Management Architecture 5

1.3.3 Protocol Flexibility 5

1.3.4 Remote File Access 6

1.3.5 Checkpointing 8

1.4 System Administration 9

1.4.1 Access Policies 9

1.4.2 Reliability 11

1.4.3 Problem Diagnosis via System Logs 13

1.4.4 Monitoring and Accounting 14

1.4.5 Security 15

1.4.6 Remote Customers 17

1.5 Summary 18

1.6 Bibliography 18

i

Chapter 1

Deploying a High Throughput

Computing Cluster

Jim Basney and Miron Livny

Department of Computer Sciences

University of Wisconsin-Madison

Wisconsin, USA

Email: jbasney@cs.wisc.edu, miron@cs.wisc.edu

1.1 Introduction

A High Throughput Computing (HTC) environment strives to provide large amounts
of processing capacity to customers over long periods of time by exploiting existing
computing resources on the network. To maximize processing capacity, the HTC
environment must utilize heterogeneous resources. This requires a portable solution,
which includes a resource management framework that e�ectively encapsulates the
di�erences between resources in the cluster. To provide capacity over long periods
of time, the environment must be reliable and maintainable|surviving software
and hardware failures, allowing resources to join and leave the cluster easily, and
enabling system upgrade and recon�guration without signi�cant downtime.

Most importantly, the system must meet the needs of resource owners, cus-
tomers, and system administrators, since without the support of any one of these
groups the HTC environment will fail. Resource owners donate the use of their
resources to the customers of the HTC environment. Before they are willing to do
this, the owners must be satis�ed that their rights will be respected and the policies
they specify will be enforced. Customers will use the HTC environment to run their
applications only if the bene�t of additional processing capacity is not outweighed
by the cost of learning the complexities of the HTC system. System administrators
will install and maintain the system only if it provides a tangible bene�t to its users
which outweighs the cost of maintaining the system.

Resources in the HTC cluster may be distributively owned, meaning that the
control over powerful computing resources in the cluster is distributed among many

1

2 Deploying a High Throughput Computing Cluster Chapter 1

individuals and small groups. For example, many individuals in an organization
may each have \ownership" of a powerful desktop workstation. The willingness to
share a resource with the HTC environment may vary for each resource owner. The
cluster may include some resources which are dedicated to HTC, others which are
unavailable for HTC during certain hours or when the resource is otherwise in use,
and still others which are available to only speci�c HTC customers and applica-
tions. Even when resources are available for HTC, the application may be allowed
only limited access to the components of the resource and may be preempted at
any time. Additionally, distributed ownership often results in decentralized main-
tenance, when resource owners maintain and con�gure each resource for a speci�c
use. This adds an additional degree of resource heterogeneity to the cluster.

The deployment of an HTC cluster is both a technological and sociological pro-
cess. The HTC software must be robust and feature-rich to meet the needs of
resource owners, customers, and system administrators. However, even the best
HTC system must have support within an organization before it can be deployed
e�ectively. Often, developing this support is an evolutionary process. First, an
HTC \evangelist" deploys a small cluster with his or her own resources and with
resources donated by HTC \allies." The HTC evangelist then helps a few HTC cus-
tomers e�ectively use the small cluster. By demonstrating the bene�ts of the HTC
cluster to these customers, the evangelist creates demand for HTC within the orga-
nization. At this point, the customers may approach the system administrators and
policy makers to request that the pool be expanded, or the customers may approach
resource owners directly to ask for additional resource donations. The customers
are also in the position to help more of their colleagues become customers of the
cluster.

This chapter describes some of the challenges faced by software developers and
system administrators when deploying an HTC cluster, and some of the approaches
for meeting those challenges based on the experience of the developers and adminis-
trators of the Condor HTC environment, which has been deployed for over a decade
at the University of Wisconsin-Madison Computer Sciences department [1]. We fo-
cus on those issues which become more important when the cluster grows large
and is maintained for many years. In our experience, it is not exotic scheduling
algorithms and mechanisms which make an HTC environment successful, but an
emphasis on usability, exibility, reliability, and maintainability.

1.2 Condor Overview

While a detailed description of Condor is outside the scope of this chapter, we give
a short overview here to provide a concrete example of an HTC system architecture.

In Condor, each customer is represented by a customer agent, which manages a
queue of application descriptions and sends resource requests to the matchmaker.
Each resource is represented by a resource agent, which implements the policies of
the resource owner and sends resource o�ers to the matchmaker. The matchmaker
is responsible for �nding matches between resource requests and resource o�ers and

Section 1.3 Software Development 3

Owner
Resource

AgentAgent
Customer

Matchmaker

Request

Claiming

Notification
Match

Resource Resource
Offer

Protocol

Figure 1.1 Condor resource management architecture.

notifying the agents when a match is found. Upon noti�cation, the customer agent
and the resource agent perform a claiming protocol to initiate the allocation. This
architecture is illustrated in Figure 1.1.

Resource requests and o�ers contain constraints which specify if a match is
acceptable. So, the customer agent includes a constraint in its resource request
which speci�es which resource o�ers are acceptable. For example, the customer
agent may desire only resources running a speci�c operating system. The resource
agent includes a constraint in the resource o�er which speci�es which requests it
will service. For example, the resource agent may only be willing to service requests
made by a speci�c customer. An o�er matches a request when both constraints are
satis�ed.

The matchmaker implements systemwide policies by imposing its own set of con-
straints on matches. For example, the matchmaker implements a customer priority
mechanism by matching resource requests in priority order, so resource requests
from customers with better priorities have a better opportunity to �nd a match.
The matchmaker may preempt allocations by matching a resource with a new re-
quest to maintain a fair distribution of allocations. The customer agent or the
resource agent may also choose to break the allocation at any time.

1.3 Software Development

The developer of an HTC system must overcome four primary challenges: utilization
of heterogeneous resources, evolution of network protocols, remote �le access, and
utilization of nondedicated resources. The utilization of heterogeneous resources
requires system portability, which can be obtained most e�ectively through a lay-
ered system design. A smooth evolution of network protocols is required for a
system where resources and customer needs are constantly changing, requiring the
deployment of new features in the HTC system. A remote �le access mechanism

4 Deploying a High Throughput Computing Cluster Chapter 1

APIAPI

HTC System Agent

System Call Interface

Operating System

Statistics
Workstation

Management
Process

Network API

Figure 1.2 Layered software architecture.

guarantees that an application will be able to access its data �les from any work-
station in the cluster. Finally, the utilization of non-dedicated resources requires
the ability to preempt and resume an application using a checkpoint mechanism.

1.3.1 Layered Software Architecture

The HTC system is a client of the workstation operating system. In particular, the
HTC system relies on the host operating system to provide network communication,
process management, and workstation statistics. Since the interface to these services
di�ers on each operating system, the portability of the HTC system will bene�t from
a layered software architecture, as shown in Figure 1.2. The system is written to a
system independent API, reducing the cost of porting to a new architecture, because
the nonportable code is isolated in the API libraries.

The network API provides both connection-oriented and connectionless, reliable
and unreliable interfaces, with many mechanisms for authentication and encryption.
It performs all conversions between host and network integer byte order automat-
ically, checks for overows (when, for example, sending an integer from a 64-bit
workstation to a 32-bit workstation), and provides standard host address lookup
mechanisms.

The process management API provides the ability to create, suspend, unsus-
pend, and kill a process to enable the HTC system to control the execution of a
customer's application. A parent process may pass state to new child processes,
including network connections, open �les, environment variables, and security at-
tributes. Since the customer's application does not necessarily use any HTC li-
braries, the API implementation must not assume that the child process also runs
an instance of the same API.

The workstation statistics API reports the information necessary to implement
the resource owner policies and verify that the customer application requirements
are met. The resource owner policy may refer to the CPU, network, and disk load,
the time of day, the time since the last keyboard or mouse activity, the amount
of available swap space, and other resource attributes. The customer application
may, for example, require a speci�c operating system and CPU architecture, and a

Section 1.3 Software Development 5

minimum amount of available physical memory, disk space, and network bandwidth.
Many libraries already exist to provide portable system services to applications.

For example, the XDR (eXternal Data Representation) library provides translation
services between data representations on di�erent operating systems and processor
architectures. There are obvious bene�ts to using standard libraries when develop-
ing the HTC system. Since the libraries are already written, the HTC developers
save time by using the libraries in lieu of developing new libraries. The developers
save time when porting the HTC system to new platforms if the existing libraries
are already available for the new platform. Also, one can assume that a library
which is already in wide use is better tested than a new library. However, these
bene�ts are not always realized. General purpose libraries are often poor �ts to
the speci�c needs of an HTC environment, and so using such libraries adds unnec-
essary baggage to the system. Additionally, the library may not be available for
all platforms or may work incorrectly on some platforms, resulting in porting and
debugging work for the HTC developer.

1.3.2 Layered Resource Management Architecture

The resource management architecture of the HTC environment also bene�ts from
a layered system design framework. Figure 1.3 shows such an architecture used
in Condor. This approach yields a modular system design, where the interface
to each system layer is de�ned in the resource management model, allowing the
implementation of each layer to change so long as the interface continues to be
supported. Customized customer agents may be developed with di�erent scheduling
algorithms optimized for speci�c classes of applications. Resource owner agents may
be customized to implement desired access control mechanisms. The matchmaker
(part of the System Layer) may be upgraded to utilize new resource management
algorithms without requiring an upgrade of other agents in the cluster.

This architecture separates the advertising, matchmaking, and claiming pro-
tocols. The agents advertise resource o�ers and requests asynchronously to the
matchmaker, and the matchmaker noti�es the agents when a match is found. Since
the matchmaker is not involved in the claiming protocol, the protocol may be cus-
tomized for speci�c types of agents, and may be modi�ed without a�ecting the
negotiator. The matchmaker does not need to know the details of allocation estab-
lishment, and so many di�erent allocation protocols may be easily supported by the
same matchmaker [2].

1.3.3 Protocol Flexibility

As the distributed system evolves to provide new and improved services, the network
protocols will be a�ected. Often, the protocols are augmented to transfer additional
information. This often requires that all components of the distributed system be
updated to recognize the additional information. In a large HTC system, it is often
inconvenient to update all components at one time, and so new features are not
deployed until a future major system upgrade.

6 Deploying a High Throughput Computing Cluster Chapter 1

Local RM Layer

Owner Layer

System Layer

Customer Layer

Local Syst em Services Local Syst em Services

Application Layer

C
la

im
in

g

Application RM Layer

Application
Tasks

RM LibraryRM Library
Tasks

Application

Inter-task
RM

Inter-task
RM

requirements
Run-time RM Run-time RM

services

Run-time RMRun-time RM

Resource requests

Matches

Resource requests

Matches

Global Resource Management
(Inter-customer RM)

Resource offers

Matches

Resource offers

Matches

Access Control Access Control

queue
RequestRequest

queue
Inter-request

RM RM
Inter-request

Run-time RM Run-time RM
requirements services

Local RM

Resource

Local RM

Resource

R
es

ou
rc

e
A

cc
es

s

requirements services

requirements
Run-time RM

services
Run-time RM

Figure 1.3 Layered resource management architecture.

To support this evolution, the HTC network protocols may utilize a general-
purpose data format which allows more exibility. For example, Figure 1.4 illus-
trates the protocol data format used throughout Condor. A leading integer speci�es
the protocol action to be performed, and the named parameter list which follows
speci�es the data associated with that protocol action. This is similar to an RPC
protocol, where an integer �rst speci�es the RPC being invoked and the parame-
ters of the call follow. The parameters in the list1 are named, so the receiver may
iterate through the parameter list, or may simply look up the values for the named
parameters of interest. To enhance the protocol, new parameters are simply added
to the parameter list. Backward compatibility is ensured, since older agents will
ignore the new parameters and new agents are written to accept packets with or
without the new parameters.

1.3.4 Remote File Access

A remote �le access mechanism guarantees that an HTC application will have access
to its data �les from any workstation in the cluster. This mechanism may use an

1The named parameter list is a use of the Condor ClassAd resource management language,
which is described in more detail in [3].

Section 1.3 Software Development 7

ActivateService

Command

(Integer)

[Owner = "jbasney", Arguments = "4", KillSig = 24, ...]

Named Parameter List

(ClassAd)

Figure 1.4 Example of protocol data format.

existing distributed �le system, it may stage data �les on the workstation's local
disk, or it may redirect �le I/O system calls to a remote �le server via system call
interposition.

To e�ectively use an existing distributed �le system, the HTC environment
must authenticate the customer's application to that �le system. For example,
NFS authenticates via user ID, while AFS and NTFS authenticate via Kerberos
and NT server credentials. To run the customer's application with the appropri-
ate distributed �le system rights, the HTC environment may require administrator
privileges on the remote workstation, the ability to transparently forward creden-
tials, or the ability to obtain the customer's credentials (for example, using the
customer's password). Alternatively, the customer may be required to grant �le ac-
cess permission to the HTC system before submitting the application for execution.

To implement data �le staging, the HTC system requires a list of input �les from
the customer for each application. The system then transfers these input �les to the
local disk of the remote workstation before running the application. The system is
responsible for gathering up the application's output �les and transferring them to
a destination speci�ed by the customer when the application has completed. This
requires free disk space on the remote workstation and the bandwidth to transfer the
data �les at the start and end of each allocation. For large data �les, this results
in high start-up and tear-down costs compared to a block �le access mechanism
provided by a distributed �le system or redirected �le I/O system calls.

To redirect �le I/O system calls, the HTC environment must interpose itself
between the application and the operating system and service �le I/O system calls
itself [4], [5], as illustrated in Figure 1.5. This may be accomplished by linking
the application with an interposition library or by trapping system calls through
an operating system interface. The HTC environment invokes an RPC to perform
the �le operation on a server with access to the customer's data �les. Since the
�le operations are performed at the system call level, this may result in many high
latency operations, reducing the performance of the application. Read-ahead and
write-behind caching can e�ectively reduce this latency.

Redirecting �le I/O system calls has the signi�cant bene�t that it places no �le
system requirement on the remote workstation. This enables the HTC environment
to utilize a greater number of resources. The drawback is that developing and
maintaining a portable interposition system can be very di�cult, since di�erent
operating systems provide di�erent interposition techniques and the system call

8 Deploying a High Throughput Computing Cluster Chapter 1

Interposition Agent

Application

OS Syscall Interface OS Syscall Interface

Interposition Server

Remote Workstation Customer File Server

Figure 1.5 System call interposition.

interface di�ers on each operating system and often changes with each new operating
system release. If an interposition library is used, then multiple compilers and
linking techniques (static versus dynamic linking, 32-bit versus 64-bit executables,
etc.) must often be supported. Thus, supporting the redirection of �le I/O system
calls can be a signi�cant portion of the cost of deploying an HTC cluster.

1.3.5 Checkpointing

A checkpoint of an executing program is a snapshot of its state which can be used
to restart the program from that state at a later time. Computing systems have
traditionally employed checkpointing to provide reliability: when a compute node
fails, the program running on that node can be restarted from its most recent
checkpoint, either on that same node once it is restored or potentially on another
available node. Checkpointing also enables preemptive-resume scheduling. All par-
ties involved in an allocation can break the allocation at any time without losing
the work already accomplished by simply checkpointing the application. Thus, a
long running application can make progress even when allocations last for relatively
short periods of time. Due to the opportunistic nature of non-dedicated resources
in a cluster environment, any attempt to deliver HTC has to rely on a checkpointing
mechanism.

Since most workstation operating systems do not provide kernel-level check-
pointing services, an HTC environment must often rely on user-level checkpointing.
Developing a portable, robust user-level checkpointing mechanism is a signi�cant
challenge for the developer of an HTC environment [6], [7], since operating system
APIs for querying and setting process state vary and are often incomplete.

Section 1.4 System Administration 9

1.4 System Administration

The administrator of an HTC environment answers to resource owners, customers,
and policy makers. It is the administrator's responsibility to guarantee that the
HTC environment enforces the access policies of resource owners. Since resources
in a cluster are often heterogeneous and distributively owned, these policies are
often complicated and vary from resource to resource. The administrator is also
responsible for ensuring that customers receive valuable service from the HTC en-
vironment. This involves working with customers to understand the needs of their
applications and developing an approach for running each application in the HTC
environment. It also often requires detecting application failures, investigating the
causes of the failures, and developing solutions to avoid future failures. Finally,
the system administrator often must demonstrate to policy makers that the HTC
environment is meeting stated goals. This requires accounting of system usage and
availability.

1.4.1 Access Policies

The resource access policy speci�es who may use a resource, how they may use it,
and when they may use it. The administrator determines an access policy in consul-
tation with the resource owner and implements that policy through a con�guration
of the HTC environment. The con�guration mechanism must be rich enough to
express a wide variety of access policies.

One method for policy speci�cation is to de�ne a set of expressions which specify
when an application may begin using a resource and when and how an application
must stop using a resource. For example, consider the following set of expressions:

� The Requirements expression evaluates to true when an application may begin
using the resource.

� The Rank expression evaluates to a larger numerical value for applications
which the owner would prefer over others.

� The Suspend expression evaluates to true when the active application should
be immediately suspended.

� The Continue expression evaluates to true when the active application should
be immediately unsuspended.

� The Vacate expression evaluates to true when the active application should
be noti�ed to stop using the resource. The application may continue using
the resource for a short time to save its intermediate results.

� The Kill expression evaluates to true when the active application should be
immediately stopped.

10 Deploying a High Throughput Computing Cluster Chapter 1

These expressions may refer to both application attributes (such as the identity
of the customer) and resource attributes (such as the time since the last keyboard
event).

Consider the following example access policy. The owner of a desktop work-
station will allow an application to use the workstation only when the owner has
not been using it for �fteen minutes (i.e., the keyboard and mouse have been idle
for that period of time, and the CPU load is low). Furthermore, the owner may
prefer to run applications owned by \jbasney@cs.wisc.edu" over other applications.
Finally, when the owner returns (i.e., the keyboard and mouse are no longer idle),
the application should be immediately suspended. If the owner continues to use the
workstation for �ve minutes, the application should be noti�ed to stop using the
resource. The application should be immediately stopped if it is still running �ve
minutes later. This policy is implemented with the following expressions:

Requirements = (KeyboardIdle > 15�Minute) && (LoadAvg < 0.3)
Rank = (Customer == \jbasney@cs.wisc.edu") ? 1 : 0
Suspend = (KeyboardIdle < Minute)
Continue = (KeyboardIdle > 2�Minute)
Vacate = (SuspendTime > 5�Minute)
Kill = (VacateTime > 5�Minute)

Suspend, Vacate, and Kill provide three mechanisms for the owner to preempt
a running application. Each mechanism results in di�erent costs for the application
and the resource owner. Suspend keeps the application state on the resource (i.e.,
in virtual memory) but suspends execution. This bene�ts the application when the
owner reclaims the resource for only a short time, because it allows the application
to immediately resume its execution (via Continue) when the resource is available
again. Vacate allows the application to save any immediate results (i.e., checkpoint)
before relinquishing the resource. Alternatively, Kill does not allow the application
to save intermediate results, so the application's work is lost. Thus, by enabling
Suspend and/or Vacate, the resource owner allows the application to better utilize
the resource at the cost of a prolonged preemption.

The cost of application placement and preemption are signi�cant factors in
setting good access policies. Application placement requires transferring the ex-
ecutable, checkpoint, and data �les to the remote host, and preemption requires
transferring checkpoint and data �les to a new remote host or to storage. Since
the application checkpoint contains the memory state of the process, it may be
very large (100MB+), and therefore transferring this data over the network may
require a large amount of bandwidth. These costs motivate the use of Suspend,
which avoids the cost of preemption and placement when the resource is reclaimed
for only a short period of time.

In the example policy above, the application is allowed �ve minutes after the
Vacate event to save its state before the Kill event occurs. On low-bandwidth
networks, a large application will not be able to complete its checkpoint in this
time period. To improve throughput in such an environment, the administrator
will want to attempt to negotiate a longer Vacate interval with the resource owners.

Section 1.4 System Administration 11

In cases when the chance of successful checkpoint is very low, the administrator
can con�gure the workstation to not attempt a Vacate, since it will only cause
unnecessary network tra�c. For example:

Vacate = (SuspendTime > 5�Minute) && (JobImageSize < 100�MB)
Kill = (JobImageSize < 100�MB) ? (VacateTime > 5�Minute) :

(SuspendTime > 5�Minute)

The administrator may use a periodic checkpoint mechanism to reduce the
amount of work lost as a result of failed preemption checkpoints and other system
failures (network failure, workstation hardware failure, etc.). Applications are con-
�gured to perform checkpoints periodically so that they can rollback to the most
recent checkpoint in the case of a failure. Since performing periodic checkpoints
consumes CPU, network, and disk resources, the administrator must balance the
periodic checkpoint frequency with the expected rate of failure.

The administrator may also steer matchmaking to utilize resources e�ciently
when network bandwidth is limited. Strategies include steering applications with
greater network requirements to resources with greater available network bandwidth
and longer expected allocation times. The administrator uses his or her knowledge
of the networking infrastructure, network load, and application requirements to
e�ectively con�gure the HTC environment.

1.4.2 Reliability

Reliability is a primary concern in an HTC environment because of the variety of
risks of failure and the special needs of HTC customers. The HTC environment
relies on the services provided by the network, hardware, and operating system
of each node on the network. The system must strive to mask failures in these
components and recover gracefully. The HTC environment must also handle failures
in components of the HTC system itself, as such software failures are to be expected
in such a complicated distributed system. HTC customers rely on the environment
to manage the execution of their applications. Since these applications may have
long execution times (weeks, months, or years), it is essential that applications
survive these failures.

A distributed �le system can be a frequent cause of system failures. The HTC
environment may rely on a distributed �le system to provide �le access to appli-
cations, system con�guration �les, executables, and log �les. A �le system failure
may appear to a long running as a failed system call. Many applications will sim-
ply abort when this occurs. The HTC environment can put this application \on
hold" until the �le system recovers and then restart the application from a previous
checkpoint. If the HTC executables are accessed via a distributed �le system, a
�le system failure may cause process crashes due to page faults which can not be
serviced.2 The HTC software must also react appropriately when con�guration �les

2This is caused by the operating system using the executable �le as the backing store for the
text pages of the process. When the executable �le is inaccessible, the process fails once a page
fault occurs in the text segment.

12 Deploying a High Throughput Computing Cluster Chapter 1

and log �les are temporarily inaccessible.
Since the HTC system is responsible for enforcing the policies of the resource

owner, it is essential that the system processes don't fail and leave running applica-
tions unattended. The HTC environment can provide functionality which enables
the administrator to enhance the reliability of these processes. A Master process can
be dedicated to monitoring the other HTC processes on a workstation to detect fail-
ures and invoke recovery mechanisms. This process can also cache executable �les
on the local disk of the workstation to avoid unserviceable page faults. Additionally,
this process may serve as an administrative module of the HTC environment, to re-
port which services are currently running, allow the administrator to start and stop
services, and to detect and react to con�guration changes and system upgrades. In
a large cluster, a Master process can dramatically reduce the cost of system recon-
�guration and upgrade by automatically retrieving new �les from the distributed
�le system and gracefully restarting local services to take advantage of the upgrade.

There are a number of complications which arise when implementing a mecha-
nism to allow applications to recover from system failures. The HTC software must
be able to detect the di�erence between normal application termination, abnormal
termination due to an environmental failure, and abnormal termination due to an
unrecoverable application error. One approach is to monitor the system calls per-
formed by the application to detect the source of failures. Alternatively, the system
could defer to the customer, asking the customer to alert the system when an ap-
plication terminates abnormally. The HTC software must also choose the correct
checkpoint to use for restart. It is possible for an environmental failure to cause a
failure in the application which results in an abnormal termination after a signi�-
cant delay. During that delay, the application may have performed a checkpoint.
The HTC system should ideally rollback to a checkpoint which was performed be-
fore the failure occurred. Finally, the HTC software must decide when it is safe
to restart the application. If the source of the failure is known, the system could
poll to determine when the failure has been resolved. Alternatively, the system
could contact the customer or system administrator and request a response when
the failure has been diagnosed and resolved.

An HTC environment is particularly susceptible to the \problem of one bad
node." This problem occurs when one node in the cluster enters into a state which
causes application failures (the node may run out of swap space, a memory module
may go bad, network �le services may fail, etc.). Thus, whenever an application
begins running on this node, it terminates abnormally. The HTC environment
must avoid naively running application after application on this workstation, or
this single node will be able to quickly drain the system of applications (or put
them all \on hold"). Thus, for an application failure, the system must determine if
the application failed due to the speci�c environment of the current node, due to the
current environment of the entire cluster, or due to an application error. This could
be determined heuristically: if the application fails consistently on di�erent nodes,
then it is reasonable to conclude that the entire cluster environment is experiencing
the problem for this application; if di�erent applications fail on the same node,

Section 1.4 System Administration 13

then it is reasonable to conclude that the particular node is to blame and should
be disabled.

To summarize, the HTC environment must be prepared for failures and must
automate failure recovery for common failures. This need grows signi�cantly as the
cluster grows in size. By successfully handling common failures, the HTC environ-
ment frees the administrator to investigate less common failures and to otherwise
concentrate on managing the system for e�ciency.

1.4.3 Problem Diagnosis via System Logs

Failures will occur in even the most reliable HTC environment|applications may
terminate abnormally, resource owners may report that their resource is being used
inappropriately, customers may report that they are not receiving a fair amount of
service, etc. System log �les are the primary tools for diagnosing system failures.
Using good log �les, the administrator should be able to reconstruct the events
leading up to the failure, which in most cases will uncover the cause of the failure.
Log �les are also essential in determining if a failure actually occurred. For example,
the resource owner who reports that the resource policy has been breached may be
mistaken or may have a misunderstanding of the policy implementation. Knowing
what occurred on the resource helps the administrator to decide if the customer's
policy should be modi�ed or if there is a system problem. Maintenance of good
system logs requires the decision of what information to log and a mechanism for
writing and accessing system logs.

Table 1.1 lists some of the useful information which can be logged by the HTC
system. The information is categorized by HTC subsystem to show the impor-
tance of e�ective log �le organization. For example, when investigating a reported
scheduling problem, the administrator will �rst focus only on the scheduling logs,
avoiding the distraction of unrelated log messages. There are a number of poten-
tially useful organizations or views for system logs. For example, when investigating
the failure of a speci�c application, it may be useful to trace the life of the appli-
cation through the di�erent subsystems to see when the application was scheduled,
how long the allocation lasted, which system calls were performed by the applica-
tion during the allocation, and which resource policy action (if any) coincided with
the application failure. This example argues for an application-speci�c view of the
system logs. Customer or resource speci�c views are also helpful. The administra-
tor also needs to be able to view di�erent levels of logging detail when diagnosing
a problem. These views may be implemented by logging each view to a separate
�le or by tagging each log entry with a descriptive key which speci�es the views to
which it belongs.

System logs can grow to an unbounded size, so it is necessary to manage the
amount of historical log information which is kept by the system. The logging
facility can be con�gurable, so that detailed logs are kept for an administrator-
speci�ed period of time, and then only summaries are kept for older information.
For example, when the administrator arrives on Monday morning to discover a

14 Deploying a High Throughput Computing Cluster Chapter 1

Table 1.1 HTC Environment Logs

application log: system call trace
checkpoint information and statistics
remote I/O trace with statistics
errors occurring during the allocation

customer log: allocation information and statistics
application arrival and termination
matchmaking and claiming errors

resource log: allocation information and statistics
policy action trace

master log: HTC agent (re-)starts
administrative commands
agent upgrades

scheduling log: record of all matches
allocation history (accounting)

security log: record of all rejected requests
record of all authenticated actions

problem report, it is useful to have detailed logs from the weekend to diagnose the
problem. It is also useful to have a historical summary of system usage which goes
back many years, to track changes in cluster capacity and customer demand, so the
administrator may report the return received on the investment in the HTC system.

Managing distributed log �les can be cumbersome, often requiring the adminis-
trator to remotely access workstation after workstation to follow the migration of
an application or to examine many instances of a particular problem. One alterna-
tive is to store logs centrally on a �le server or a customized log server. Another
alternative is to provide a single interface to the distributed log �les by installing
logging agents on each workstation which will respond to log queries made by a
client application.

1.4.4 Monitoring and Accounting

In addition to diagnostic logs, the HTC environment provides system monitoring
and accounting facilities to the administrator. This allows the administrator to
assess the current and historical state of the system and to track system usage.

For example, Figure 1.6 shows a stacked graph of the number of allocated (\Con-
dor"), available (\Idle"), and unavailable (\Owner") resources in the UW-Madison
Computer Sciences Condor cluster for the month of September 1998. From this
visualization, the administrator can conclude that:

� Approximately 100 resources were added to the cluster during the month.

� Over 50 percent of the cluster capacity was harnessed by HTC applications

Section 1.4 System Administration 15

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

R
es

ou
rc

es

Day of Month

Condor
Idle

Owner

Figure 1.6 Monitoring resource usage.

during the month.

� Resource availability followed a daily cyclic pattern, where more resources
were available for HTC during the night.

� On average, more resources were available to HTC applications on weekends
compared to weekdays.

� Very few resources were left unutilized by either the owner or an HTC appli-
cation, except on a few occasions (for example, September 14 and 30). A large
number of unutilized resources is a sign of system ine�ciency or a shortage of
customer requests.

Figure 1.7 shows a stacked graph of the number of idle and running applications
in the Condor cluster during September 1998. The daily cyclic pattern of available
resources is seen again here in the number of running applications. Also, a short-
age of customer requests is shown to be the cause of the unutilized resources on
September 14.

Using the same accounting facilities which generated these graphs, the admin-
istrator can see that HTC applications were allocated approximately 155 thousand
CPU hours during the month.3

1.4.5 Security

An HTC environment is potentially vulnerable to both resource and customer at-
tacks. A resource attack occurs when an unauthorized user gains access to a resource
via the HTC environment or when an authorized user violates the resource owner's
access policy. A customer attack occurs when the customer's account or data �les
are compromised via the HTC environment.

3These statistics are available online at http://www.cs.wisc.edu/condor/.

16 Deploying a High Throughput Computing Cluster Chapter 1

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A
pp

lic
at

io
ns

Day of Month

Idle
Running

Figure 1.7 Monitoring HTC applications.

Protecting the resource from unauthorized access requires an e�ective user au-
thentication mechanism. The resource owner may explicitly list authorized users in
the access policy, using the Requirements expression. For example:

Requirements = (Customer == \jbasney@cs.wisc.edu" jj
Customer == \miron@cs.wisc.edu")

The HTC system must ensure the validity of the Customer attribute. The re-
source agent can verify the Customer attribute by requesting that the customer
agent digitally sign the resource request with the customer's private key. The
resource agent will then verify the signature and the fact that the Requirements

expression is true for this resource request. Alternatively, the resource agent may
establish a trust relationship with the customer agent, and rely on the customer
agent to set the Customer attribute appropriately.

Protecting against violations of the resource owner's access policy requires that
the resource agent maintain control over the application and monitor its activity.
The resource agent may use the operating system API to set resource consumption
limits for the application. It may also run the application under a \guest" account
which provides only limited access to the workstation. To limit �le system access,
the agent may use operating system APIs to set the �le system root directory to a
\sandbox" directory. Perhaps the most e�ective approach, however, is to intercept
the system calls performed by the application via the operating system interposition
interface. This allows the resource agent to monitor all system access performed
by the application and to enforce the owner's access policy by aborting any system
calls which would violate it.

To submit an application to the HTC environment, the customer must grant the
system access to the application executable and data �les. This may be done by
transferring the �les to a directory or �le system dedicated for HTC applications.
In this case, the application may run with credentials speci�c to the HTC envi-
ronment, without the need for the customer's credentials. When the application
terminates, the customer retrieves the output �les from the dedicated area. In this

Section 1.4 System Administration 17

case, the customer's executable and data �les are potentially vulnerable to snoop-
ing or modi�cation. Alternatively, the HTC environment may run the application
with the customer's �le system credentials, allowing the customer's �les to be ac-
cessed directly and conveniently. In this case, the customer's account is potentially
vulnerable.

An untrustworthy resource agent can potentially mount a customer attack. To
allow remote execution, the application must have access to its data �les via a re-
mote �le access mechanism. The resource agent, therefore, has the opportunity to
manipulate or replace the application to steal the customer's data or modify the
customer's �les. In the case when the application runs with the customer's �le
system credentials, the attacker has the opportunity to access all of the customer's
�les and install a trojan horse in the customer's �le system. To protect against
this attack, the HTC environment must ensure that all resource agents are trust-
worthy. Resource agents may be authenticated cryptographically or the cluster can
be restricted to include only resource agents on trusted hosts (authenticated via
IP-address,4 for example).

Unencrypted network streams provide another potential vulnerability. Customer
data and �le system credentials sent unencrypted over the network are vulnerable to
snooping. Unencrypted streams are also potentially vulnerable to hijacking, which
would allow an attacker to modify executable and data �les and gain unauthorized
system access.

Finally, as with any network-enabled agent, HTC agents are potentially vulner-
able to the common bu�er-overow attack. HTC developers and administrators
should be aware of this potential attack and should assure themselves (using soft-
ware quality assurance techniques) that the HTC system implementation is not
vulnerable.

1.4.6 Remote Customers

Traditionally, customers were granted access to cluster computing environments
via an account on one or more workstations in the cluster. The customer would
transfer application data �les to this workstation and compile the application for
the cluster environment. However, it can be more convenient for both customers
and administrators to provide remote access to the HTC cluster instead. The
customer installs a customer agent on his or her workstation, and the administrator
allows that agent access to the HTC cluster. The customer is no longer required to
manually transfer data �les, since an HTC remote �le access mechanism is available
from the customer's workstation. The administrator is no longer required to create
a workstation account for the customer in the cluster, but instead must only create
an HTC account.

Remote customers may require special consideration when con�guring the HTC
environment. These customer agents may not be considered as trustworthy as local
customer agents, and so additional security precautions may be required. Addition-

4potentially vulnerable to IP-spoo�ng attacks

18 Deploying a High Throughput Computing Cluster Chapter 1

ally, these customer agents may connect to the cluster over a wide area network,
which provides limited bandwidth, decreased reliability, and additional security
concerns. Thus, there is a greater need for caching in the remote �le access mecha-
nism, local storage of intermediate �les (including checkpoints) in the cluster, and
encrypted network communication. The administrator may have limited access to
the remote customer agents, since the agent runs on a remote workstation, so agent
con�guration and log �le access may require assistance from the customer unless
the HTC environment provides administration access mechanisms or the customer
grants the administrator access to the remote workstation.

1.5 Summary

Deploying an HTC cluster presents many challenges for the developers and ad-
ministrators of the HTC environment. The HTC software must be portable, re-
liable, and maintainable. A layered architecture with exible network protocols
provides such a framework. Remote �le access and checkpointing mechanisms al-
low the HTC environment to utilize distributively owned, non-dedicated resources,
but these mechanisms carry signi�cant development and maintenance costs. The
HTC system administrator must e�ectively balance the needs of resource owners
and HTC customers, using an expressive policy con�guration language. The HTC
software must provide reliable, secure services with e�ective logging and accounting
tools for monitoring resource usage and diagnosing problems. At its best, the HTC
environment provides convenient access to cluster resources which are otherwise in-
accessible, due to heterogeneity, distributed ownership, and other complexities. The
HTC challenge is in e�ectively managing these complexities for the HTC customers,
resource owners, and administrators.

1.6 Bibliography

[1] M. Litzkow and M. Livny. Experience with the Condor Distributed Batch
System. IEEE Workshop on Experimental Distributed Systems, Huntsville,
Alabama, October 1990.

[2] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed Resource
Management for High Throughput Computing. Proceedings of the Seventh

IEEE International Symposium on High Performance Distributed Computing,
Chicago, Illinois, July 1998.

[3] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mechanisms for High
Throughput Computing. SPEEDUP Journal, vol. 11(1), pages 36{40, June
1997.

[4] M. Litzkow. Remote UNIX - Turning Idle Workstations into Cycle Servers
Proceedings of the 1987 Usenix Summer Conference, Phoenix, Arizona, 1987.

Section 1.6 Bibliography 19

[5] M. Jones. Interposition Agents: Transparently Interposing User Code at the
System Interface. 14th ACM Symposium on Operating Principles, vol. 27(5),
December 1993.

[6] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpoint and Mi-
gration of UNIX Processes in the Condor Distributed Processing System. Uni-
versity of Wisconsin-Madison Computer Sciences Technical Report 1346, April
1997.

[7] J. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent Check-
pointing under Unix. Conference Proceedings, Usenix Winter 1995 Technical

Conference, New Orleans, Louisiana, pages 213{223, January 1995.

Index

Checkpointing

in HTC clusters, 8, 10{12

ClassAd language, 6

Condor, 2{3, 5{6

Distributed ownership, 1{2

High Throughput Computing, 1

Interposition

system call, 7

Matchmaking, 2{3, 5, 11

Placement, 10
Preemption, 10{11
Reliability
of HTC clusters, 11{13

Remote customers
of HTC clusters, 17

Remote �le access, 6{7
Security
in HTC clusters, 15{17

Staging data �les, 7

20

