
Protection and Security

Issues:

authentication: verifying a claim of identity authorization: verifying a claim of permission audit: verifying the (non)occurrence of previous actions

- Authentication
- •Authorization
- •Audit

(Au = gold)

aka: AAA

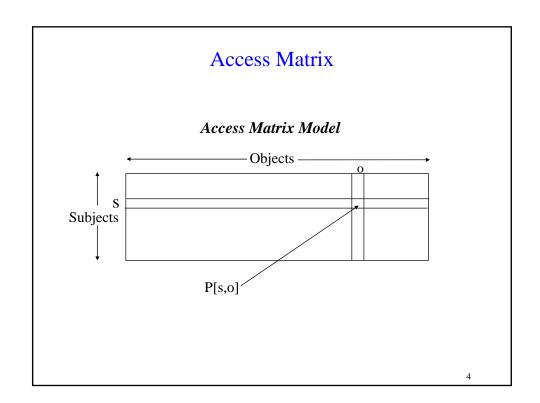
Reference Monitor Model

From: "Computer Security in the Real World", Lampson, 2004.

Security Goals and Principles

Goals:

- •integrity modification only by authorized parties
- •confidentiality access only by authorized parties
- •non-repudiation inability to disclaim authorship
- •authenticity verifiability of source
- •availability continuous access by authorized parties


Principles:

- •least privilege minimization of rights
- •separation of duties (by task, by person)
- •economy of mechanism simplest means of enforcement
- •acceptability adoptable/usable by user community
- •complete mediation universal enforcement of control
- •open design secrecy of enforcement mechanisms is not important

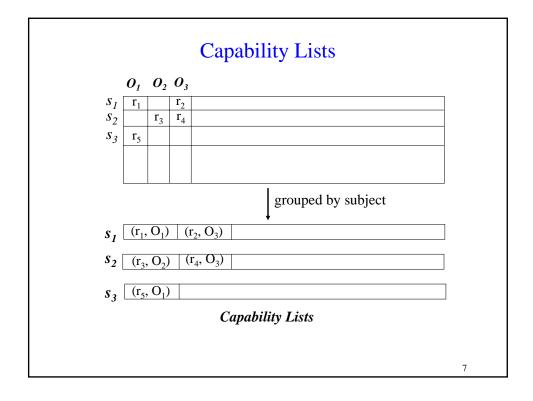
Elements of a Secure System

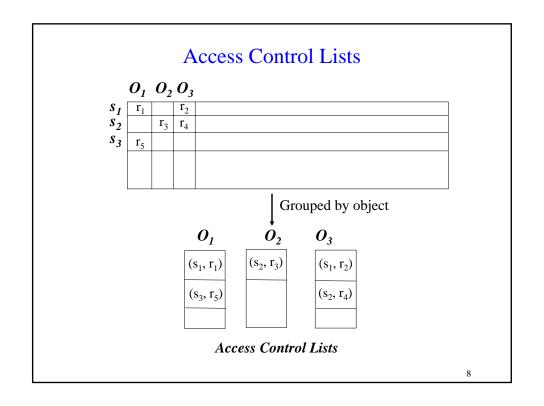
- Specification/Policy
 - secrecy
 - integrity
 - availability
 - accountability
- Implementation/Mechanism
 - isolation (impractical)
 - exclusion (code signing, firewalls)
 - restriction (sandboxing)
 - recovery
 - punishment
- Correctness/Assurance
 - trusted computing base
 - defense in depth
 - usability
 - theory

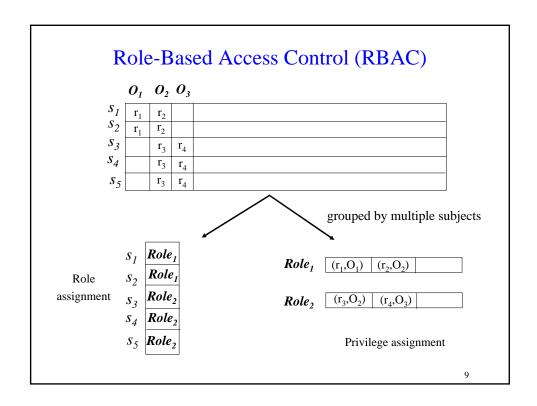
From: "Computer Security in the Real World", Lampson, 2004

Access Matrix

objects

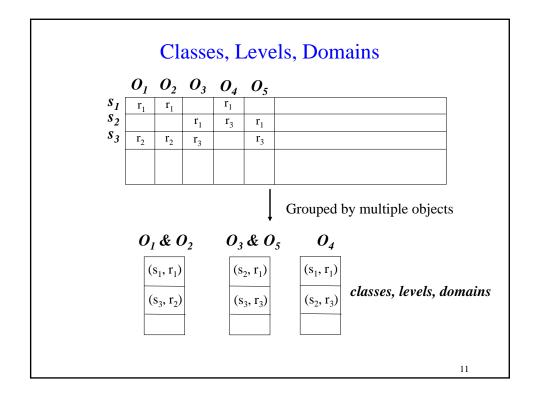

subjects

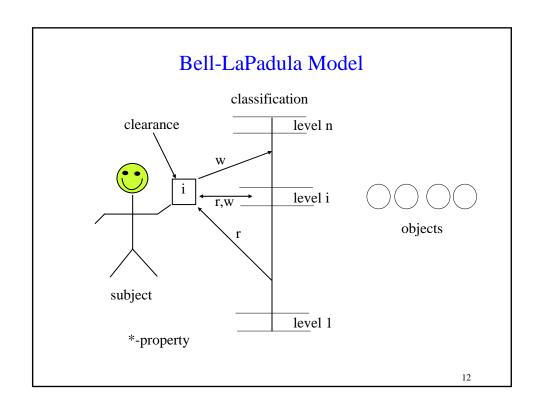

	S_I	S_2	S_3	F_{I}	F_2	D_I	D_2	
S_I	control	owner block unblock	owner control	read* write*	read write	seek	owner	
S_2	block unblock	control		owner	update	owner	seek*	
S_3			control	delete	owner execute			

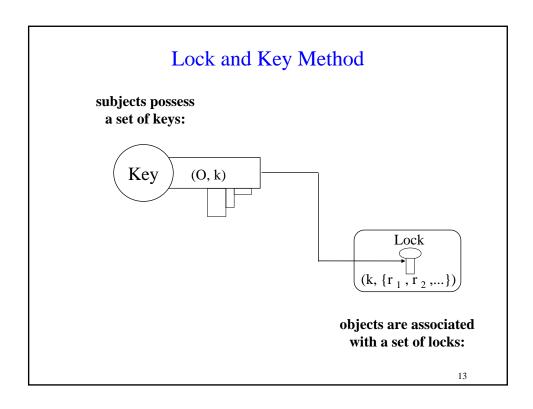

5

Manipulating the Access Matrix

Rule	Command (by S ₀)	Conditions	Operation
R ₁	transfer {a/a*} to S,X	a* in A[S ₀ ,X]	store {a/a*} in A[S,X]
R ₂	grant {a/a*} to S,X	owner in A[S ₀ ,X]	store {a/a*} in A[S,X]
R_3	delete a from S,X	control in A[S ₀ ,S] or owner in A[S ₀ ,X]	delete a from A[S,X]
R_4	w = read S,X	control in A[S ₀ ,S] or owner in A[S ₀ ,X]	copy A[S,X] into w
R ₅	create object X		add column for X to A; place owner in A[S,X]
R ₆	destroy object X	owner in A[S ₀ ,X]	delete column for X from A
R ₇	create subject S		add a row for S to A; place <i>owner</i> in A[S0,S]; place <i>control</i> in A[S,S]
R ₈	destroy subject S	owner in A[S ₀ ,X]	delete row for S from A;







Role-Based Access Control (RBAC)

- Roles of model particular jobs or duties in an organization
- Single user may play multiple roles at the same or different times
- Multiple users may play the same role at the same or different times
- The user-role assignment may be made separately from the role-permission assignment

Comparison of methods

	Capability list	Access Control links	Locks & Keys
propagation	<u>•</u> 1	⊘ 3	<u>•</u> 1
review		\odot	② 4
revocation		\odot	○ 4
reclamation	> 2	\odot	\odot

- 1. need copy bit/count for control
- 2. need reference count
- 3. need user/hierarchical control
- 4. need to know subject-key mapping