
1

1

Timestamps in Locking Protocols
• Timestamps:

• used to avoid deadlock.
• each transaction has a single timestamp.
• timestamps are used to resolve conflicts between transactions.

• Possible Actions:
• wait: defer until conflicting transaction completes/aborts
• restart:

die - begin again but with original timestamp
wound - attempt to cause the conflicting transaction to die
and continue when the conflicting transaction completes /
aborts

• Two algorithms:
• wait-die: non-preemptive; a transaction finding a conflict waits

if it is older and dies if it is younger.
• wound-wait: preemptive; a transaction finding a conflict wounds

if it is older and waits if it is younger

2

Basic Timestamp Ordering (BTO)

R-ts object W-ts

read <object,TS>
if TS<W-ts

then reject/abort
else R-ts = max{R-ts,TS}

write<object, val, TS>
if TS <R-ts or TS <W-ts

then reject/abort
else W-ts = TS

Thomas Write Rule: do not abort conflicting writes, simply
ignore them.

2

3

Multiversion Timestamp Ordering

R-ts1, R-ts2, ….., R-tsm

<W-ts1, v1>, <W-ts2, v2>,….,<W-tsn, vn>

Object

read history

read <object,TS>
read vj where j = max{i|W-tsi<TS}
add <TS> to read history

write<object, val, TS>
if (there is a k such that

TS<R-tsk<W-tsj where j = min {i|TS<W-tsi})
then

reject operation
else

add <TS, vl> to versions

versions

4

Conservative Timestamp Ordering
Each Data Manager maintains:

• a read queue (RQi)
• a write queue (WQi)

for each Transaction Manger, TMi
Let: TS(Qi) denote the timestamp of the first operation in Qi

RQ1

WQ1

RQ2

WQ2

RQN

WQN

.....

TM1

TM2

TMN

Scheduler
DMk

(other Data Mangers)

3

5

Conservative Timestamp Ordering

Let: TS(Qi) denote the timestamp of the first operation in Qi

read <object,TS>

if (non-empty(WQi) and TS(WQi) > TS for i = 1 ….N)
then execute the read operation
else add the read operation to RQi

write<object, val, TS>

if (non-empty (RQi) and non-empty (WQi) and
TS(RQi) > TS and TS(WQi) > TS for i = 1….N)

then execute the write operation
else add the write operation to WQi

6

Optimistic Algorithms (Kung-Robinson)
Each transaction, T, has three phases:

• read phase
read from database and write to temporary storage (log)

• validation phase
If (T does not conflict with any other executing transaction)

then

assign the transaction a unique (monotonically
increasing) sequence number and perform the write
phase

else abort T

• write phase

write log to database

4

7

Optimistic Algorithms (Kung-Robinson)
Let:

ts be the highest sequence number at the start of T
tf be the highest sequence number at the beginning of T’s validation
phase

validation algorithm:

valid = true;

for t = ts + 1 to tf do
if (writeset[t] intersect readset[T] != φ)

then valid = false;

if (valid)
then

do write phase;
increment counter;
assign T a sequence number;

