
1

1

Distributed Programming

•low level: sending data among distributed computations

•higher level: supporting invocations among distributed computations

•network is visible (to the programmer)

•programmer must deal with many details

•network is invisible (to the programmer)

•programmer focuses on application

2

Remote Procedure Call

Calling
Procedure

Called
Procedure

args

results

args
Calling

Procedure
Client
Stub

RPC
Transport

args

results

RPC
Transport

Called
Procedure

Server
Stub

request
reply reply

results

2

3

Remote Object Systems

invoking
object

invoked
object

proxy
objects

network
objects

4

Remote Invocation Issues

• generating stubs/proxies

• serialization of arguments and return values

• heterogeneity of data representations

• locating servers in a distributed environment (*)

• authentication of called and calling procedures (*)

• semantics of invocation

(*) addressed in other sections of the course

3

5

Interface Definition Language

Calling
Procedure

Client
Stub/Proxy

Transport
Layer

args

results

Transport
Layer

Called
Procedure

Server
Stub/Proxy

request
reply reply

results

IDL
description

translator translator

Language binding: how IDL is translated to a given programming language.

6

IDL Elements

module modulename {
exception exceptionName { [type pname]* };
typedef type newtype;

interface newInterface {
oneway type fname(in type pname1);
attribute newtype;

};

interface newInterface2 : newInterface {
type fname2 (out newInterface pname3) raises exceptionName;

};
};

From: Ole Arthur Bernsen

4

7

IDL Example
typedef unsigned long AccountNumber;
typedef unsigned long PersonalIdentificationNumber;

exception NoSuchAccount {};
exception InvalidPin{};
exception InsufficientFunds {};

interface Account {
struct AccountRecord {
string owner;
float balance;
string lastaccess; };

void Credit (in float Amount);
void Debit(in float Amount) raises (InsufficientFunds);
void List (out AccountRecord List_R1);

};

interface Sbank {
Account Access (in AccountNumber acct,

in PersonalIdentificationNumber pin)
raises (NoSuchAccount, InvalidPin);

};

From:
Nigel Edwards

8

Serialization

x y z

b

c

a

x y z c

transforming a typed, highly structured object
into a stream of bytes.

Issues:
•how to represent base types (i.e. int)
•how to represent structured types (arrays)
•how to deal with references (pointers)
•how to treat duplicated objects

Transfer syntax: the description of the encoded data stream.

5

9

Invocation Semantics - Blocking

synchronous asynchronous (one-way)

10

Invocation Semantics - Blocking

asynchronous (with returned result)

6

11

Invocation Semantics –Modes

• At-most once: it is guaranteed that the invocation
will not occur or will occur exactly once.

• At-least-once: it is guaranteed that the invocation
will occur though perhaps multiple times

• Best-effort: no guarantee

12

Corba

From: Object Mangagement Group

Corba: Common Object Request Broker Architecture
ORB: Object Request Broker

Goal: interoperability among application components
•written in different programming languages
•executing on heterogeneous architectures
•communicating over different networks.

7

13

Role of the Object Request Broker

From: Doug Schmidt

•Application interfaces: interfaces for a specific application
•Domain interfaces: interfaces shared across applications in a given application domain (publishing)
•Common Facilities: generic services that might be needed in several domains (document structure)
•Object Services: commonly needed across all applications (e.g., lifetime, naming, trading)

14

Elements of Corba

From:Kate Keahey

8

15

Elements of Corba

From: Doug Schmidt

16

Corba Process Structure

ORB
Interface

ORB Core

DIIIDL
Stubs

IDL
Skeletons

Object Adaptor

object

operating
system

Object
Adaptor

ORB Daemon

ORB
Interface

ORB Core

DIIIDL
Stubs

IDL
Skeletons

Object Adaptor

client

operating
system

9

17

Corba Services

•Naming - bind of names to objects (*)
•Events - asynchronous notification (*)
•Lifecycle - object management
•Relationship - maintaining relationships among objects
•Transaction - structured, reliable, database operations (*)

(*) - see more about later in the course

18

Corba and Java

Corba is still needed to fill in the
gaps between Java and system
developed in other languages.

