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Processing
(threads, agents, formalism)

How can processing activity be structured on a single
processor?

How can application-level information and system-level
information be combined to provide efficient scheduling of
processing activities?

Why is mobility of a processing activity desired and how can it
be achieved?

How can the concepts of communication, processing, and
mobility be represented in a formal model?
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Context

Support for concurrent and parallel programming

conform to application semantics

respect priorities of applications

no unnecessary blocking

fast context switch

high processor utilization
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“Heavyweight” Process Model

. . .

user

kernel

• simple, uni-threaded model
• security provided by address space boundaries
• high cost for context switch
• coarse granularity limits degree of concurrency
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“Lightweight” (User-level) Threads

. . .

user

kernel

• thread semantics defined by application
• fast context switch time (within an order of magnitude of

procedure call time)
• system scheduler unaware of user thread priorities
• unnecessary blocking (I/O, page faults, etc.)
• processor under-utilization
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Kernel-level Threads

• thread semantics defined by system
• overhead incurred due to overly general implementation and cost of
kernel traps for thread operations

• context switch time better than process switch time by an order of
magnitude, but an order of magnitude worse than user-level threads

• system scheduler unaware of user thread state (e.g, in a critical region)
leading to blocking and lower processor utilization

. . .

user

kernel
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Problem

• Application has knowledge of the user-level thread state but has
little knowledge of or influence over critical kernel-level events (by
design! to achieve the virtual machine abstraction)

• Kernel has inadequate knowledge of user-level thread state to make
optimal scheduling decisions

Solution: a mechanism that facilitates exchange of
information between user-level and kernel-level
mechanisms.

A general system design problem: communicating
information and control across layer boundaries while
preserving the inherent advantages of layering,
abstraction, and virtualization.
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Scheduler Activations: Structure

. . .

kernel support

user

kernel

• change in processor
allocation

• change in thread
status

• Change in processor
requirements thread

library

Scheduler activations
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Communication via Upcalls

The kernel-level scheduler activation mechanism
communicates with the user-level thread library by
a set of upcalls:

Add this processor (processor #)
Processor has been preempted (preempted activation #, machine state)
Scheduler activation has blocked (blocked activation #)
Scheduler activation has unblocked (unblocked activation #, machine state)

The thread library must maintain the association
between a thread’s identity and thread’s scheduler
activation number.
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Role of Scheduler Activations

virtual
multiprocessor

user-level
threads

. . .

. . .

P1 P2 Pn . . .

. . .

SA SA SA

kernel

thread
library

Invariant: there is one running
scheduler activation (SA) for
each processor assigned to the
user process.

abstraction implementation
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Avoiding Effects of Blocking

user

kernel

user

kernel

3: new

Kernel threads Scheduler Activations

1: system call

2: block

1

2

4: upcall

5: start
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Resuming Blocked Thread

user

kernel

2: preempt

1: unblock

3: upcall

5
4

4: preempt
5: resume
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Performance

Operation FastThreads on
Topaz Threads

FastThreads on
Scheduler Activations

Topaz Threads Ultrix process

Null fork

Signal-Wait
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