
1

1

Processing
(threads, agents, formalism)

How can processing activity be structured on a single
processor?

How can application-level information and system-level
information be combined to provide efficient scheduling of
processing activities?

Why is mobility of a processing activity desired and how can it
be achieved?

How can the concepts of communication, processing, and
mobility be represented in a formal model?

2

Context

Support for concurrent and parallel programming

conform to application semantics

respect priorities of applications

no unnecessary blocking

fast context switch

high processor utilization

co
nc

ur
re

nt

pa
ra

lle
l

functional

performance

relative importance



2

3

“Heavyweight” Process Model

. . .

user

kernel

• simple, uni-threaded model
• security provided by address space boundaries
• high cost for context switch
• coarse granularity limits degree of concurrency

4

“Lightweight” (User-level) Threads

. . .

user

kernel

• thread semantics defined by application
• fast context switch time (within an order of magnitude of

procedure call time)
• system scheduler unaware of user thread priorities
• unnecessary blocking (I/O, page faults, etc.)
• processor under-utilization



3

5

Kernel-level Threads

• thread semantics defined by system
• overhead incurred due to overly general implementation and cost of
kernel traps for thread operations

• context switch time better than process switch time by an order of
magnitude, but an order of magnitude worse than user-level threads

• system scheduler unaware of user thread state (e.g, in a critical region)
leading to blocking and lower processor utilization

. . .

user

kernel

6

Problem

• Application has knowledge of the user-level thread state but has
little knowledge of or influence over critical kernel-level events (by
design! to achieve the virtual machine abstraction)

• Kernel has inadequate knowledge of user-level thread state to make
optimal scheduling decisions

Solution: a mechanism that facilitates exchange of
information between user-level and kernel-level
mechanisms.

A general system design problem: communicating
information and control across layer boundaries while
preserving the inherent advantages of layering,
abstraction, and virtualization.



4

7

Scheduler Activations: Structure

. . .

kernel support

user

kernel

• change in processor
allocation

• change in thread
status

• Change in processor
requirements thread

library

Scheduler activations

8

Communication via Upcalls

The kernel-level scheduler activation mechanism
communicates with the user-level thread library by
a set of upcalls:

Add this processor (processor #)
Processor has been preempted (preempted activation #, machine state)
Scheduler activation has blocked (blocked activation #)
Scheduler activation has unblocked (unblocked activation #, machine state)

The thread library must maintain the association
between a thread’s identity and thread’s scheduler
activation number.



5

9

Role of Scheduler Activations

virtual
multiprocessor

user-level
threads

. . .

. . .

P1 P2 Pn . . .

. . .

SA SA SA

kernel

thread
library

Invariant: there is one running
scheduler activation (SA) for
each processor assigned to the
user process.

abstraction implementation

10

Avoiding Effects of Blocking

user

kernel

user

kernel

3: new

Kernel threads Scheduler Activations

1: system call

2: block

1

2

4: upcall

5: start



6

11

Resuming Blocked Thread

user

kernel

2: preempt

1: unblock

3: upcall

5
4

4: preempt
5: resume

12

Performance

Operation FastThreads on
Topaz Threads

FastThreads on
Scheduler Activations

Topaz Threads Ultrix process

Null fork

Signal-Wait

34

37

37

42

948

441

11300

1840


