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Abstract

Condor is a distributed batch system for sharing the workload of compute-intensive

jobs in a pool of Unix workstations connected by a network. In such a Condor pool,

idle machines are spotted by Condor and allocated to queued jobs, thus putting otherwise

unutilized capacity to e�cient use. When institutions owning Condor pools cooperate, they

may wish to exploit the joint capacity of their pools in a similar way. So the need arises

to extend the Condor load-sharing and protection mechanisms beyond the boundaries of

Condor pools, or in other words, to create a 
ock of Condors. Such a 
ock may include

Condor pools connected by local-area networks as well as by wide-area networks.

In this paper we describe the design and implementation of a distributed, layered Con-

dor 
ocking mechanism. The main concept in this design is the Gateway Machine that

represents in each pool idle machines from other pools in the 
ock and allows job transfers

across pool boundaries. Our 
ocking design is transparent to the workstation owners, to

the users, and to Condor itself. We also discuss our experiences with an intercontinental

Condor 
ock.

Keywords: distributed processing, batch queueing system, wide-area load sharing, owner-

ship rights, 
ocking.
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1 Introduction

Today, many organizations use personal workstations as a computing platform. These work-

stations are typically connected by a local-area network (LAN), and|for large organizations|

sometimes by a wide-area network (WAN). In most cases, each workstation is placed at the dis-

posal of an employee, the workstation owner, who has full control over its resources. Together,

these workstations represent a substantial computing resource and a signi�cant investment for

the organization. In recent years, it has become apparent that these ever more powerful work-

stations can support a large class of computational problems. Additionally, because they are

manufactured in large quantities, they are in most cases more cost-e�ective than mainframes.

The distributed nature with respect to ownership and location of these clusters of work-

stations requires a new approach to the way computing resources are allocated within an

organization. While the problem of managing resources that are physically distributed has

been addressed by many researchers, the distributed-ownership aspect of clusters of desk-top

workstations is new. It has been observed [12] that most owners have computation needs that

are much smaller than the capacity of their workstations and therefore tend to leave them idle

for long periods of time. At the same time, a small group of owners who belong to the same

organization may have batch-mode computing needs that are by far larger than what their

workstations can provide. It is therefore not uncommon to �nd a cluster of workstations in the

undesirable wait-while-idle (WWI) state [9], in which batch jobs are waiting while elsewhere

resources capable of serving them are idle.

Any attempt to increase the amount of resources available for batch processing on a cluster

of workstations (and thus reduce the time spent in the WWI state) must �rst of all guarantee

the rights of each and every workstation owner. While the ultimate goal of a batch system is to

make essentially the entire computing power of the cluster available for batch processing, it is

the owner of the workstation who has the right to decide when and by whom the workstation

can be used for batch processing. Condor [7] is the �rst batch system for clusters of workstations

to address the distributed-ownership problem. It provides owners with means to control the

impact batch processing has on the quality of service they experience on their workstation.

Other batch systems, such as DQS [3], LSF [17], LoadLeveler [5] (that is based on Condor), and

Codine [2], have also recently made such means available. Since Condor became operational in

1988, it has been proven [8] that turning a cluster of workstations into a Condor pool results

in a substantial increase in productivity and e�ciency. In a wide range of industrial and

academic settings, Condor has demonstrated its ability to put the capacity of large clusters

of workstations to e�cient use serving the needs of demanding interactive owners and batch

users.
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While the formation of Condor pools solves the WWI problem within an organization, it

does not address this problem across organizations. When groups, departments or institutes

with Condor pools have a mutual interest in the progress of their computational activities,

they are likely to notice that the rate at which their computation tasks are accomplished is

hindered by a WWI problem across their Condor pools. Fluctuations in workloads, time-

zone di�erences, and di�erent working habits are likely to result in situations where one pool

is overloaded while other pools are underutilized. Although the design of Condor does not

preclude the merging of di�erent pools into one pool with WAN connections, Condor was not

designed to protect the rights of an organization to its own cluster. As in the case of an

individual who owns a workstation, an organization that owns a Condor pool would be willing

to make unutilized resources available to other organizations only if its ownership rights to

these resources are fully protected.

In this paper we present a mechanism that enables a controlled exchange of computing

resources across the boundaries of Condor pools. Using this so-called 
ocking mechanism,

independent Condor pools can be turned into a Condor 
ock where jobs submitted in one

pool|the submission pool|may access resources belonging to another pool|the execution

pool. In such a 
ock, any two pools can be connected by a pair of Gateway (GW) machines|

one in either pool. These GW machines serve as resource brokers between the two pools, and

take care of the transfer of jobs. GW machines behave like any other workstation in a pool|

they advertise resources, they accept jobs for execution, and they request computing resources

for jobs. The only di�erence is that the resources they advertise and the jobs whose needs they

are trying to satisfy reside in a di�erent Condor pool. Each pool owner and each workstation

owner maintains full control on when their resources can be used by external jobs. The access

to resources across pool boundaries is under control of the GW machines, and is transparent

to the workstation owners, to the users, and to Condor.

In 1993, a prototype of the Condor 
ocking mechanism was designed and implemented as

the master's thesis project for the Delft University of Technology of one of the authors [4],

carried out at NIKHEF, as part of an informal collaboration among the authors' institutions.

In 1994, the 
ock software was installed at various institutes and experience was obtained in

an intercontinental 
ock, including Condor pools in Madison (USA), Amsterdam and Delft

(The Netherlands), Geneva (Switzerland), Warsaw (Poland) and Dubna (Russia). Thereafter

the 
ocking mechanism was adapted and upgraded by the Condor Group at the University of

Wisconsin{Madison to its present form, which is compatible with the latest version of Condor.

The remainder of this paper is organized as follows. A summary of Condor is given in

Section 2. In Section 3, the main design alternatives concerning Condor 
ocking are discussed,

and in Section 4, the design and the implementation of the 
ocking mechanism are presented.
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Section 5 contains a brief account of our experiences with Condor 
ocking, and a short discus-

sion of areas for further improvement of our 
ocking mechanism. In Section 6 we present our

conclusions.

2 The Condor System

Condor is the result of more than a decade of research and development at the Computer

Sciences Department of the University of Wisconsin{Madison. In this section we summarize

those aspects of the Condor system which are relevant for this paper. A detailed description

of the system can be found in [1, 6, 7]. The following three principles have guided the design

of Condor.

1. Condor batch processing should have almost no impact on the availability of and the

quality of service provided by workstations to their owners.

2. Condor should be fully responsible for locating the resources required by a batch job,

letting the job use these resources, monitoring its execution, and informing the user on

its progress.

3. Condor should not require special programming and should preserve the operating envi-

ronment of the machine on which a job was submitted.

We consider design principle 1 as essential, since when it is not satis�ed, owners do not allow

their workstations to be part of a Condor pool.

2.1 How Condor Works

Each workstation in a Condor pool runs two daemons, the scheduler daemon Schedd and the

starter daemon Startd . One of the workstations in the pool is designated as the Central Man-

ager (CM), and runs some daemon processes for this purpose. The Startd of a workstation

periodically advertises to the CM the resources of the workstation, encapsulated in a machine

context, and whether it is available (idle). In addition, the Startd starts, monitors, and termi-

nates jobs that were assigned to the workstation by the CM. The Schedd queues jobs submitted

to Condor at the workstation and seeks resources for them. Each job has a job context de�ning

its resource requirements. This job context is forwarded to the CM, who tries to locate a work-

station that meets these requirements. The CM can be viewed as a matchmaker, matching job

contexts and machine contexts. The CM performs scheduling by scanning its list of queued

jobs for potential matches in an order based on a novel priority scheme [10] in which jobs are

ranked according to the past resource-usage pattern of the user who submitted them.
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We now present the protocol used by Condor for matching a job J queued on submission

machine S and an execution machine E, and for the subsequent starting of the job (see Figure

1). Both machines are in the same Condor pool and we refer to this protocol as the standard

Condor protocol. In the protocol, processes on machines S and E are denoted by their name

with "(S)" and "(E)" appended, respectively.

The standard Condor protocol

1. Matchmaking:

(a) The Schedd(S) sends J's job context to the CM1

(b) The Startd(E) sends E's machine context to the CM

(c) The CM identi�es a match between J's requirements and E's resources

(d) The CM sends the Schedd(S) an identi�cation of E

2. Establishing a connection:

(a) The Schedd(S) forks a Shadow(S)

(b) The Shadow(S) passes the Startd(E) J's job requirements

(c) If the Startd(E) �nds that J and E indeed match and that E is still idle, it sends an

OK message containing an identi�cation of E to the Shadow(S). If either of these

conditions is not satis�ed, it sends a not-OK message, and steps 1 and 2 are repeated

3. Starting the job:

(a) The Startd(E) forks a Starter(E)

(b) The Shadow(S) sends J's executable to the Starter(E)

(c) The Starter(E) forks J

The function of the Shadow process is to represent the Condor job on the submission machine

(see Subsection 2.2), while the function of the Starter process is to represent the job on the

execution machine.

2.2 Remote System Calls

ACondor job runs on an execution machine with the illusion that it operates in the environment

of the submission machine. This illusion is maintained by the Remote Unix facility [6], through

which a number of system calls (which mainly have to do with �le I/O) are redirected to

1Steps 1.(a) and 1.(b) can be executed in any order or in parallel.
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the submission machine, where they are handled by the Shadow. This remote-system-call

mechanism is implemented in a special version of the C-library. For each remote system call,

the Condor C-library contains a stub. The stub traps the system call and forwards it to the

Shadow. When the Shadow receives the call, it executes the corresponding system call and

sends the result back to the stub. Then the stub returns to the application program in exactly

the same way the normal system call would have. To obtain this service the user only has to

link his jobs with the Condor version of the standard C-library.

When a Condor pool has a uniform �le system like NFS or AFS, the �le-I/O system calls

can be handled by the execution machine directly. When no uniform �le system is available, or

when checkpointing (see Subsection 2.3) is needed, some system calls, such as those for process

creation and interprocess communication are not allowed by Condor; they are then trapped

by the Shadow.

2.3 Job Preemption

Condor operates in an environment where owners have absolute priority on their machines. In

order to ensure this, Condor can preempt jobs to free a machine for its owner's use. Preemption

is also induced by the CM in order to revoke resources from low-priority users to be allocated

to high-priority users. In either event, the machine running the job must be vacated quickly,

cleaned up, and prepared for its owner or a new Condor job. At the same time, there needs to

be some guarantee that jobs make progress in spite of these preemptions. Condor, therefore,

provides mechanisms that automatically checkpoint [15] and restart a job (usually on a di�erent

machine). After a job has been checkpointed, its submission machine requests the CM to

reschedule the job with the standard protocol presented above.

3 Design Alternatives

Our basic objective is to solve the interpool WWI problem among the Condor pools of cooper-

ating owners, given that the intrapool WWI problem has been solved by Condor. This means

that users can get access to more or di�erent resources than the ones available in their local

pools. Since Condor allows WAN connections and does not require a uniform �le system or

a uniform userid/password environment, the simplest way to solve the WWI problem among

pools is to merge them into one large pool with a single CM. Another way to address the

intrapool WWI problem is to connect the Condor pools by means of a 
ocking mechanism.

Before evaluating these two alternatives, we would like to list the design principles that

have guided us in solving the intrapool WWI problem. Our starting point is that the solution

should be transparent to both the workstation owners and the users. Therefore, the Condor
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design principles 1-3 stated in Section 2 remain valid. We identify the following three additional

design principles, all of which are related to pool ownership and management:

4. The installation and maintenance of any additional mechanisms must be easy;

5. Adding a pool to a set of cooperating pools, maintaining such a set, and withdrawing a

pool from such a set, must be easy and fast;

6. It must be possible to de�ne simple and 
exible resource-sharing agreements between the

pool owners.

Although it is the users who are to bene�t from a solution to the WWI problem, it is truly

indispensable to have the cooperation of �rst the workstation owners|as is the case for a

single Condor pool|and then the pool owners.

Below we �rst introduce the concept of resource-sharing agreements between pool owners

that allow a Condor 
ock to be a dynamic entity. Then we demonstrate that simply merging

pools con
icts with our design principles, so that a 
ocking mechanism is needed. Finally, we

discuss two issues regarding the structure of 
ocks.

3.1 Resource-Sharing Agreements between Pool Owners

Among a number of cooperating owners of Condor pools, not every one of them has to cooperate

with every other. When two owners do cooperate, they may want to set rules specifying the

circumstances under which job transfers between their pools are allowed. These rules may for

example depend on the sizes of the pools, the nature of their workloads, or the nature of the

cooperation. We refer to the set of rules that govern the exchange of jobs between two pools

as a (resource-sharing) agreement. Widely di�erent kinds of rules are possible, for example:

� Any idle machine in one pool can be used by any Condor job of any user in the other

pool. This is an agreement that is similar to that which usually exists between the owners

of workstations within a single Condor pool.

� Job transfer can be restricted. For instance, a pool owner may require that the number

of idle machines in his pool must exceed a certain threshold before transfers to it are

allowed; job transfers may only be allowed in one direction between two pools; jobs of

only speci�c users of one pool may be allowed in the other pool, or may be required to

have a lower priority in the other pool than local Condor jobs.

� Rules may include some form of accounting. For instance, it may be required that in the

long run, either pool uses roughly the same amount of resources in the other pool.
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3.2 Merging Pools versus Flocking

The basic question is whether there should be 
ocking at all. Why not just merge the pools

of organizations wishing to eliminate the WWI problem among their Condor pools into one

common pool? We now discuss the advantages and disadvantages of merging and 
ocking

with respect to our design principles 1-6. As to design principles 1-3 stated in Subsection 2.1,

obviously merging will not violate them, and it seems easy to have a 
ocking mechanism that

follows them. So we can concentrate on the last three design principles (4-6) stated at the

beginning of this section.

4. In a merged pool, no additional mechanisms have to be installed at all. However, one of

the constituent pools has to be designated to contain the single CM. This means that the

installation of (new versions of) the CM and the responsibility for keeping the CM (and

so the entire merged pool) running, is with only one of the participating organizations.

This does not seem to be an attractive proposition.

5. Adding the Condor pool of an organization to and withdrawing it from a merged pool

entail substantial changes to the con�guration �le in the CM, which may reside in another

organization. A 
ocking mechanism, on the other hand, allows a Condor pool to be

instantaneously (re-)connected to and disconnected from any pool in the 
ock with which

it has an agreement. Also, in a merged pool, any change in one of the constituent pools

must be communicated to the administrator of the merged pool, while in a 
ock, no

communication on such changes is necessary.

Obviously, in a merged pool, the single CM forms a potential performance bottleneck.

On the other hand, a 
ocking mechanism may achieve some level of failure isolation:

while in a single, merged pool, any failure of the CM stops all job-resource matching

activity, in a 
ock, a failure of the CM of a pool leaves the rest of the 
ock una�ected.

6. All users of a Condor pool tend to have equal rights. In case of a merged pool, there-

fore, the users of an organization will in principle not have a special claim to their own

machines. Although some form of priority can be enforced in a single Condor pool,

maintaining the pertaining information is cumbersome. On the other hand, a properly

designed 
ocking mechanism will allow organizations to keep full authority over their own

machines. They can choose and change the Condor con�guration parameters themselves,

and facilities can be included for admitting and refusing jobs from other pools selectively

by means of 
exible, bilateral agreements.

We conclude that it is unlikely that cooperating pool owners are willing to merge their Condor

pools. Therefore, a 
ocking mechanism is called for.
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3.3 Central versus Distributed Flock Structure

Whenever computers are combined to serve a common purpose, the question arises whether

the authority in the combined system should be central or distributed. Here we are faced with

this question for the authority in Condor 
ocks.

In principle, one can build a 
ock in a hierarchical way as a pool of pools, with a single

Flock Central Manager (FCM) presiding over the CMs of all the pools, and being responsible

for all interpool scheduling decisions. The FCM should be aware of the pools that belong to

the 
ock, their con�gurations, and their resource-sharing agreements. Periodically, the FCM

should collect from all CMs dynamic status information regarding resource availability and job

requests, it should make matches, and it should send its resource-allocation decisions back to

the CMs involved. It would then be the responsibility of the CMs to carry out these interpool

scheduling decisions, along with their own intrapool scheduling decisions. The most important

advantage of making decisions centrally is simplicity: pools have to register only at the FCM,

and all information exchange concerning the 
ock only involves the CMs and the FCM.

A disadvantage of the central approach is that the FCM has still to be installed and

maintained by a single organization. Another disadvantage is that when more and more pools

are added|and we envision truly global 
ocks consisting of a very large number of pools|the

FCM and its local network may become overloaded. In addition, an FCM only provides an

intermediate form of failure isolation. A failure of the FCM results in a collapse of the entire


ock-management system, although the individual pools can continue to operate correctly.

An advantage of the central approach is that it allows resource-sharing agreements by simply

implementing them at the FCM level.

In a distributed structure, the decision making can be distributed among the pools by

having any pair of Condor pools negotiate the transfer of jobs without any interference from

other pools. In order for a pool to become a participant in a 
ock, it should be able to connect

to a subset of the pools in the 
ock, without necessarily a�ecting or even being aware of the

others. Making a connection between pools should include the implementation of the bilateral

agreement of their owners. Any change in the agreement between two pool owners only entails

an information exchange between the two pools involved. In such a way, a distributed 
ock

can be tailored to become a self-controlled and self-growing entity. We conclude that the

distributed approach is superior to the central approach.

3.4 Integrated versus Layered Design

We distinguish two ways in which a 
ocking mechanism can be added to Condor. In the �rst,

such a mechanism is integrated into the Central Managers. This means that the CMs have to
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exchange information regarding job submissions and machine availability, and that they decide

for a locally submitted job whether to transfer it or to process it locally. In the second way, a

separate software layer is put on top of Condor, taking scheduling from the intrapool level to

the interpool level.

The main advantage of an integrated design is that the CMs can use any local and non-local

information to optimize their scheduling decisions. When 
ocking is completely integrated in

the CMs and the CMs are all equal, an integrated design will necessarily be distributed, which

we consider to be an advantage.

The main advantage of a layered design is that the 
ocking mechanism can be developed

independently from standard Condor. In particular, it may even allow the CM to remain

unmodi�ed. This enables an orthogonality of design not possible in the integrated approach,

it facilitates installation and testing of the 
ocking mechanism, and it makes the decision to

join a 
ock easier for a pool owner. A disadvantage of such a design is that it may prevent

certain optimizations. We conclude that a layered design may stimulate the success of 
ocking

considerably.

4 The Design and Implementation of a Condor Flock

In this section we describe our design of a distributed, layered 
ocking mechanism for Condor.

We �rst give a description of the 
ock structure. Then we discuss the protocol for starting a

Condor job in another pool. We conclude the section with some details on the way scheduling

is performed through the GWs. Our 
ocking mechanism is transparent to the workstation

owners, the users, the CMs, and the Condor daemons on the workstations.

4.1 The Gateway Machines

The basis of our 
ocking mechanism is formed by the Gateway Machines|at least one in every

participating pool. The purpose of these GW machines is to act as resource brokers between

pools. To this end, they include facilities for connecting pools, for exchanging information

regarding resource availability, and for binding jobs to external resources. We now discuss

these three facilities in turn.

A pool may contain multiple GWs, and a GW may be used to connect a pool to several

pools. Each GW has a 
ock con�guration �le describing the subset of connections maintained

by the GW. For each of these connections, this �le contains the name of the pool and the

network address of the GW at the other end, and whether the local pool is allowed to run

Condor jobs in the remote pool and vice versa. Connecting two pools is done by entering the

appropriate information in the 
ock con�guration �les in a GW in either pool. By changing
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the 
ock con�guration �le of one of its GWs, a pool can connect to or disconnect from other

pools, and can dynamically change its agreements with the pools to which it is connected.

Figure 2 shows a Condor 
ock consisting of three Condor pools.

Similarly as an ordinary Condor machine, a GW runs two daemons, the GW-Schedd and

the GW-Startd. Periodically, the GW-Startds exchange information on the availability of

machines in their pools. To this end, a GW-Startd requests the status of its pool from the CM

using the interface of the Condor utility program allowing users to query the status of a pool.

From the information received, the GW-Startd makes a list of available machines in the pool.

It then sends this list to the GW-Startds of all GWs to which it is connected that belong to

pools that have permission to run jobs in this pool. If a GW-Startd does not receive a list

of available machines from another pool within a speci�ed time, the latter is considered to be

down, and the previous list is deleted. Note that the information exchange only involves the

availability of resources, not job submissions.

The protocol between a GW machine and the CM in its pool is identical to that between

an ordinary machine and the CM. Periodically, the GW-Startd chooses a machine from the

availability lists received, and presents the GW to the CM with the characteristics of this

machine (for details, see Subsection 4.3). If a GW does not have information on idle machines

in remote pools, it presents itself as a machine that is unavailable. It is now possible that the

CM makes a match between a local job and the (machine represented by the) GW. The steps

involved in establishing the connection between the job and the actual execution machine are

given in the following subsection.

4.2 How Flocking Works

In our design, the CM of a pool that is part of a Condor 
ock does not know anything

about 
ocking. Therefore, step 1 of the standard Condor protocol given in Subsection 2.1 is

performed in exactly the same way as in a single pool. (When E is a GW, E's machine context

and resources are those of a remote machine rather than those of the GW.) When the execution

machine E is an ordinary machine, the rest of the standard protocol is followed. When a match

is made between a job J on submission machine S and a GW machine in the submission pool,

step 2 in the standard protocol is replaced by steps 2.I-2.IV below. We extend the notation

of Subsection 2.1 by denoting processes on the GW in the submission pool and on the GW in

the execution pool to which it is connected, by their name with "(S)" and "(E)" appended,

respectively. Figure 3 illustrates the entire protocol for starting a job in a di�erent pool.

The Condor Flocking protocol (step 2)

2.I Establishing a connection between S and E:
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(a) The Schedd(S) forks a Shadow(S)

(b) The Shadow(S) passes the GW-Startd(S) J's requirements

(c) The GW-Startd(S) forks a GW-Startd-child(S)

(d) The GW-Startd-child(S) passes the GW-Schedd(E) J's job context

2.II Matchmaking within the execution pool:

This step is identical to step 1 of the standard Condor protocol with E a machine in the

execution pool and Schedd(S) replaced by GW-Schedd(E)

2.III Establishing a connection within the execution pool:

This step is identical to step 2 of the standard Condor protocol with Schedd(S) replaced

by GW-Schedd(E) and with Shadow(S) replaced by GW-Simulate-Shadow(E)

2.IV Completing the connection:

(a) Depending on the answer obtained by the GW-Simulate-Shadow(E) in step 2.III,

it sends the GW-Startd-child(S) an OK message and an identi�cation of the actual

execution machine E, or a not-OK message

(b) GW-Startd-child(S) sends an OK message containing an identi�cation of E, or a

not-OK message to the Shadow(S)

After this new step 2 has been executed, the submission machine and the execution machine

are in the same states as in the standard protocol, and the GWs are no longer involved. Step 3

of the Condor 
ocking protocol is identical to step 3 of the standard protocol. All subsequent

communication between the submission machine and the execution machine for remote system

calls and checkpointing are done just as they would be in a single Condor pool, i.e., with no

additional overhead.

The complete protocol can be summarized as follows. First, in the submission pool a match

is made between a job and a (pseudo-)execution machine, a GW; then the job is queued in

a GW in the execution pool; then a match is made in the execution pool; and �nally, the id

of the actual execution machine is communicated to the submission machine. An important

aspect of the protocol is that the Schedd and the Startd operate in exactly the same way as

in the current version of standard Condor, so 
ocking is transparent to the ordinary machines

in a Condor pool.

All the messages concerned with starting a Condor job in a remote pool contain the name

of the submission machine and the job id. This is necessary because the GW daemons may
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be working for several jobs submitted on di�erent machines and in di�erent pools at the same

time.

Normally in a Condor pool, a job runs under the user identi�er (UID) of the user who

submitted the job, so that �les can be accessed through AFS or NFS. In a Condor 
ock, a user

of one pool will usually not be registered in the other pools. Therefore, we let transferred jobs

run under the special UID "nobody".

4.3 Scheduling Details

Since in our design 
ocking is transparent to the CMs, all interpool scheduling and all resource-

sharing agreements have to be implemented by algorithms executed by the GWs. In particular,

it is up to the GW to choose a machine from the availability lists received from other pools to

represent itself to the CM, and to decide to which pool to send a job allocated to it. In our

design, this is done in the following way.

Whenever a GW needs to represent a machine to the CM, it chooses at random a machine of

the availability list from a randomly chosen pool to which it is connected. If all the availability

lists are empty, the GW will represent itself as a machine that is unavailable. This procedure

is repeated periodically in order to give the CM more opportunities to make matches, and also

when a job is assigned to the GW. Note that because the GW does not know the requirements

of the submitted jobs, it cannot represent the machine that is in some way the best. When

a job is assigned to the GW, it will not necessarily be executed on the machine advertised

by the GW, and it may even be sent to an execution pool di�erent from the one containing

the advertised machine. What happens is that the GW scans the availability lists in random

order until it encounters a machine satisfying the job requirements and the job preferences. It

then sends the job to the pool to which this machine belongs. If no such machine is found,

this procedure is repeated to �nd a pool with an idle machine which only satis�es the job

requirements. If still no machine is found, the job remains queued at the submission machine

and has to be rescheduled.

When a 
ocked job is checkpointed in the execution pool, its checkpoint �le is sent back

to the submission machine. When it is later rescheduled, it may be 
ocked again, or it may

be assigned to a machine in the submission pool. So a job may use resources in any number

of pools in a 
ock during its lifetime.

Finally, a Condor user can indicate for each of his jobs whether it is to run in the submission

pool, or whether it can be 
ocked. In this detail, 
ocking is not necessarily transparent to the

users.
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5 Experiences and Future Developments

In 1993 a �rst test 
ock was set up with three small Condor pools using the prototype imple-

mentation. These pools were owned by NIKHEF, the Faculty of Mathematics and Computer

Science of the University of Amsterdam (FWI-UA), and the Department of Mathematics and

Computer Science of Delft University of Technology, all in The Netherlands. Each of the pools

consisted of 3 Sun SPARC workstations.

In the summer of 1994, a production 
ock of nine pools in �ve di�erent countries (the

USA, The Netherlands, Switzerland, Poland and Russia) was set up in a collaboration of the

authors' institutions with the Spin Muon Collaboration (SMC) at CERN, the Institute of

Computing and Automation (LCTA) of the Joint Institute for Nuclear Research (JINR) in

Dubna near Moscow, and the Physics Department of Warsaw University. This �rst "World

Flock" contained over 250 workstations, about 60 of which on the European continent (see

Figure 4). The 
ock was made available as a production environment for the research project

"Crystallization on a Sphere" [16], in which a very large number of time-consuming simulated

annealing (SA) jobs for a variable number of particles (N) were executed. Thousands of

these production jobs were submitted|usually in batches of 100 jobs|in the various pools

and executed remotely in the 
ock. The duration of the jobs depended strongly on the value

of N . The remote execution times ranged from 15 minutes to 10 days per job. In addition,

some simulations of high-energy collisions using the GEANT package developed at CERN were

used as tests. All of these jobs had low I/O requirements, which was important since some

connections were slow. The feasibility of our 
ocking approach was solidly demonstrated. There

were no signi�cant di�erences in execution e�ciency between SA production jobs executed in

their submission pool and those that were 
ocked.

At the end of 1994, version 5 of Condor was released by the Condor Design Team, with

an accompanying upgrade of the 
ocking package. This version of Condor has been in routine

operation in two large heterogeneous pools at the University of Wisconson{Madison (in the

Departments of Computer Sciences and of Computing and Engineering), and in smaller pools

elsewhere, amongst which pools at NIKHEF and at the University of Delft. Towards the end of

1995, a new 
ock is emerging based on these latest versions of Condor and the 
ocking package.

Our experience with 
ocking so far convinced us that the chosen 
ocking mechanism meets

our design principles, and that it can have a signi�cant impact on the computing facilities

available to participating organizations.

Our current implementation still lacks various facilities that we consider to be important

for broad application. Two of these are discussed below. As both have to do with performance,

we are currently building monitoring tools for Condor 
ocks to identify bottlenecks and areas
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for performance improvements.

I/O Issues

Pools in a Condor 
ock will often be connected by WAN connections. Therefore, an e�ciency

aspect of 
ocking is the speed of transfer across such connections of executables, checkpoint

�les, and I/O data. The suitability of jobs to be 
ocked strongly depends on the ratio of

I/O requirements and the bandwidth. In the spectrum of jobs submitted in a Condor pool,

there may well be a signi�cant fraction of jobs for which this ratio is low enough to bene�t

substantially from 
ocking. To get a feeling for the average and variation in remote-system-

call delays, we performed various measurements using single pools with and without WAN

connections. After all, once the connection between the submission and execution machines

has been established either within a single pool or across pool boundaries in a 
ock, these

machines are in the same states. We compared the performance of remote system calls in

various instances of three di�erent situations: within a single machine, between two machines

in a single LAN-connected pool, and between a machine in the NIKHEF pool and a machine

at CERN and at the University of Wisconsin{Madison (both across a WAN connection). The

measurements, showing considerable 
uctuations, indicated that bandwidth limitations are not

prohibitive for WAN-
ocking in the case of compute-intensive jobs.

Scheduling Issues

The main objective of Condor|making available idle computing cycles while protecting own-

ership rights|is quite di�erent from the traditional objectives of scheduling such as optimal

average turn-around time. Still, there are various scheduling issues to be resolved in a Condor


ock, concerning optimization and stability. Optimization issues include the choice of the jobs

to be transferred and the resources to be allocated to them. For example, one might want

to match the job with the longest expected execution time and the fastest available machine,

or the job with the highest I/O requirements and a slower machine. Also, the question arises

whether a job should be 
ocked immediately when submitted, or whether one should �rst wait

to see whether a local machine turns idle. In our design, any such policies can be implemented

in the GW machines. Stability issues concern the avoidance of unnecessary transfers. For

example, when local capacity is available, it should be put to use. In particular, it should

usually be avoided that among two pools, many jobs of one of them are 
ocked to the other

and vice versa at the same time.
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6 Conclusions

A design and implementation of Condor 
ocking, a novel concept in large-scale cluster comput-

ing, has been presented. The 
ocking mechanism has been tested, and the feasibility of both

LAN-connected 
ocks and of worldwide 
ocks has been demonstrated over a period of several

months. Obviously, the basic 
ocking concepts are not restricted to Condor, and not even to

Unix, but can be applied among any type of computing facilities. We envision long-running,

compute-intensive jobs submitted to global heterogeneous 
ocks, successively being allocated

resources in di�erent locations worldwide to make progress in their execution.

New challenges in scienti�c computing, for example in experimental and theoretical physics,

which include simulations of orders of magnitude larger than those currently performed, can

bene�t greatly from these concepts. Also, scientists who are severely restricted in their access

to computing resources, could pro�t from the nocturnal tidal wave of computing power of idle

workstations traveling around the globe every 24 hours. We conclude that 
ocking has the

potential of becoming an illuminating example of global sharing of otherwise wasted resources.
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Figure 1: The standard Condor protocol. The arrows and labels correspond to the steps of
the protocol in Subsection 2.1.
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Figure 2: An example of a Condor 
ock with three pools connected by a wide-area network.
The pools consist of two or three machines each, connected by a local-area network.
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Figure 3: The Condor Flocking protocol. The arrows and their labels correspond to the steps
of the protocol in Subsection 4.2, and of the standard Condor protocol in Subsection 2.1. The
labels in parentheses correspond to the steps of the standard Condor protocol used within
steps of the Condor Flocking protocol.
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Figure 4: The world-wide Condor 
ock of 1994. The dots represent the pools. An arrow from
one pool to another indicates that jobs submitted in the former are allowed in the latter. The
numbers indicate the sizes of the pools.
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