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Distributed Programming

•low level: sending data among distributed computations

•higher level: supporting invocations among distributed computations

•network is visible (to the programmer)

•programmer must deal with many details

•network is invisible (to the programmer)

•programmer focuses on application

2

Remote Procedure Call
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Remote Object Systems
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Remote Invocation Issues

• generating stubs/proxies

• serialization of arguments and return values

• heterogeneity of data representations

• locating servers in a distributed environment (*)

• authentication of called and calling procedures (*)

• semantics of invocation  

(*) addressed in other sections of the course
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Interface Definition Language
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Language binding: how IDL is translated to a given programming language.
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IDL Elements

module modulename {
exception exceptionName { [type pname]* };
typedef type newtype;

interface newInterface {
oneway type fname(in type pname1);
attribute newtype;

};

interface newInterface2 : newInterface {
type fname2 (out newInterface pname3) raises exceptionName;

};
};

From: Ole Arthur Bernsen
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IDL Example
typedef unsigned long AccountNumber;
typedef unsigned long PersonalIdentificationNumber;

exception NoSuchAccount {};
exception InvalidPin{};
exception InsufficientFunds {};

interface Account {
struct AccountRecord {
string owner;
float balance;
string lastaccess; };

void Credit (in float Amount);
void Debit(in float Amount) raises (InsufficientFunds);
void List (out AccountRecord List_R1);

};

interface Sbank {
Account Access (in AccountNumber acct,

in PersonalIdentificationNumber pin)
raises (NoSuchAccount, InvalidPin);

}; 

From: 
Nigel Edwards
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Serialization
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transforming a typed, highly structured object 
into a stream of bytes.

Issues: 
•how to represent base types (i.e. int)
•how to represent structured types (arrays)
•how to deal with references (pointers)
•how to treat duplicated objects

Transfer syntax: the description of the encoded data stream.
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Invocation Semantics - Blocking

synchronous asynchronous (one-way)
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Invocation Semantics - Blocking

asynchronous (with returned result)
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Invocation Semantics –Modes

• At-most once: it is guaranteed that the invocation 
will not occur or will occur exactly once.

• At-least-once: it is guaranteed that the invocation 
will occur though perhaps multiple times

• Best-effort: no guarantee
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Corba

From: Object Mangagement Group

Corba: Common Object Request Broker Architecture
ORB: Object Request Broker

Goal: interoperability among application components  
•written in different programming languages 
•executing on heterogeneous architectures 
•communicating over different networks.
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Role of the Object Request Broker

From: Doug Schmidt

•Application interfaces: interfaces for a specific application 
•Domain interfaces: interfaces shared across applications in a given application domain (publishing)
•Common Facilities: generic services that might be needed in several domains (document structure)
•Object Services: commonly needed across all applications (e.g., lifetime, naming, trading)
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Elements of Corba

From:Kate Keahey
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Elements of Corba

From: Doug Schmidt
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Corba Process Structure
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Corba Services

•Naming - bind of names to objects (*)
•Events - asynchronous notification (*)
•Lifecycle - object management
•Relationship - maintaining relationships among objects
•Transaction - structured, reliable, database operations (*)

(*) - see more about later in the course
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Corba and Java

Corba is still needed to fill in the 
gaps between Java and system 
developed in other languages.


