
Java-based
Mobile Agents

David Wong, Noemi Paciorek, and Dana Moore

T
The mobile agent concept grows out of three ear-

lier technologies: process migration [5], remote eval-
uation [7], and mobile objects [3]—all developed to
improve on remote procedure calling (RPC) for dis-
tributed programming. Early systems supporting
process migration allowed an entire address space to
be moved from one computer to another. One goal
of this mechanism was to reduce network bandwidth
(compared to RPC) when multiple RPC calls are
needed to execute an application. While process
migration allowed an entire process to be transferred

to a remote host, this mechanism did not allow an
easy way to return data back to the source node with-
out the entire process returning as well (see Figure 1).

Next came remote evaluation programming,
allowing one computer to send another computer a
request in the form of a program (rather than an
entire process address space). The remote computer
receiving such a request executes the program refer-
enced in the request within its own local address
space and returns the results to the sending com-
puter. Remote evaluation systems improved on

he Internet and the World-Wide Web have become

worldwide tools for e-commerce. However, despite their seem-

ingly unlimited network bandwidth, ease of use, and secure means of online

transactions, a shift in computing paradigm is still needed to fully exploit

these features. Will mobile agents represent that shift, ultimately freeing up

the Internet for its millions of netizens? The agent paradigm first needs to

overcome several critical obstacles before this question can be answered.

Here, we discuss why Java is such an effective implementation lan-

guage for mobile agents in e-commerce.

To free your agents and yourself to get the best deals online,
write them in Java. And hope everyone else does too.

92 March 1999/Vol. 42, No. 3 COMMUNICATIONS OF THE ACM

process migration by allowing remote programming
to occur without having to transmit the process con-
trol data from the source to the destination host.

Despite their help reducing network bandwidth,
remote evaluation systems lacked the ability to
encapsulate more state information into the exe-
cutable program at the remote host. Mobile objects
(based on formal object-oriented programming
techniques) extended remote evaluation by captur-
ing more program behavior within the mobile
object. Such objects can migrate from node to node
while carrying executable code, data in the form of
object-specific properties, and potentially other
embedded executable objects. A number of mobile
object systems were popular in the 1980s,
but the one that could be said to have
led most directly to mobile agents
was the Emerald system devel-
oped at the University of
Washington [3].

A number of mobile
agent systems have evolved
from this evolutionary
process [1, 4, 8, 10], most
notably the Telescript lan-
guage and run-time envi-
ronment from General
Magic [9]. But mobile
agents have since improved
on mobile objects in a num-
ber of ways. For example,
mobile agents further reduce net-
work traffic for applications process-
ing large quantities of data. Some of the
earlier programming paradigms were based on
the client/server model as a way to offload work to a
remote server. The client/server model takes the view
that it is more important to ship the data to the pro-
gram source, whereas mobile agents give the developer
enough flexibility to extend the model by shipping the
program to the data source (see Figure 2).

Mobile agents also provide some autonomy,
because they themselves can decide dynamically
where and when to travel to a particular destination
node based on some embedded mobility metadata to
perform some required work. Mobile agents improve
on all these earlier technologies for distributed pro-
gramming by providing a way for executable code,
program state information, and other data to be
transferred to whichever host the agent deems neces-
sary to carry out the actions specified in an applica-
tion. Mobile agents readily adapt to changes in both
the program state and the network environment
(such as network partitioning and disconnected

hosts) to modify their routing behavior.
Mobile agents also give the user a natural mode of

asynchronous interaction. Applications that need
access to legacy applications can be packaged within
the mobile agent and subsequently shipped to the
remote host where the legacy code is located—while
the user disconnects from the network as desired. A
store-and-forward mechanism is typically employed
within the mobile agent framework to support such
behavior.

The autonomous and asynchronous nature of
mobile agents is also especially effective in protecting
mission-critical applications from failure caused by
unreliable networks; agents can reroute themselves

and carry the codified business logic
needed to continue their tasks,

even when confronted by
network partitioning. This

aspect of mobile agent per-
formance makes such
agents especially attractive
to traveling businesspeo-
ple who regularly discon-
nect their mobile devices
from their home office
servers.

Other features, such
as fault tolerance and

security, were available in
some of the earlier distrib-

uted programming para-
digms, although mobile agents

make greater use of them.

As a Language for Mobile
Agent Development
Java is the language of choice for mobile agent sys-
tems. Concordia, Odyssey, and Voyager are all Java-
based (see Koblick’s “Concordia” in this issue).
Multiplatform support and the promise of write-
once, run-anywhere operation make Java extremely
well suited for mobile agent technology. Further-
more, the ubiquity of the Java virtual machine may
someday facilitate dissemination of mobile agents
throughout the Internet.

Java has several features not found in any other
language that directly support implementation of
mobile agents. For example, agent mobility requires
facilities that convert an agent and its state into a
form suitable for network transmission and, on the
receiving end, allow the remote system to recon-
struct the agent. Java’s object serialization accom-
plishes this conversion and reconstruction almost
transparently.

COMMUNICATIONS OF THE ACM March 1999/Vol. 42, No. 3 93

94 March 1999/Vol. 42, No. 3 COMMUNICATIONS OF THE ACM

Some Java-based and other mobile agent systems
also provide persistent agent state information. Per-
sistence is achieved by serializing an agent’s state,
writing it to persistent storage, and later retrieving
that state and using it to reconstruct the agent. After
a mobile agent has been serialized, it can be trans-
mitted to another host and reconstituted upon
arrival on the other side. Java’s networking support
includes sockets, URL communication, and a dis-
tributed object protocol called remote method invo-

cation (RMI). In Java, programmatic access to dis-
tributed objects is achieved simply; RMIs are han-
dled transparently by a local proxy or stub that
interacts with the actual remote object.

Moreover, Java facilitates migration of code and
state via its class-loading mechanism. Java’s class
loaders dynamically load the classes included in an
application either locally from the Java class-
path (list of directories) or through the network.
For dynamically loading mobile agent code and

Address Space

Program A

Data

OS Data
Program A

Data

Data

Program A

Data

OS Data

Host 1

Process A

Address Space

Host 1

Process A

Address Space

Host 2

Process BAddress Space

Host 2

Process A

Process migrating from Host 1 to Host 2 Remote evaluation of Procedure A1 at Host 2

Address Space

Object A Class

Methods

Properties

Other Classes

Object A Class

Methods

Properties

Host 1

Object
Instance A1

Address Space

Host 2

Object
Instance A2

Mobile object moving from Host 1 to Host 2

Address Space

Agent A Class

Methods

Properties

Mobility
Metadata

Other Classes

Agent A Class

Methods

Properties

Mobility
Metadata

Other Classes

Host 1

Agent
Instance A1

Address Space

Host 2

Agent
Instance A2

Mobile agent moving from Host 1 to Host 2

Figure 1. Evolution of distributed computing paradigms

Other Classes Other Classes

Other Classes

Other Classes

classes referenced by mobile agents, a specialized
class loader provides several options:

• An agent’s serialized form can include its classes as
well as any classes they reference.

• An agent’s classes can be loaded from a Web
server or from another server.

• An agent’s classes can be loaded through the
classpath.

All code loaded by Java’s class loaders is subject to
security restrictions, which are very useful for mobile
agent systems that have to protect their agents (and
the hosts on which they execute) from unauthorized
access. Java’s security management supports develop-
ment of fine-grain, highly configurable security poli-
cies. For example, agents launched by a particular
user may be granted permission to write files,
whereas another user’s agents may be
granted only read-access, and for a
third user’s agents, no file access at all.

Java also supports development of
mobile agents that are tightly inte-
grated with the Web. Applets may
launch mobile agents from Web
browsers and may also receive the
agents they’ve launched after they com-
plete their remote execution. Java also
provides server technology akin to
applets. So-called servlets function a lot
like a Common Gateway Interface script and may
launch and receive mobile agents. And Java’s Naming
and Directory Interface (JNDI) allows seamless con-
nectivity to business information
through unified access to multiple
naming and directory services.
Mobile agents may, for example, use
JNDI service providers to locate the
services they need, then connect to
legacy systems.

Generic Mobile Agent
Architecture
Generic Java-based mobile agent
architecture consists of six major
components: an agent manager; an
interagent communications man-
ager; a security manager; a reliabil-
ity manager; an application
gateway; and a directory manager.
Each has to support development
of robust, reliable, secure, real-
world agent applications (see Fig-
ure 3).

For example, the agent manager sends agents to
remote hosts and receives agents for execution on the
local host. Prior to transport, the agent manager seri-
alizes the agent and its state. It then passes the seri-
alized form to its counterpart on the destination
host. In a highly reliable architecture, it actually
passes the agent off to the reliability manager, which
ensures that the agent is received by the agent man-
ager on the remote host.

Upon receipt of an agent, the agent manager
reconstructs the agent and the objects it references,
then creates its execution context. The security man-
ager authenticates the agent before it is allowed to
execute. Thereafter, the mobile agent system (actu-
ally the Java virtual machine) automatically invokes
the security manager to authorize any operations
using system resources (such as reading a file). When
the agent is ready to migrate to another host, it

COMMUNICATIONS OF THE ACM March 1999/Vol. 42, No. 3 95

Client Server

Network
Interactions

Client Server

Network
Interactions

Local Interactions

➞➞

➞➞

➞➞

➞

➞

➞➞

➞➞

➞➞

Agent

Figure 2. Client/server and agent computing models
compared

Figure 3. Generic mobile agent system architecture

➛

➛

Generic Mobile
Agent Server

Security
Manager

Generic Mobile
Agent Server

Network

Interagent
Communications

Manager

Reliability
Manager

Agent
Manager

Directory
Manager

Application
Gateway➛

➛

➛

➛

➛

➛

Generic Mobile Agent Server

➛

➛

External
Application➛

➛

▲

▲

▲

▲

▲

▲

▲

▲

Agent

96 March 1999/Vol. 42, No. 3 COMMUNICATIONS OF THE ACM

Concordia

This Java mobile agent technology offers
security and persistence while maintaining
a record of an agent’s travels.

Reuven Koblick

The scale of applications now being considered for net-
work environments requires security and reliability pre-
viously available only in large transaction processing
systems. To be viewed as a realistic development alter-
native for such applications, mobile agent systems have
to provide highly secure and reliable environments. Mit-
subishi’s Concordia, introduced in 1998, is designed for
such complex, secure, reliable, real-world enterprise
applications.

Concordia offers features specially suited for these
applications, including extensive security, reliable
transmission of agents, access to legacy and native
applications, remote administration, and agent debug-
ging. It also includes several forms of interagent com-
munication (for more detail, go to www.meitca.
com/HSL/Products/Concordia).

Concordia provides a rich security model for protect-
ing servers, agents, and Concordia itself from attack or
unauthorized access. Agent protection is the process of
protecting an agent’s contents from tampering or
inspection during transmission across a network con-
nection or when stored on disk. Such protection ensures
the privacy and integrity of the agent and the poten-
tially sensitive information it carries.

Agent users need assurance that sensitive data car-
ried by an agent cannot be compromised and that the
agent cannot be redirected to perform unwanted
actions. So, prior to transmission, Concordia encrypts
an agent’s bytecodes, member data, and state infor-
mation through a combination of symmetric and public-
key cryptography. Concordia servers also authenticate
each other by exchanging digital certificates.

Concordia encrypts an agent’s on-disk representa-
tion. For added reliability, it uses a persistent object
store to periodically checkpoint an agent; in case of
system failure and restart, the agent executes from its
last checkpoint. Since the object store saves an agent
and its state information, it could also be a potential
security risk. So Concordia further secures this on-disk
representation through encryption.

Agent authorization. Server resource protection

ensures that an agent performs only the server tasks for
which it is authorized and for no others. Concordia’s
server resource protection follows two design concepts:
agent identification and resource permission. An agen-
t’s user identity uniquely represents the user who
launched the agent. It consists of a user name identify-
ing a particular individual, a group name identifying a
group of individuals, and a password. Within the user
identity, the password is always stored in a secure form
and is never represented in clear text.

An agent roaming the network carries its own iden-
tity. At each stop in its travels, the agent’s identity is
verified against a list of the system’s valid users. Each
server includes a list of users as well as the correspond-
ing resource-access permissions allowed for that user.
Default permissions may also be configured and
assigned to unknown users.

Resource permissions can be used to allow or deny
fine-grain access to machine resources. For example, a
resource can be constructed to allow read-access to a
machine’s file system. Another resource can deny such
access. And a third can specify read-access only to a
particular file on the machine. Concordia’s resource
permission mechanism is built atop the standard Java
security classes, ensuring that agents use only the
server resources to which they are granted access.

If a system’s source code can be tampered with, no
security policies can guarantee agent or server protec-
tion. Hence, class protection ensures that Concordia
code is not compromised. Concordia’s bytecodes are
digitally signed. When an agent executes, Concordia
guarantees the agent has not been altered in any way by
verifying its digital signature.

Concordia’s reliability features include transactional
message queuing for guaranteed delivery of agents to
remote systems, proxies to shield agents from the
effects of system and network failures, and the object
store.

Transmission across the network. The Concordia
infrastructure provides reliable transmission of agents
across the network by way of an underlying message-
queuing subsystem. Concordia’s queuing support is a
natural fit for the disconnected operational mode of the
mobile agent paradigm, providing a store-and-forward
mechanism. Prior to transmission, an agent is stored in
the local system’s message queue and remains there
until it has been received by the remote host. Agents
can also be stored on the message queue of a local sys-
tem while a remote host undergoes repair or is merely

COMMUNICATIONS OF THE ACM March 1999/Vol. 42, No. 3 97

being moved to a different physical location. When the
remote server comes back online, the local server then
forwards the agent to the server that was offline.

The message queuing subsystem provides additional
reliability by maintaining a copy of the agent to be
transmitted in an on-disk queue until the recipient of
this agent transmission acknowledges receipt via the
two-phase commit protocol.

Proxies increase Concordia reliability by shielding
agents and other objects from the effects of server and
system failures. Concordia provides proxies for compo-
nents supporting potentially long-lived connections.
Proxies transparently attempt to reestablish connec-
tions when they are unable to communicate with their
original counterparts.

Concordia includes an extensive remote administra-
tion facility that starts up, shuts down, and configures
Concordia nodes, or the places where agents execute. It
also manages changes in the security profile of agents,
as well as servers. The administration facility also mon-
itors the progress of agents throughout the network and
maintains agent and system statistics.

Concordia’s “service bridge” component gives
agents controlled access to native applications (such
as legacy databases). It uses the system’s security fea-
tures to ensure that agents do not exceed the permis-
sions granted them by the administration component.
Instances of a service bridge can be located through
lookup in Concordia’s directory service.

A notable difficulty in agent development is tracking
the progress of an agent through the network. Concor-
dia’s agent debugger monitors, controls, and modifies
an agent as it travels and executes throughout the net-
work. The agent debugger helps track an agent at all
times.

Reuven Koblick (reuven@meitca.com) is assistant laboratory director
at the Mitsubishi Electric Information Technology Center America in
Waltham, Mass.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

© 1999 ACM 0002-0782/99/0300 $5.00

c

requests the agent manager transport it to the cor-
rect location.

The security manager protects the host and the
mobile agents against unauthorized access. All
other mobile agent system components interact
with it to authenticate and authorize mobile
agents. The security manager also may protect
agents by encrypting them before transmission
and before they are saved to persistent storage. In
highly secure systems, the security manager may
digitally sign agents, and mobile agent systems
may authenticate each other through an exchange
of certificates. The security manager also allows
authorized agents to pass through firewalls.

The reliability manager ensures the robustness
of the mobile agent system. In highly reliable sys-
tems, it shields agents from the effects of server
and system crashes. One of its main tasks is to
guarantee the persistence of state associated with
agents as well as with the mobile agent system. In
addition, the reliability manager may use transac-
tional queuing, possibly with a two-phase com-
mit, to ensure agents reach their destination, even
during system crashes.

The interagent communications manager in
Java and other systems facilitates communication
between mobile agents dispersed throughout a
network. All but the simplest of applications use
multiple agents to perform their computations,
and the existence of multiple associated agents
mandates interagent communication. Mobile
agent systems typically offer messaging or distrib-
uted events. Some systems include more sophisti-
cated forms of interagent communication, such as
Concordia, which enables affiliated agents to
cooperatively solve a complex problem that can be
partitioned into smaller subtasks.

The application gateway serves as a secure entry
point through which agents can interact with
application servers (such as legacy databases).
Agents may use the JNDI-based directory man-
ager to identify the location of an application
server and then migrate to the host on which the
server is located. An arriving agent accesses resi-
dent servers through this gateway. The security
manager has to authorize the agent’s use of the
gateway and the application server.

Although this generic architecture is sufficient
for most application domains, certain extensions
to it and improvements in basic distributed com-
puting technology would make mobile agents
more efficient and practical for e-commerce appli-
cations. The current generation of agent frame-
works implements abstractions supporting

mobility and delivering on the promise of scalable,
flexible distributed object systems. However, rather
like early operating systems, such frameworks are
each essentially a closed universe. Current ones do
not interoperate on some important levels; missing
are layers of abstraction allowing agents created by
different users to meet, converse, and share mean-
ings and understandings.

Many users are concerned about the overall per-
formance of systems that are unconstrained and
highly distributed. As RMI and similar efforts aimed
at making the network transparent continue to
mature, unresolved technical issues as mundane as
distributed garbage collection and error recovery
become significant. System architectures that oper-
ate predictably in a single-machine context may not
operate so well once their separate elements are dis-
tributed, due to the cost of object marshalling and
unmarshalling [2]. Needed is better basic distributed
object technology.

Find Me a Ski Vacation
While practically all mobile agent systems available
today facilitate code mobility, the “business rules” of
agent and service interaction are still difficult to cod-
ify and debug. Whereas Web-enabled and net-
worked people can act as their own travel agents,
they have trouble instructing an autonomous agent
to: “Find me a ski vacation for the third week in Jan-
uary, where there is predictably good snow, at a ski
lodge where rates are less than U.S.$129 per night.”
The human planner might be willing to trade off
Colorado for Vermont to satisfy the constraints, but
the idea is difficult to convey to an agent just about
to head out into cyberspace to compete with hordes
of other self-interested agents charged with the same
mission. In part, the inability to convey knowledge
has much to do with the need to define multiagent

negotiation protocols [6].
Closely related to defining

negotiation protocols, is the
need for agents to encapsulate
and understand commercial
concepts, like place (“vacation”
and “ski lodge”), calendar
(“third week in January”), and
price and currency (“rates less
than U.S.$129”). The agent
has to understand that a “ski
vacation” is a variant of “vaca-
tion” that can occur only at
certain places and only in the
presence of “good snow.”
Encapsulation of such semanti-

cally rich data exchanged between agents and legacy
applications via the application gateway, agents, and
the user that launched them can be addressed by the
extensible markup language (XML), a new Web
markup language that allows users to specify arbitrar-
ily structured data types.

Furthermore, to provide more reliable support for
Internet-based online transaction processing, more
extensible transactional agent support is needed in the
generic architecture for Java-based and other mobile
agent systems. For example, support for transactional
workflow-like semantics is required to ensure that all
the work an agent performs is atomic, that is, com-
mitted, as it travels through a series of hosts. This
atomicity is needed in e-commerce applications—
even in a simple travel reservation application using
mobile agents in which agents might travel to a num-
ber of travel agency database servers to negotiate the
lowest fare and in which database updates on the var-
ious servers have to be synchronized.

Solutions to address these limitations are begin-
ning to emerge from such sources as CommerceNet
with XML and the University of Maryland, Balti-
more County, with KQML. Commercially available
solutions are rather rudimentary but will certainly
be upgraded over time as agents move from research
labs into a market in which real money is at stake for
users and service providers (see Table 1).

A Killer Opp
While there is (as yet) no single killer application to
propel e-commerce, almost everyone developing e-
commerce software recognizes that online com-
merce represents a killer opportunity. Initial
beneficiaries of e-commerce development will be
business-to-business interchanges. Forrester
Research, an information consulting firm in Cam-
bridge, Mass., estimates that by 2001, business

98 March 1999/Vol. 42, No. 3 COMMUNICATIONS OF THE ACM

The “business rules”
of agent and service
interaction are still
difficult to codify
and debug.

extranet and other electronic transaction strategies
will be worth about U.S.$183 billion, while busi-
ness-to-consumer transactions will be only around
U.S.$17 billion. This disparity is due primarily to
the fact that the vocabulary involved in business
transactions is already codified for automated pro-
cessing. For the foreseeable future, most inter-
changes will consist of dumb data transfers
unaccompanied by a single line of code.

An electronic marketplace rich in killer opps—
more than a shared space for simple electronic data
interchange and where agents play a crucial role—
will experience significant cultural, technological,
and economic change. Figure 4 shows an example of
an e-commerce application in which mobile agents
negotiate with various providers for resources.

Social concerns are also significant, in the long
run outweighing changes in technology. Mobile
agents, by definition, are not tethered to specific

applications and are not simply function calls but
are goal-oriented and do not require user interven-
tion. When they return to the place of their creation,
users may not agree with the results or may be dis-
satisfied with the degree of precision in the answer.
Meanwhile, the agent community has to resolve a
number of technical issues:

• Deferred interaction. How frequently does the
agent have to report back to the user?

• Control. How much control does the human user
need? When does control begin to become costly?

• Understanding. How well can an agent really
understand its human creator’s goals, intentions,
and negotiating style?

• Flexibility. What accommodation does the agent
have to be able to make (or perhaps be forced to
make) in a marketplace populated by other (pos-
sibly smarter) self-interested agents?

COMMUNICATIONS OF THE ACM March 1999/Vol. 42, No. 3 99

Figure 4. An e-commerce application

Service
Provider
Directories

Trader Services

Service Provider
Collections

• An agent-congenial cyberspace is populated by providers of service for
hosting agents and for allowing consumption of specific host resources.

• Agents are told what to do via speach or GUI input to a visual avatar (such as
Microsoft’s Merlin), to a network-residence avatar (such as by phone), or an
XML-enabled Web page to find information, buy things, or add value to
information.

• A mobile agent might meet with a stationary travel agent at a Trader service to find appropriate
processing services.

• With a potentially valid itinerary, the agent might visit any number of Service
Providers, adding to its persistent knowledge store, making bids on goods and
services. Along the way, the agent may further process information.

• The traveling agent performs data fusion and prepares its information for
presentation to an appropriate output media, such as a stationary avatar or a
Web page.

Provider

Provider

Provider

Provider

Web Page
Integrating
Information
from
Providers

Agent-enhanced
Web Page or
Applet

• Robustness. How well does the
agent have to be able to protect
itself from malicious hosts and
other agents?

We humans may ultimately realize
we can’t dictate the mechanism, or
“how I want you to work,” to an
agent, but as long as we reach a rea-
sonable agreement on interfaces,
human needs may be served. Even so,
given the dynamics of detached and
deferred interaction, few of us antici-
pate designing or deploying systems
without user interaction, especially
when (as is likely to happen) there is a
conflict in user goals. Most humans
want to review and validate proposed
transactions before their agents com-
mit to them.

100 March 1999/Vol. 42, No. 3 COMMUNICATIONS OF THE ACM

These Java mobile agents move
comfortably throughout the Internet.

Hideki Tai and Kazuya Kosaka
When the Java programming language became

available in 1995, IBM’s Tokyo Research Laboratory
decided to create a new system for mobile agents
through a project called Aglets that would operate
comfortably in the open system world of Java and the
Internet. We designed Aglets by referring to Java’s
applet and event delegation model so Java program-
mers could learn and use it easily to take advantage of
mobile agents. In 1996, we introduced the alpha ver-
sion of Aglets, which we now call the Aglets Software
Development Kit, as a freely downloadable software
package (www.trl.ibm.co.jp/aglets). It was one of the
first Java-based mobile agent systems.

An Aglet is a composite Java object that includes
mobility and persistence and its own thread of execution
and can communicate with other Aglets. It also has its
own credentials to indicate who implemented and
instantiated it. Based on these credentials, a receiving
computer can limit the behavior of incoming Aglets. Using
Aglets, a programmer can readily implement autonomous
objects in a distributed computing environment.

The life cycle of an Aglet starts with its creation or
its cloning. It might be dispatched to another com-
puter or deactivated to or activated from a secondary

storage medium before finally being disposed of. Each
Aglet is rendered through a programming style involv-
ing a call-back model based on the Java event delega-
tion model. During its life cycle, an Aglet receives
various kinds of events in response to its actions; for
example, if it moves to another computer, a mobility
event occurs just before and after the move, and cor-
responding call-back methods, such as onDispatching
and onArrival, are invoked. In this way, each event
gives an Aglet the opportunity to determine how to
react. A programmer implements an Aglet by filing its
call-back methods as appropriate.

In business. To demonstrate Aglet effectiveness,
we have to persuasively show its value in real applica-
tions, as well as their existence. So, in addition to
Aglets, IBM’s Tokyo Research Laboratory is developing
e-commerce applications to show the business
advantages of Aglets. One example is TabiCan, an
Internet site hosted by IBM Japan offering several
merchant agents for companies selling tickets online:
www.tabican.ne.jp/ (in Japanese). When a user
accesses TabiCan, a consumer agent is created and
interacts with the merchant agents to find travel
information, while living only 24 hours to monitor
newly posted information.

When developing TabiCan, we assumed that inde-
pendently developed agents would be able to interact
with one another, because agents roam the Internet
and meet unfamiliar agents at various sites. There-

The Aglets Project

Technological Need

Structural. Cyberspace is poorly
structured, difficult for an agent
to traverse.

Syntactic. How do agents
converse? What are the social
rules for talking to strangers?

Semantic. What do agents say
to one another?

Dynamic. Will self-interested
agents, seeking to optimize
their own utility curve, create
a marketplace forever chaotic
and unbalanced?

Potential Solutions

• Jini
• Discovery and trader services
• XML metadirectories

• Agent communication language
• Java introspection
• Mandatory agent query interfaces

(COM and JavaBeans)
• Agent meeting frameworks

• Shared semantic bases
• XML
• KIF/KQML

• Circuit breakers
• Leveling strategies
• Cyber equivalents of the Federal

Reserve and the Securities and
Exchange Commission

Table 1. Emerging strategies for developing e-commerce systems

What’s Next?
We are already beginning to derive value from
(admittedly rudimentary) Java-based and other sys-
tems of mobile agents. For example, we can create
virtual assistants for ourselves that remain persistent
in cyberspace and that we can access through graph-
ical user interfaces or through voice commands.
Some Web sites provide recommender agents that use
simple persistence and a simple rules base to “remem-
ber” users’ contacts and activities and notify them of
events of interest in specific, limited domains.

Although e-commerce will initially largely follow
existing social and commercial interaction models,
in a more online context, the social and commercial
models will begin to drift apart. For example, the
online transaction environment will begin to resem-
ble a huge bazaar in some domains; pricing will be
determined through real-time evaluation. Online
auctions will closely resemble their physical counter-
parts; many participants will be virtual delegates

exercising selfish agent strategies. Selfish agents will
themselves become a cottage industry. Market
imperfections that heretofore favored the seller will
begin to favor the buyer’s tireless comparison-shop-
ping agent. This buyer advantage will motivate
many sellers in a given sector to hide price and fea-
ture information, but fear of lost opportunity will
force sellers to raise the information content of their
online offerings and express that information in a
way that agents and metadata mappers (the next-
generation search engines) can capture. Products will
become services and vice versa.

Meanwhile, smarter companies will adopt new
ways to disaggregate traditional value chains and
augment the information component of their prod-
ucts, turning agents into welcome guests. Sellers will
want agents to participate cooperatively and to suc-
ceed in the missions their creators entrust them with,
codifying sufficient information to assure these
agents fulfill their missions. And highly specialized

COMMUNICATIONS OF THE ACM March 1999/Vol. 42, No. 3 101

fore, we first developed an electronic marketplace
framework, called e-Marketplace, on top of Aglets, to
provide a meeting place for agents and define a high-
level interaction protocol for interagent communica-
tion [1]. The framework also provides a swap-in and
swap-out scheduling mechanism to accommodate
thousands of consumer agents at the same site.

Mobile agents, like remote procedure calls, are
among the fundamental technologies needed to
build distributed applications. Today, a number of
mobile agent systems have begun to emerge, though
many have different application programming inter-
faces (APIs) and thus cannot interoperate with one
another. Ultimately, we want to see one agent sys-
tem accepting agents created by other agent sys-
tems so the systems interact, taking full advantage
of mobility throughout the Internet. To achieve this
vision, agent software vendors have to standardize
the base agent API, which should be simple but
extensible enough to allow agents to be mobile, per-
sistent, active, secure, and interactive. The transfer
and communication protocols should also be
defined to preserve interoperability. The API may
also define other service components, such as a
directory service for finding agent systems and ser-
vices and a tracking service for tracing the network
locations of agents.

Middleware also has to be created by agent soft-
ware vendors to reduce the gap between a bare mobile
agent system and its applications. It has to be hori-

zontal for multiple types of applications and vertical
for specific types of applications to further accelerate
the use of mobile agents. That’s why we created Aglets
and have made it publicly available. In view of feed-
back from users and our experience with TabiCan, we
are quite confident that our dream can be realized.

However, a key question about Aglets, and about
mobile agents in general, still needs to be answered:
What is the killer application? Although many applica-
tions use mobile agents, the killer application has not
been found yet. We remain optimistic, because if we
create a standard agent API in Java, mobile agents will
become more pervasive, spurring many researchers
and developers to help create such an application.

Reference
1. IBM Research. Aglets-based e-Marketplace: Concept, Architecture, and

Applications. Research Report RT-0253, Tokyo Research Laboratory,
Japan, 1997.

Hideki Tai (hidekit@jp.ibm.com) is an associate researcher in the
Tokyo Research Laboratory of IBM Japan, Inc.
Kazuya Kosaka (kosaka@jp.ibm.com) is project manager
for object technology in the Tokyo Research Laboratory of IBM
Japan, Inc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 1999 ACM 0002-0782/99/0300 $5.00

c

agents, knowledgeable in specific domains (available
for lease, purchase, or even free) will enlighten us
and our agent representatives.

We are using Java mobile agent technology to
deliver mobile agents to the threshold of agent-
enhanced e-commerce applications, seeking technol-
ogy with the potential to inspire and support
mass-market e-commerce applications. Even today’s
somewhat limited technology promises an e-commerce
explosion in which mobile agents play a key role.

References
1. Chang, D., and Lange, D. Mobile agents: A new paradigm for distrib-

uted object computing on the WWW. In Proceedings of the OOP-
SLA96 Workshop: Toward the Integration of WWW and Distributed
Object Technology (San Jose, Calif., Oct. 6–10). ACM Press, N.Y.,
1996, pp. 25–32.

2. Foster, S., Moore, D., and Nebesh, B. Autopilot: Experiences imple-
menting a data-driven agent architecture. In Proceedings of the 26th
Technology of Object-Oriented Languages and Systems (Santa Barbara,
Calif., Aug. 3–7). IEEE Computer Society, Los Alamitos, Calif., 1998,
pp. 155–162.

3. Jul, E., Levy, H., Hutchinson, N., and Black, A. Fine-grained mobil-
ity in the Emerald system. ACM Trans. Comput. Sys. 6, 1. (Feb. 1988),
109–133.

4. Odyssey white paper. General Magic Corp., Cupertino, Calif., 1998.
5. Powell, M., and Miller, B. Process Migration in DEMOS/MO. In Pro-

ceedings of the Ninth ACM Symposium on Operating Systems Principles
(Bretton Woods, N.H., Oct. 11–13), ACM/SIGOPS, New York,
1983, pp. 110–119.

6. Sandholm, T. Agents in electronic commerce: Component technolo-
gies for automated negotiation and coalition formation. In Proceedings
of the Second Workshop on Cooperative Information Agents (Paris,
France, July 4–7). Springer-Verlag, Berlin, 1998, pp. 113-134.

7. Stamos, J., and Gifford, D. Remote evaluation. ACM Trans. Comput.
Sys. 12, 4 (Oct. 1990), 537–565.

8. Voyager white paper. ObjectSpace Corp., Dallas, Tex., 1998.
9. White, J. Mobile agents. In Software Agents, J. Bradshaw, Ed. MIT

Press, 1997, pp. 437–472.
10. Wong, D., Paciorek, N., Walsh, T., DiCelie, J., Young, M., and Peet,

B. Concordia: An infrastructure for collaborating mobile agents. In
Proceedings of the First International Workshop on Mobile Agents (Berlin,
Germany, Apr. 7–8), Springer-Verlag, Berlin, 1997, pp. 86–97.

David Wong (wong@meitca.com) is a senior principal member of tech-
nical staff at Mitsubishi Electric Information Technology Center America
in Waltham, Mass., and a principal architect and the technical lead of the
Concordia mobile agent systems framework.
Noemi Paciorek (noemi@meitca.com) is a senior principal member of
technical staff at Mitsubishi Electric ITA in Waltham, Mass., and a princi-
pal architect of the Concordia mobile agent systems framework.
Dana Moore (dana.moore@att.net) is a technical staff member at
AT&T Research Laboratories in Columbia, Md., and a principal architect
of the Autopilot agent workflow system for the U.S. Department of
Defense.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 1999 ACM 0002-0782/99/0300 $5.00

c

102 March 1999/Vol. 42, No. 3 COMMUNICATIONS OF THE ACM

